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Abstract
The advances of recent years in generative artificial intelligence (AI) have provided ample new means to
improve conceptual modeling. Yet, relatively little research has examined how AI solutions can benefit
from conceptual modeling. Here, we demonstrate how conceptual modeling can support Explainable
AI (XAI) rather than black-box solutions in high-stakes decision-making, thus contributing to the
model’s interpretability and likelihood of adoption. In particular, we reformulate a complex AI task –
finding similar criminal cases – using a conceptual model that facilitates factual and interpretable AI
inferences. Currently, attorneys look for similar cases manually, which is time- and resource-consuming,
involving many complex comparisons, and resulting in a selection of cases that is potentially biased.
Our conceptual model-based solution, in contrast, uses AI to populate values in the conceptual model
from the unstructured case text, and learns what makes two cases similar from expert judgment. The
findings show that our approach identifies similar cases and outperforms black-box AI solutions by
10.0% in terms of 𝐹1 while delivering interpretable results based on the conceptual model.
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1. Introduction

Conceptual models aim to describe knowledge in a specific domain [1]. Such models may be
structural or behavioral and can be used for communication, information systems design and
implementation, and knowledge management. Usually, conceptual models are developed at the
beginning of projects and provide a static foundation. However, the advancements in artificial
intelligence (AI), machine learning (ML), deep learning (DL), and generative AI have increasingly
sidelined traditional conceptual models due to their inability to adapt dynamically to the rapidly
evolving needs of AI-driven systems. To address this issue, recent advancements in AI are often
utilized to support the dynamic and continuous development of conceptual models.

However, it is still unclear how conceptual modeling can co-evolve with and support the
development of AI-based solutions. Bork indicates opportunities for introducing conceptual
modeling to AI [2]. In particular, he mentions that AI can automate various tasks or services.
However, stakeholders within the domain of enterprise systems do not readily adapt to or fully
understand AI methods due to their complexity and black-box characteristics. Nevertheless,
conceptual modeling can make AI more accessible to non-experts. For example, it enhances
transparency by embedding domain knowledge into the AI-based solutions, making its operations
more interpretable and aligned with user expectations. Additionally, conceptual modeling can
make AI-based solutions more understandable to users without specialized knowledge [2], and
enable more effective interaction with these [3]. This applies to other domains that involve
decision-making, such as law, medicine, aerospace and defense, and transportation.
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The literature consistently highlights four recurring advantages that make conceptual models
an attractive substrate for AI pipelines [4, 5]:

• Enhancing understandability: Translating tacit, expert knowledge into an explicit, shareable
artifact improves collective comprehension of the domain.

• Facilitating domain expert-developer collaborations: Decomposing complex problems into
modeled concepts creates a transparent workflow and a common vocabulary through which
domain specialists and AI developers can communicate.

• Supporting generalization: A clean separation between domain concepts and technical
implementation makes it easier to transfer the same modeling approach to other subdomains
with only minor adjustments.

• Mitigating errors and bias: A structured representation constrains the AI system to focus
on relevant factors, thereby reducing spurious correlations and uneven performance across
cases.

This paper presents a case study that investigates the following research question: How
can conceptual models (based on their advantages) support explainable AI (XAI) in the legal
domain?

We do so by using a conceptual model to derive the entire process of explainable AI (XAI) in a
case study from the legal domain, where transparency and interpretability are paramount to the
success of the AI-based solution. Specifically, we aim to identify similar legal cases, which is a
necessary part of supporting various legal arguments, particularly arguments for an appropriate
punishment range in the criminal justice, also known as the sentencing boundary. This process
not only requires the support to produce accurate and consistent results but also demands that
its outputs be understandable and justifiable to legal professionals. By leveraging a conceptual
model, we integrate domain knowledge directly into the AI solution, ensuring that the reasoning
behind the suggested sentencing boundaries is sound, compliant with the law, and aligned with
legal principles. By relying on a conceptual model that incorporates knowledge from the legal
domain, this approach empowers attorneys – some of which may be particularly risk-averse – to
understand and possibly trust the recommendations of the proposed solution, fostering both
usability and accountability in high-stakes legal decisions.

To devise a solution for finding similar cases, we divide the problem into three sub-tasks: (1)
Sentence-level classification, (2) Information extraction, and (3) Similarity determination. For
each sub-task, we use Large Language Models (LLM) as well as standard machine-learning (ML)
techniques.

