CEUR-WS.org/Vol-4099/forum _paperl4d.pdf

CEUR
E Workshop
Proceedings

published 2025-11-17

PRAOS: A Process to Support KAOS Extensions

Enyo Gongalves’, Joio Araujo?, Leandro Monte! and Marcos Oliveira’

"Universidade Federal do Ceard, Brazil

2Universidade Nova de Lisboa, Portugal

Abstract

Goal-Oriented Requirements Engineering (GORE) supports the development team in identifying the requirements
that the system must fulfil. Commonly applied during the initial stages of requirements gathering, it focuses
on identifying the system’s goals, presenting their decomposition as a means of offering alternatives to satisfy
them. Knowledge Acquisition in Automated Specification (KAOS) is a GORE approach that comprises a method,
a software environment, and a modeling language. Modelling languages can be adaptable to various domains/ap-
plication areas where the software will be developed. This way, extensions are proposed to adapt the modelling
to the desired scenarios. These adaptations are referred to as extensions. KAOS has been extended to various
areas, including security, adaptive systems, and aspects, among others. The creation of new KAOS extensions
has been growing. It is expected to continue in the coming years, as it is necessary to adapt languages to the
various existing contexts and those that emerge with the constant evolution in software development. Creating
an extension is a complex task with inherent challenges, such as maintaining consistency between the developed
and existing extensions. Given these facts, we recognise the need to support the creation of KAOS language
extensions. This study aims to support the systematic creation of new KAOS extensions through a systematic
process. The proposed process was used to create a new KAOS extension to represent accessibility concepts,
which proved valid for this purpose. Finally, the PRAOS process was evaluated by KAOS extension specialists
through a qualitative study.

1. Introduction

Goal-Oriented Modelling Languages visually represent the system to be developed and are used in the
early stages of development to elicit and specify application requirements. Errors in Requirements
Engineering (RE) can lead to project failure if they deviate from expected outcomes [13]. Goal-oriented
modelling languages help identify, structure, and validate requirements, thereby reducing RE errors
[13]. According to Matulevicius and Heymans [15], graphical representations in modelling languages
improve system understanding among stakeholders and developers, ensuring accurate project direction.

KAOS [5] is a goal-oriented requirements modelling language used in software development. Extend-
ing a modelling language involves adding new constructs to expand its representation capacity. Over the
years, several KAOS extensions have been proposed; however, they were developed non-systematically,
resulting in issues such as inconsistency and a lack of CASE tool support. A Systematic Literature
Review (SLR) of KAOS extensions [8] identified 50 KAOS extensions; we can mention [18] as an example
of a KAOS extension identified by this SLR.

The evolution of software development, driven by new technologies and paradigms, has necessitated
the extension of KAOS to ensure a faithful and precise specification of requirements, effectively bridging
this gap. These extensions aim to enable a more precise specification of systems to be developed. Thus,
we argue that KAOS has been extended and will be continue to be extended. However, these extensions
have been proposed in an ad hoc way.

This work supports the systematic creation of KAOS extensions through a systematic process.
Processes provide consistency and structure, essential for successful project execution and knowledge
transfer [16]. Our process is derived from PRISE [9], with several key modifications. Firstly, we
incorporated the use of LLMs in several sub-processes. Secondly, we adapted artefacts and tasks to align

ER2025: Companion Proceedings of the 44th International Conference on Conceptual Modeling: Industrial Track, ER Forum, 8th
SCME, Doctoral Consortium, Tutorials, Project Exhibitions, Posters and Demos, October 20-23, 2025, Poitiers, France

& enyo@ufe.br (E. Gongalves); joao.araujo@fct.unl.pt (J. Araujo); leandromonte@alu.ufc.br (L. Monte);
marcos.oliveira@ufc.br (M. Oliveira)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

mailto:enyo@ufc.br
mailto:joao.araujo@fct.unl.pt
mailto:leandromonte@alu.ufc.br
mailto:marcos.oliveira@ufc.br
https://creativecommons.org/licenses/by/4.0/deed.en

with KAOS specifics, including: a List of Experts in KAOS extensions; a Catalog of KAOS extensions
and their constructs; Guidelines; the KAOS metamodel; a Checklist for Completeness, Consistency, and
Conflicts; an extension specification template; and a List of tools for task descriptions in sub-processes
to adapt existing tools. Third, we ensured the alignment of tasks and artefacts with KAOS concepts.
Fourth, we integrated a catalog of KAOS extensions [4] to ease the search for KAOS extensions and
their constructs. Last, we proposed KAOS4Ext, a tool to support KAOS modelling and extension.