Using the conceptual model as an infrastructure for the entire process provided promising
results in terms of model accuracy and explainability, and outperformed an alternative approach
without a conceptual model. The paper provides evidence to previous studies (e.g., [6, 7, 8])
discussing the potential of using a conceptual model to support AI-based solutions through a
case study for a successful usage of a conceptual model when using AI techniques.

The paper is organized as follows. Section 2 introduces and analyzes the state-of-the-art of
using conceptual modeling for AI tasks. Section 3 provides the necessary background of the
overall task of identifying similar cases in the legal domain. Section 4 details our proposed
solution for identifying similar cases using a conceptual model and providing explanations based
on it. Section 5 discusses the benefits and limitations of using a conceptual model as reflected in
the case study before concluding and outlining agenda for future research in Section 6.

2. Related Work

Research at the intersection of conceptual modeling and explainable AI now spans a wide
spectrum of application domains, including medical diagnostics, recommender systems, and
judicial decision-support, demonstrating the fields relevance beyond a single context. Miller



addresses the need for AI-based solutions to produce explanations for their outputs and decisions,
a capability that has become crucial in these areas [9]. The ensuing literature shows a clear
evolution in how conceptual models meet that need.

Design support. The first wave of work treated conceptual models as reference blueprints.
Caro-Martínez et al. proposed a conceptual model for the design and implementation of
recommender systems [10]. Langer et al. proposed a conceptual model that adopts stakeholders’
perspectives to guide XAI research [11]. Van Den Berg et al. devise a conceptual model of
categories of aspects and relationships relevant to the development of XAI [12].

Development aids. A second strand integrated these artifacts into the modeling workflow.
Lukyanenko et al. wove goal diagrams, ER models, and BPMN through every CRISP-DM
stage [13] in a foster-care drug monitoring project, thereby exposing data gaps and guiding
feature engineering [7]. They later introduced superimposition, which projects learned feature
weights onto domain concepts so practitioners see category-level explanations rather than opaque
numbers [6].

Embedded explanatory layers. Moving beyond overlays, Maass et al. showed the Model
Embedding Method, which embeds entire ML models inside conceptual structures to compute
“concept contributions” and diagnose where observed behavior diverges from expert knowledge
[8]. Maass et al.’s Conceptual Alignment method provides an iterative solution that adjusts
both the conceptual model and the ML model until predictive consistency is maximized [14].

This progression from reference blueprints, to workflow aids, to tightly coupled explanatory
layers shows how conceptual modeling has evolved from static documentation into an active
engine for generating and validating explanations in modern XAI, however gaps remain around
the standardization of evaluation metrics and the scalability of these methods, and there is
limited clarity on how well they generalize across domains or constantly changing domain.

Bork [2] complemented these lines of work with a four-way taxonomy that classifies how
conceptual- and AI-techniques combine: (i) combining existing techniques from both fields,
(ii) combining new conceptual models with existing AI techniques, (iii) combining existing
conceptual models with new AI techniques, and (iv) combining new techniques from both fields.

Building on Bork’s categorization, most existing research can be neatly placed in the second
category. For example, Bragilovski et al. examined multiple AI techniques to derive domain-
specific conceptual models from user stories [15]. Relatively little research has investigated
the potential of conceptual models to help AI systems, particularly in explainable AI. Maass’s
pioneering work provides compelling arguments for a paradigm shift where conceptual models
transition from being primarily design tools to instruments of explanation. It underscores the
importance of conceptual models in bridging the gap between the complexity of AI systems and
human comprehension [16].

In the concept-based explainability literature, the term “concept” encompasses various ab-
stractions, including symbolic concepts, unsupervised concept bases, prototypes, and textual
concepts [17]. These categories serve different roles in XAI: symbolic concepts are human-defined
attributes (e.g., colors or shapes), while unsupervised concepts emerge from data-driven clus-
tering. Prototypes represent characteristic examples, and textual concepts leverage generative
models like LLMs to bridge textual descriptions.

A promising new direction in concept-based models is using LLMs to come up with concept
representations, eliminating the need for manual annotation [17]. These models align textual
concepts generated by LLMs with latent representations of input data to produce concept scores
that inform final classifications. Two key methods in this area, Language-guided Bottlenecks
[18] and Label-free Concept Bottleneck Model [19], illustrate the potential of this approach to
integrate interpretability into AI systems without sacrificing performance.