This paper is organized as follows: Section 2 presents the background, Section 3 shows related work,
Section 4 details our process and its validation, Section 5 evaluates the process through interviews, and
Section 6 concludes and suggests future work.

2. BACKGROUND

2.1. Modelling Languages Development and Extension

Model-based engineering (MBE) can be defined as a process in which software models play an important
role but are not necessarily critical artefacts of the development [1]. An example of the MBE is when
models document the system, and automatic code generation is not involved. Models are first-class
artefacts of the software development process in Model-Driven Engineering (MDE) [1], from which
part of the application is generated. Researchers working in the modelling languages area have focused
on the Abstraction Challenge: What kind of modelling constructs and the underlying foundation are
needed to support the development of domain constructs that are considered first-class modelling
elements in a language? [1].

In this context, modelling language is defined by its abstract syntax (i.e., through a metamodel and well-
formedness rules/semantics) and concrete syntax. According to Kelly and Tolvanen [11], the modelling
language constructs should be formalized, and it is best specified by defining its metamodel, since they
emphasize that metamodelling simply means modelling your language: mapping your application area
concepts to various language elements, their properties, and their connections, specified as links and
the roles that elements play in them.

We typically identify various domain rules, constraints, and consistency requirements that a language
should adhere to. These rules obviously need to be defined too. Having rules in the language provides
several benefits, including early error prevention, guidance towards preferable design patterns, checks
for completeness by informing about missing parts, minimization of modeling work effort through
conventions and default values, and consistency of specifications [11].

Modelling language designers use abstract syntax and well-formedness rules as the starting point for
concrete syntax definition [1]. Thus, a set of models and their graphical and textual elements should
be proposed for a modelling language to be usable. According to France and Rumpe [7], modelling
tools can be essential in reducing the accidental complexities associated with understanding and using
modelling languages.

Brambilla et al. [1] define extending a modelling language as adding new constructs, modifying or
removing existing constructs, based on the needs of the domain in which the extension is being applied.
Besides, a new extension provides greater flexibility and the ability to capture and communicate the
essence of complete systems.

2.2. KAOS and KAOS Extensions

KAOS [5] is a Goal-Oriented Requirements Engineering (GORE) modelling language that allows the
modelling of functional and non-functional requirements by using a combination of four models:
goal model, responsibility model, object model, and operation model [5]. These models are based on
objectives, requirements, agents, expectations, obstacles, domain ownership, operations, entities, events,
and links between these concepts. They are detailed below:

+ Goal Model - The goal model is considered the basis and starting point. It represents a set of
interrelated objective diagrams used to address a problem. The primary concept behind this

approach is to represent system requirements as business goals and objectives, thereby focusing
on achieving these business objectives. Goals are typically comprised of both functional and
non-functional requirements that must be incorporated into the system being developed.

+ Responsibility Model - The KAOS responsibility model is a compilation of derived responsibility
diagrams. It involves agents, which can be human beings or automated components, concerned
with achieving goals/requirements. The assignment of agents to fulfill the specific objective
is done according to the goal model. Goals are always assigned to multiple agents. However,
whenever there is a single agent response to the objective, there is no room for any further
objective refinement, and this difference provides the analyst with a criterion to stop refining
objectives into sub-goals. A responsibility diagram describes, for each agent, the requirements
and expectations for which they are responsible or assigned.

+ Object model - The object model is related to the application domain binding and establishing
restrictions in the system. Objects can be categorized as entities, agents, and associations,
where entities describe and translate the object’s state but do not perform operations; agents are
concerned with the execution of operations, while associations are entities that depend on the
object and cannot perform operations.

+ Operation model - The operation model represents all agents’ behaviours. Behaviours are basically
operations performed by agents. These operations are used to manipulate the objects described in
the object model: they can create objects, cause object state transitions, or trigger other operations
through events sent and received.