LaBO [18] constructs a “concept bottleneck layer” to associate importance weights with inter-
pretable concepts, enabling users to understand the rationale behind AI predictions. LabelFree-
CBM [19] takes this a step further by leveraging GPT-3 to generate concepts dynamically,
eliminating the need for manual annotation while maintaining interpretability. Both models



rely on conceptual structures to organize and present their internal reasoning, validating their
effectiveness through user studies. Barbiero et al. [20] propose an entropy-based explainability
framework that integrates conceptual models directly into the neural network architecture to
provide First-Order Logic (FOL) explanations.

Unlike earlier studies, our work emphasizes the development of textual concepts and showing
their value as features for predictive models. Prior research often treated concepts as either
pre-defined or easily extractable, whereas we develop concrete methods for constructing them
and evaluate their contribution to the prediction against straightforward approaches (generative
models). In Borks taxonomy, this aligns with class (iii): existing conceptual structures enriched
with new AI techniques. By focusing on concept creation rather than assuming it, we highlight
how conceptual models can both improve interpretability and enhance predictive performance in
XAI.

3. The Problem Domain

The criminal law defines what actions constitute a crime and provides guiding principles for
punishing criminal actions. Over the years, legal systems around the world have changed how
they determine what an appropriate and reasonable sentencing decision is [21]. For example,
prior to the Comprehensive Crime Control Act of 1984, federal U.S. judges had full discretion
over sentencing decisions, which was heavily criticized for the large discrepancies in sentencing
decisions, sometimes even for the same crime. [22]. Following the legislation, federal sentencing
guidelines were developed, first imposing mandatory minimum and maximum sentences for
certain crimes and circumstances, then overturned by the Supreme Court as advisory and
non-binding recommendations for judges to follow. Over the years, many legal systems adopted
the structuring of sentencing decisions. For example, the criminal law in Israel was amended
in 2012 to require courts to specify and justify the appropriate type and range of punishment
based on three aspects of the case: the social value damaged by the commission of the crime,
the degree of damage to the social value, and the punishment policy used in similar cases. While
the first two aspects map relatively easily to decisions, determining the similarity of a given
case to previous verdicts is a laborious case-by-case kind of task that requires both breadth of
coverage and depth of understanding of the nuances of each case.

Currently, lawyers look for similar cases manually. This may involve the manual collection
of local spreadsheets of past cases and going through them to find similar cases. Alternatively,
attorneys may use digital keyword search and sieve through the result list. A third option is to
send the query to peers. All of these existing options are error-prone, rely on human recollection,
are labor-intensive, and are limited in coverage.

In this paper, we focus on the domain of weapon-related verdicts to demonstrate the success
of our methodological approach in a relatively simple sub-area of criminal justice, before moving
to more complex offenses like homicide or fraud. Still, the study of weapon-related cases presents
many significant challenges due to the diversity of weapon-related circumstances, nuances that
carry weight for sentencing decisions, regulations, procedures, the language (Hebrew), a limited
number of publicly available cases (due to privacy constraints), and a lack of an abundant ground
truth for supervised learning. To address these challenges, we devise a conceptual model and
learning procedures that can cope with these challenges as detailed next.

4. Conceptual Models for AI Explainability

As LLMs become more capable, it is interesting to examine how well these general-purpose models
do in identifying similar cases. Indeed, we tested these capabilities using embeddings (using



fasttext1) and GPT-based2 models. In both cases, the models provided unsatisfactory results
that suffer from two key shortcomings: (i) they have identified surface-level lexical similarity
rather than legally salient factors (e.g., weapon status, purpose, etc.); (ii) they provided little
grounding for the result. So, injecting cases into such AI-based solutions without any guidance
(i.e., the conceptual model) achieved poor results. We therefore introduce a conceptual layer
that converts raw text into domain concepts before any similarity calculation, enabling both
higher accuracy and factual explanations. Particularly, we decided to divide the problem into
three sub-problems: (i) sentence classification, (ii) feature extraction, and (iii) case similarity
determination, which are executed sequentially. In the following subsections, we elaborate on
each of the steps.

4.1. The Conceptual Model

Breaking down the process into smaller sub-tasks reduces the complexity of the overall task,
but still requires specifying what should be considered as a similar case. For that purpose, we
consulted three district attorneys from the Ministry of Justice in Israel to develop a schema
for determining case similarity. The development of such a schema required the attorneys to
articulate and “formulate” how they think about case similarity. In particular, they started from
a general classification and, downstream of the process, they provide additional information for
each classification. This results in a hierarchical classification of the factors used to determine
similarity. Based on this classification, we enrich the schema with the required information
from each class, the way to obtain it, and, for relevant information types, consider their values
along with their ordering (for example, in the case of weapon status, "dismantled" is less severe
than "separated from ammunition"). The schema and associated information form a conceptual
model that serves as an anchor for each of the stages. The conceptual model consists of the
category of sentences (label), the information required to determine and explain case similarity
and its related values (when applicable), and questions (or prompts) related to the required
information.

Table 1 presents (part of) the specific conceptual model we used for the weapon-related
domain. The first level classification consists of five categories: Offense circumstances, confession,
punishment, general circumstances, and not relevant. The first category is then split into
other sub-categories: weapon type, weapon status, purpose, use, held way, and more. The
sub-category name further implies the required information. Other categories may include
more/other information needs. We devised a prompt to extract this information using an LLM.
For example, the prompt for weapon type was the following: "What is the type of the weapon?
Answer from the following answers without .....". Finally, for each information item, we created
after consultation with the attorneys a list of possible values, sorted in increasing order of
severity. For example, a pistol is less severe than a submachine gun.

During the development of the conceptual model, the attorneys were positively surprised by
the ability of this approach to systematically analyze case similarity. They usually examined
cases holistically, having difficulties crystallizing the similarities and differences. Explicating
(through the conceptual model) the factors affecting the similarities among cases had its own
benefits, regardless of the automation proposed next.

In the case of the weapon domain, the conceptual model is quite simple, yet it provides
evidence that it is quite beneficial to adopt such an approach, as we elaborate in this paper.
Furthermore, we anticipate that the hierarchical approach we adopted would allow us to deal
with complex conceptual models, as well.

We then generalize the conceptual model in the form of meta-model, so we can use it for
other domains. The meta-model appears in Figure 1. The category class refers to the labels
according to which we will classify sentences. The self-association serves for the hierarchical

1https://fasttext.cc/
2https://openai.com/



Table 1
The weapon-related conceptual model

Category (label) Sub-Category Question/Prompt Values

Offense
Circumstances

Weapon
Type

What is the type of weapon?
Answer from the following answers
without another word:
[Pistol, ...]

’Pistol’, ’
submachine gun’,
...

Weapon
Status

I’m going to ask you a question based
on the following text: Clarification –
if the weapon is loaded, it means loaded
in the cartridge in the insert, and
if the weapon is loaded,
then it means that it has a bullet in the barrel. ”{text}”
Is the weapon an {option}? Answer [yes, no] only.

’dismantled’,
’separated’,
...

Purpose
Is the purpose of using the weapon {option}?
Answer with [yes, no] only.

’wedding’,
’conflict’,
’self-defense’...

Use

I am going to ask you a question
based on the following text,
and then you will answer:
”{text}” Did the accused perform {option}?
Answer with [yes, no] only.

...

Confession -
Did the accused plead guilty?
Answer only [yes, no] only. -

Punishment Range - -
Punishment Punishment - -
General
Circumstances - - -

Not Relevant - - -

Figure 1: The conceptual meta-model

category we propose (see the example in Table 1, the columns of category and sub-category).
The information class refers to the element that we would like to extract from the sentences.
The question class is used for the means of extracting the element, and the value class holds the
ordered list of possible values (for the sake of determining the similarity).

In the following, we describe the three stages that utilize the conceptual model. As mentioned
before, the execution of the various stages without the conceptual model achieved poor (random)
results.

4.2. Sentence Classification

To address the challenge of sentence classification, we adopted a two-step hierarchical approach
to maximize the quality of the results. The classification followed the conceptual model that
appears in Table 1. For brevity, we elaborate here only on one thread of the classification (offense
circumstances), while in practice, we had two levels of classification processes. The first process
focused on associating each sentence with one or more of the five predefined categories (labels).
For each label, we trained a binary classifier to predict whether a sentence is associated with it.



Since sentences often carry multiple labels simultaneously, we adopted a multi-label classification
approach.