KAOS has been extended to represent new constructs, adapt existing ones, or remove them. From
this need arises the creation of new KAOS extensions, which involve adapting an existing extension
to new scenarios, such as new representations and specific functionalities tailored to the particular
application domain.

A Systematic Literature Review (SLR) of KAOS extensions [8] identified fifty KAOS extensions and
a total of 221 new constructs. Figure 1 shows an example of using a KAOS extension for modelling
custom adaptive systems [18]. We can identify elements not part of the standard KAOS syntax, such as
softgoal.

- Maintain L d
A== i /
7’

- s *
/ Achieve [Correct
N e
nderdose

Forgets to Adomain
take medicine Achieve assumption
[MedicineTaken]
An obstacle
Achieve [Prompt o
ToTakeMedicinel A
f Achieve [Release / Asystem
Dose] component
Avoid 1 actor

intervention \

Achieve [Remind Achieve [Detect i~ A
/ | Untaken] UntakenMedicine] softgoal
Maintain[Monitor m &
DispenserTray] Obstr /deni iti

Figure 1: Example of a KAOS Extension to Model Adaptive Systems [18].

Agoal

Aleafgoal (a
requirement or
an expectation)

Mary wants
to maintain
her health

The first KAOS extension identified by [8] was proposed in 2006, and the last one was identified in
2024 (final year considered by this SLR). The SLR of KAOS extensions [8] indicates that 2011 was the year
with the highest number of KAOS extensions proposed (6 papers) and a mean of 2.63 extensions proposed

per year. The main application areas for KAOS extensions are organizational/business processes (12
extensions), adaptive systems (9 extensions), and security/privacy/vulnerability (7 extensions).

An analysis of the extensions revealed that almost half of the papers (48%) provide complete definitions
for all introduced concepts, while 44% offer partial definitions, and 8% do not present any definition.
Regarding syntax level, most extensions (72%) focused only on concrete syntax , 24% addressed both
abstract and concrete syntax, and 4% only abstract syntax. Furthermore, most abstract syntax extensions
(92%) are conservative, maintaining all KAOS constructs. As for new constructs, 62.44% were applied to
nodes, and 37.56% to links. A crucial point is that only 35% of the extensions have CASE tool support,
which may limit their adoption and practical application. No standardized extension mechanisms
were identified for KAOS. These data highlighted the need to support the proposal for the next KAOS
extensions.

Gongalves et al. [9] supported the creation of new extensions of the iStar modelling language through
a process to support iStar extensions, called PRISE. The process is based on well-defined sub-processes,
tasks, and artefacts. PRISE supports the iStar and its variations such as GRL, TROPOS and Secure
TROPOS. PRISE [9] was the start point to PRAOS creation. It provided guidance and was adapted
to KAOS specificities, such as the KAOS metamodel and constructs, as well as specific support tools,
including the catalogue of KAOS extensions[4].

Fowler [6] describes how the UML (Unified Modelling Language) presents extension mechanisms,
thus enabling its adaptation to the specific needs of designers, such as adaptation to a new domain.
The UML extension mechanisms are profiles, tagged values, stereotypes, and constraints. Textual
stereotypes and tagged values (which are part of UML extension mechanisms) are frequently adopted
by other modelling languages as a practical and recognized means to represent their own extensions.
To address this, PRISE includes KAOS4Ext, a tool developed to support the modelling of KAOS and its
extensions. This tool enables the creation of new constructs based on textual stereotypes and tagged
values, while also supporting the definition of new graphical symbols, thereby providing practical
support during Sub-Process 3 ("Develop KAOS Extension’) of PRAOS.

Braun et al. [2] addressed the extensibility of business modelling languages, especially the Business
Process Model and Notation (BPMN). A method was proposed to support the creation of extensions
to business modelling languages, distinguishing itself from other methods by justifying the need for
an extension at a semantic level, guided by ontology. This method consists of three steps: Domain
Analysis, Extension Preparation, and Extension Metamodel Design. The last step expands and adapts
the syntax extension method in BPMN previously proposed by Stroppi et al. [17]. While focused on
business processes, this work highlights the relevance of a structured, multi-step process for language
extension, similar to PRAOS. Both approaches recognize the need to systematically analyze the domain,
define new concepts, and evolve the language’s meta-model. However, PRAOS specifically tailors
this systematic approach to the unique characteristics and challenges of extending Goal-Oriented
Requirements Engineering languages, particularly KAOS, building upon its specific metamodel and
community guidelines.

3. Description of the PRAOS Process

The proposal for a process to support the creation of new KAOS extensions is based on the PRISE
process by Gongalves et al. [9]. PRISE supports extensions in the iStar language, which is goal-oriented
and serves as the basis for developing PRAOS, a process adapted for KAOS. The analysis of PRISE is
detailed below.

3.1. Analysis of PRISE

This section will describe the steps and central adaptations made to PRISE to adjust it to the creation of

KAOS extensions, resulting in a new version called PRAOS (PRocess to support kKAOS extensions).
The adaptation process followed these steps: First, we created a spreadsheet containing all PRISE

sub-processes, tasks, artefacts, and gateways. Each element of this spreadsheet was classified as

"remove", "keep", or "keep adapted". When necessary, the adaptations were detailed in the spreadsheet
itself. This analysis was supervised by a researcher with experience in extensions and required five
review/correction cycles to complete a spreadsheet’.

After identifying the changes in the spreadsheet, these changes were implemented in Bizagi’s PRISE
project. PRISE was initially modelled in BPMN (Business Process Modelling and Notation), and we
decided to keep the PRAOS modelling in BPMN as well, given that this language is widely used for
modelling business processes. This stage was also supervised by a researcher with experience in
extensions, with five review/correction cycles of the modelled process.

The changes can be categorized into two classes: more general and simple changes, which affect
a set of parts of the process (such as changing the name from PRISE to PRAOS), and more specific
changes (such as replacing the list of iStar constructs with KAOS constructs in the checklist for
verification of completeness, consistency, and conflicts). We made several general changes to the PRISE
process to adapt it to KAOS, resulting in significant modifications to the sub-processes. Most of these
changes involved replacing references to iStar with KAOS, which essentially implied changing the
terminology and concepts associated with modelling. Therefore, most changes consisted of updating
the terms and names related to the new modelling language. Initially, we could reuse 34 PRISE elements
(tasks/artifacts/gateways) without the need for significant adaptations since these elements were already
organized in a general way, including gateways and initial and final states. Next, we analysed the PRISE
structures that were compatible with PRAOS but required minor adjustments, such as replacing terms
related to the KAOS language. These adjustments represented most of the modifications made from
PRISE, accounting for 96 changes considered simple. Finally, we addressed 27 more specific adaptations.
We can mention as examples of these adaptations, the change of the iStar metamodel to the KAOS
metamodel, the development of a catalogue of KAOS extensions, a modelling tool to support KAOS
extensions, the list of the experts in KAOS extensions, the adaptation of iStar extensions guidelines to
KAOQS, and the introduction of LLMs usage in some steps of the process.

3.2. Describing PRAOS

This Section details PRAOS?. Additionally, we presented parts of a new KAOS extension®. The proposed
extension focuses on representing accessibility concepts in KAOS modeling.

PRAOS consists of five subprocesses and one task that occurs in parallel to three subprocesses. Figure
2 presents the primary process. It is based on a set of nine (9) guidelines adapted from a previous study
[9]. These guidelines were evaluated by experts in KAOS extensions(Section V).

i pecificati i pecificati ion specification
R . (Concepts described) (Developed) (Validated / Evaluated)

Extension :
specification | Extension not:

(Analysed) proposed § : : : : :
No 8 & : LI : : : Yes
nalyse the l . Describe = Validate | ==
ol e coneptof| || *RRGIP | |and evaluate || CineiAeE
extension (3 S > (>
proposal Yes _" P extension | R 7| extension i a3 o 'O
Intention to . Is there a need i [—l Were new Extension
extend KAOS for extending : S Gmeyesd constructs
identified during proposed
the development? :

I

: List of concepts to
: be introduced (New)

v v

Figure 2: PRAOS Main Process

'http://bit.ly/44WSYEb
*https://bit.ly/PRAOS-EN
*The complete extension specification is available at https://bit.ly/ext-spec-PRAOS

In the following, we describe the adapted and recommended procedures for creating a KAOS extension
proposal.