Before training the classifiers, we manually tagged 3,200 sentences drawn from 137 criminal
judgments (cases). The cases were retrieved from Nevo3 under the following two criteria: (1) The
decision was handed down in 2018 or later; (2) the most serious offence in each case was the illegal
purchase, sale, use, or possession of a weapon. We then assessed intercoder reliability. Measured
using Cohen’s Kappa, we found a high (Kappa > 0.8) inter-coder reliability, indicating that
people can consistently classify the sentences. After examining several transformer-based models
as well as larger language models, we decided to train the classifiers using SetFit 4 [23] with
dictaBert5. For the second level, we applied the same technique. However, each second-stage
classifier operated only on sentences that passed the classification of the first-stage classifier.

For instance, consider the sentence: “The defendant was charged with trafficking in M16
weapons,” which describes the type of weapon (M16) and how it was used (trafficked). To
classify this sentence, we first utilized the five classifiers from the first level, which indicated
correctly that the sentence describes the Offense Circumstances. Then, second-stage classifiers
within the Offense Circumstances sub-category are applied to identify that the sentence contains
information about Weapon Type and Use.

We used the following methodology to train and test the classifiers: Using the sentences from
the 137 cases we classified, we divided those into groups of 12 cases (resulting in approximately
280 sentences each); we then trained the classifiers on each group and tested the results with
respect to all sentences from the other groups.

Figure 2: Results of the sentence classification stage

The results are presented in Figure 2. The graph shows the PR-AUC6 of the categories of
the conceptual model in Table 1. The results indicate that the strategy of having multi-level
classification achieves the best results7. The “Plain” bins show the results when classifying
the sentences only by the second-level classifier (without applying first-stage classifiers). The
“Hierarchical Class” bins show the results when classifying the sentences with the classifier of both
levels. The “Hierarchical Gold” bins show the results of classifying sentences by the second-stage
classifiers when applying only to manually coded sentences of the first stage. We also observed
3https://www.nevo.co.il/
4SetFit is a framework that contrastively fine-tunes any BERT-style sentence encoder, enabling accurate few-shot
classification with minimal compute.

5https://huggingface.co/dicta-il/dictabert
6We also used precision, recall, F1-score, however, PR-AUC is particularly well-suited in this context because it
focuses on the positive, often rare, class while balancing precision and recall.

7Although the hierarchical architecture outperforms the flat baseline in our current dataset, supplementary
experiments with a much larger set of newly-tagged examples showed that the performance gap narrows
considerably as the amount of labeled data grows.

https://www.nevo.co.il/


that low PR-AUC values are associated with categories that have a limited number of sentences,
which limits the learning.

Quantitative Finding 1. Hierarchical approach consistently outperforms other approaches
across categories. This provides a clear indication that conceptual modeling (with respect
to the categories) can improve the performance of an AI-based solution in enhancing
explainability.

4.3. Information Extraction

Once the sentences are classified, we distill each one into the case details required by the
conceptual model, capturing key facets such as weapon type and offence circumstances. Every
labeled sentence becomes a structured attribute that fuels downstream tasks like case-similarity
analysis. For each second-level category, the model specifies (i) the exact piece of information to
extract and (ii) the guiding question that locates it in the text.

To set the ground truth and validate that task, based on the conceptual model, we manually
extracted the related information from the 137 cases.

We experiment with several information extraction techniques, including regular expressions
which served as a baseline, and LLMs. In particular, we tested three LLMs that can handle text
in the Hebrew language: dicta2.08, C4AI9, and Claude10.

Based on the prompt engineering for each category (and related information), we executed the
prompt to retrieve the related information. For example, for the Weapon Type information, the
following prompt was used: "What is the type of weapon? Answer from the following answers
without another word [Pistol, submachine gun, improvised submachine gun, Molotov cocktails,
explosive device, grenade, assault rifle, stun/gas grenade, LAW missile, Matador missile, hunting
rifle, sniper rifle, improvised explosive device, rifle impromptu storm]" Applying the prompt to
the sentence: "The defendant was charged with trafficking in M16 weapons", the result is a
submachine gun. Note that the result may have a single item, yet in many cases, the results
will contain a list of values. Injecting all sentences into their related prompts, following the
conceptual model, results in a feature vector as appears in Table 2.

Table 2
An example of a feature vector.

Case ID ME12
Weapon Type Improvised Submachine Gun
Weapon Status Separated from ammunition
Purpose Conflict
Use Shooting
Held Way on his body, in the car, hidden
Obtained Way -

The results of extracting the features appear in Table 3. The results are calculated using
Dice coefficient, which measures the overlap between sets of values. Where the sets, in our case,
comprise relevant values, as appears, for example, for the "Held Way" category in Table 2. A
dice coefficient higher than 0.6 is considered at least of medium quality. From the results it can
be seen that the larger LLMs provided superior results, and specifically that dicta2.0 provided
the best results.

8https://huggingface.co/dicta-il/dictalm2.0
9https://huggingface.co/CohereForAI/
10https://www.anthropic.com/api



Quantitative Finding 2. By identifying the key features and detailing how to capture them,
the conceptual model becomes a valuable artifact for extracting relevant information,
thereby markedly enhancing explainability.

Table 3
Results of the feature extraction by method (Dice coefficient).

Method Weap. Type Weap. Stat. Purpose Use Held Way Obt. Way Avg.
Dicta2.0 0.75 0.40 0.67 0.94 0.71 0.70 0.70
Claude 3.0 0.72 0.43 0.73 0.82 0.59 0.70 0.67
C4AI 0.77 0.36 0.55 0.63 0.40 0.49 0.53
RepEx 0.13 0.41 0.57 0.53 0.03 0.52 0.37

4.4. Case Similarity

The previous stage populated feature vectors for cases as demonstrated in Table 2. Following
the vectors created for the 137 manually-labeled cases, we sampled 156 pairs, which we manually
tagged for similarity on a 1-5 scale, where a value of 1 represents non-similar cases, 3 represents
somewhat similar cases, and 5 represents highly similar cases. We then converted the similarity
scale into a binary variable where pairs with a score of 3 or above were considered similar, so as
to decide whether to present them to the attorneys as similar cases.

We tried two different approaches for identifying similar cases. First, we tried a supervised
learning approach using a Random Forest model. The model received vectors of dice coefficients
capturing the similarity between the feature vectors of the two cases. Table 4 shows examples
of highly similar (M15, M10) and non-similar (ME21, ME11) pairs of cases. We trained the
Random Forest model using leave-one-out and tested its performance on held-out pairs. To turn
model scores into binary classifications, we use a threshold of 0.76 (of the probability of the pair
being similar) that maximizes performance. Analyzing the result using SHAP, we found out
that the information that mostly affected the indication of non-similar cases is related to the
weapon type, the weapon status, and the held way.

Table 4
Examples of Case Similarities

(a) Highly Similar Cases
Case ID M15 M10 Dice Coef.
Weapon Type Pistol Pistol 1.00
Weapon Status OK Separated from ammunition 0.00
Purpose Self-defense Self-defense 1.00
Use No No 1.00
Held Way In the car, Hidden In the car 0.90
Obtained Way - - 1.00

(b) Non-Similar Cases
Case ID ME21 ME11 Dice Coef.
Weapon Type Imp. Submachine Gun Pistol 0.24
Weapon Status With a bullet in the barrel Separated from Ammu. 0.62
Purpose Conflict Self-defense 0.40
Use Shooting - 0.00
Held Way On his body, In the car At home, In the car 0.81
Obtained Way - - 1.00

The second approach for identifying case similarity involved Zero-shot learning with an existing
LLM (Claude). To formulate the case similar task to the LLM, we created a prompt that includes



To determine their similarity, you are tasked with comparing two law cases based on their property vectors. Your goal is to
analyze the characteristics of each case, identify similarities and differences, and provide a reasoned assessment of how
similar the cases are in general. The purpose of similarity is to help the lawyer determine whether the cases are similar
and whether punishment can be based on them. Here are the property vectors for the two cases:
Category Details
Weapon Type Case 1: ”pistol”

Case 2: ”improvised submachine gun”
Weapon Status Case 1: ”functional”

Case 2: ”separated from ammunition”
Holding Location Case 1: Only ”on body”

Case 2: ”in vehicle”, ”hidden”, ”on body”
Based on your analysis, determine if the cases are similar or not. Present your response in the following format:

<analysis>
[Your detailed analysis of similarities and differences]
</analysis>
<similarity_score>
[Your similarity score is 0 or 1]
</similarity_score>
<justification>
[A brief justification for your similarity score]
</justification>

Figure 3: The prompt used with Claude to determine case similarity.

<analysis>
1. Purpose: Both cases involve a ”conflict”, indicating a similar motivational context.
2. Weapon Use: Both cases involve ”shooting”, showing active weapon usage.
3. Holding Method: Both cases include ”on his body” as a weapon carrying method.
Differences:
Category Details
Weapon Type Case 1: ”pistol”

Case 2: ”improvised submachine gun”
Weapon Status Case 1: ”functional”

Case 2: ”separated from ammunition”
Holding Location Case 1: Only ”on body”

Case 2: ”in vehicle”, ”hidden”, ”on body”
</analysis>
<similarity_score> 1 </similarity_score>
<justification>
Despite some nuanced differences in weapon type and specific offense categorization, the cases are fundamentally similar.
They share critical characteristics: a conflict-driven purpose, active weapon use, similar weapon-carrying methods, and
core weapon-related offenses. The substantial overlap in key legal and contextual properties strongly supports treating
these cases as similar for legal assessment and potential punishment considerations.
</justification>

Figure 4: An example of a generated result from Claude

a short description of the task and the feature values of the two cases. The prompt asked the
model to determine the similarity of the two cases as well as to provide detailed justification
for feature-level similarities and dissimilarities and for pair-level determination. Figure 3 shows
an example of this prompt, and Figure 4 is an example of its response. As shown by previous
work [24], asking LLMs to provide step-by-step justification for their responses improves accuracy.

Interestingly, the zero-shot approach, involving no training, yields superior results over the
supervised approach. For the zero-shot approach, both the precision and the recall reached
0.68. For the Random Forest, the precision reached 0.7 and the recall reached 0.57. The results
indicate that the zero-shot approach (using Claude) facilitated the retrieval of more relevant
cases with negligible lower precision. This means that the zero-shot approach saves the attorneys
time in allocating more similar cases.

The explanations from the RF execution are derived by following the rules derived from the
model results. The explanations from Claude explicitly appear in its output. The results and
the explanation are directed by the conceptual model.



Quantitative Finding 3. Deploying a zeroshot language model to judge case similarity
surpassed the supervised baseline while supplying clear, feature-level rationales. These
explanations enhance understandability, and fostering domain experts-developers collabo-
ration.

Pipeline Error-Propagation Analysis. As a final step, we assessed the robustness of the full
pipeline and examined how errors cascade from one stage to the next. For each sub-task we
used the best-performing model identified in earlier experiments: SetFit with DictaBERT and
hierarchical decoding for sentence classification, Dicta 2.0 for feature extraction, and Claude for
case similarity.

Figure 5 reports case-similarity results under four feature configurations: (1) Oracle upper
bound (orange) - the similarity model receives gold-standard features (i.e., the ground-truth
output of the feature-extraction stage); (2) Perfect sentences (blue) - features are extracted from
gold-standard sentences; (3) Full pipeline (purple) - features are extracted from the sentences
predicted by the classification model; (4) FastText baseline (green) - similarity is computed
directly from raw FastText document embeddings (without the conceptual model).

The figure highlights the sequential dependency of the pipeline: performance (F1 and accuracy)
systematically declines whenever upstream predictions replace gold data. Precisionrecall curves
further reveal that FastText attains high recall but very low precision, effectively labelling most
case pairs as similar. Overall, FastText records the poorest precision and accuracy, whereas our
structured pipeline yields substantial gainsabout 20% in accuracy and roughly 10% in F1when
moving from the FastText baseline to features produced by the sentence-classification stage.
These results underscore the value of the modular approach for improving AI performance on
the case-similarity task.

Figure 5: Case-similarity performance with four alternative feature sources.

5. Discussion

First, we analyze our results through the lens of the four key advantages of conceptual modeling:
enhanced understandability, facilitated domain experts-developers collaboration, improved
generalization, and reduced errors and bias from a qualitative perspective. Second, we unpack
the practical challenges that emerged during implementation.

5.1. Qualitative Perspective

Qualitative Finding 1. The conceptual model enhanced domain understandability as it
rendered the legal context behind each verdict explicit and shareable.



This insight emerged from a series of conversations with practicing attorneys. As they co-
constructed the model, tacit legal knowledge precedents, statutory nuances, and case-specific
factors were externalized into a coherent schema. The participants remarked that the weapon-
offense model distilled scattered principles and fine-grained distinctions into a single, dependable
reference, preserving insights that would otherwise have remained undocumented or overlooked.

Qualitative Finding 2. The conceptual model facilitated domain experts-developers
collaboration as it decomposed the problem into transparent, manageable components
and provided a shared vocabulary for attorneys.

By translating legal concepts into a structured schema, the model served as a bridge between
attorneys and the AI pipeline. Attorneys, despite their limited technical background, reported
that they could (i) inspect intermediate outputs, (ii) follow how each model component shaped
the final recommendation, and (iii) discuss issues with the development team in familiar legal
terms. This level of transparency nurtured trust, improved usability, and, in their words, enabled
them to apply AI-generated insights more confidently in practice.

Qualitative Finding 3. The conceptual model supported generalization as its structured
framework could be transferred to adjacent legal domains with minimal effort.

Although our case study refers to weapon-related offenses, the participating attorneys quickly
repurposed the model for drug-related cases by adjusting only a handful of categories and
required information. Their experience suggests that the schema’s clear separation between
domain concepts and technical implementation makes it readily adaptable to other branches
of law such as civil or administrative proceedings, affirming the models versatility and broad
applicability. To verify this portability, we co-created a dedicated drug-offense schema with the
attorneys; the entire adaptation took only a fraction of the time required to build the original
model, confirming the approachs versatility and efficiency.

Qualitative Finding 4. The conceptual model mitigated errors and bias as its structured
pathway guided the AI toward legally relevant evidence and away from spurious patterns.

By explicitly encoding the legal attributes that drive sentencing similarity, the schema prevents
the AI from seizing on spurious lexical quirks or term-frequency artifacts. Embedding-only
methods, which weight every token equally, often align cases on superficial stylistic features-such
as a judge’s prose, rather than on substantive facts. In contrast, our approach reduces false
positives by focusing on features highlighted by attorneys. This focused reliance helps shield the
model from biases that can emerge from case-specific variables, such as demographic factors.

5.2. Practical Challenges

Nevertheless, using the conceptual model as the core asset introduces various challenges:

• Evolving Domain Knowledge - One significant challenge lies in maintaining the relevance of
conceptual models in dynamic domains. For instance, discussions with attorneys highlighted
the continuously evolving nature of legal systems, driven by factors such as new legislation,
shifts in judicial practices, or changes in court systems. These developments necessitate
regular updates to the conceptual models to maintain their accuracy and applicability.
Without such updates, static models risk becoming outdated, compromising both their
effectiveness and the trust users place in them.

• Cost and Resource Intensiveness - Developing and refining the “ultimate” conceptual model
is a resource-intensive process that demands time and effort. It often involves multiple



iterations and extensive collaboration to bridge knowledge gaps among domain experts.
This iterative procedure requires substantial investment from both experts and technical
teams, highlighting the need for efficient resource allocation and management.

• Bias in Model Development - The development of a conceptual model is inherently shaped
by the subjective perspectives of domain experts, such as attorneys, who may bring biases
rooted in their individual experiences or interpretations. This challenge became particularly
evident in our work when attorneys were tasked with tagging sentences or ranking the
importance of concepts for similarity calculations. Such biases, if left unchecked, can
inadvertently be embedded into the model, potentially distorting AI interpretations and
influencing decision-making processes in unintended ways. To mitigate these risks, it
is crucial to involve a diverse group of experts with varied perspectives and to adopt
fairness-aware methodologies.

• Abstraction Limitations - By design, conceptual models abstract complex domain knowledge
into manageable concepts. However, this abstraction can overlook critical details, which
might lead to oversimplified or inaccurate AI decisions.

6. Summary

This paper highlights the pivotal role of conceptual models in enhancing XAI, particularly within
the domain of identifying similarities in weapon-related legal cases. By structuring domain
knowledge, the conceptual model not only facilitated AI techniques in delivering clear and
actionable explanations but also guided the technical processes for extracting and organizing
critical information. This approach showcased key benefits, including enhanced understandability,
improved collaboration between domain experts and AI developers, and effective error mitigation,
making it a useful approach for addressing complex, high-stakes domains.

In the future, we plan to test the support of conceptual models across other domains, such as
civil or administrative law, and test their scalability in dynamic environments. Additionally, we
plan to refine AI techniques to better integrate with and leverage the strengths of conceptual
models.

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT and Grammarly to grammar
and spelling check, paraphrase and reword, and improve writing style.
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