G1: Preserving the original syntax of the KAOS language is essential. It is recommended that all
nodes and links of the original syntax be maintained in the extension. In other words, extensions
that remove all standard constructs, those that are not conservative, are generally discouraged and
considered examples not to be followed.

G2: Extensions must be consistent, complete, and conflict-free, following a defined process or method
for their creation. Currently, the creation of extensions for KAOS has been carried out haphazardly
without centralizing existing information about the modeling language.

G3: Conduct a systematic review of the literature to identify all existing extensions and assess the
absolute need to create a new extension or take advantage of an existing one. It is essential to consider
including a KAOS expert in the development process and modeling several systems in the desired area
to gain a more comprehensive understanding of the domain that requires the extension.

G4: Describe the extension concepts clearly and objectively, seeking to minimize the possibility of
divergent interpretations as much as possible.

G5: Consider proposing both the abstract and concrete syntax of the extension, as they can comple-
ment each other.

G6: Seek to maintain a clear and direct reformulation, focusing on consistency between the two
syntaxes.

G7: Establish a relationship between the constructs inserted in the extension and those existing in
the original KAOS language.

G8: Seek to define new extensions with the smallest possible number of new constructs, making the
most of existing constructs and creating only the minimum necessary to adapt to the new domain.

G9: Try to create simple representations that can be understood without the need for specific tools,
thus ensuring ease of use.

The following sections provide a detailed description of each of these sub-processes and their related
artifacts.

3.3. Analyse the Need for Extension Proposal (Sub-Process 1)

This subprocess aims to verify the need to propose a new KAOS extension and establish the initial
requirements for such an extension. Artefacts used by subprocess 1: List of references and contacted
researchers, List of concepts to be introduced, Modelling and observations, List of experts in KAOS
extensions, List of related KAOS extensions and Extension specification (analysed). Figure 3 presents
sub-process 1.

Initially, the rationale for the extension proposal is analysed, and the new concepts to be introduced
are identified. It generates the Extension specification [Analysed]. Subsequently, a thorough study of
the application area is conducted to identify specific requirements and gaps that the standard KAOS
cannot address. This involves a literature review and, if necessary, consultation with domain experts.
A review is not required when it relates to the practical aspects of KAOS. Based on this analysis, the
new concepts that the extension should encompass are identified. These concepts may relate to the
application domain or more general aspects of KAOS.

To validate the need for the extension, five sequential tests are performed. The first test assesses
whether the application domain exhibits problems that cannot be modelled using standard KAOS.
Subsequent tests evaluate the feasibility of modelling the new concepts using existing KAOS and
identify the limitations. Two tests involve consulting with experts in the domain and KAOS extensions.
We suggest that when these experts are not available, LLMs (such as ChatGPT* and Gemini®) can be
used to mitigate issues. Questions can be made to these LLMs about the list of new constructs and
issues related to KAOS constructs. Task 1.10 is related to the identification of existing KAOS extensions;

*https://chatgpt.com/
*gemini.google.com

List of references
and contacted researchers
List of concepts
to be introduced

What is the
: purpose
of the

extension? O, : O, i
: Pl étudylk‘:;view a ‘ t:;ez .clg::;g{s b Co;\ e L23Receive l
: g : experts in
— | . . : response — —
: pplication Domain/ | tobeintroduced | Yes Domain/ abou':issues
Need of analysing : area; application area by the extension| : |sthere anyissue | application area | : Is there|any issue
whether the extension : : : about the whether i} is possible

should be proposed : T Practical aspects :domain/application : model with KAOS

: : : area? : default?
Extension : : ’(........ . ves No
specification : : H : : :

[Analysed] N i : : Modellingand [O

j - i @(: i observations
~ List of extensions ! D .

related to new proposal

Was it possible to design List of experts in :

: = — ¥ with KAOS default KAOS extensions;
L i B [o 17.Receive | [16, Contact X
"""""" — — — expertsin |l
specification No relate to current No alzzz’t’?sns?es AOS 2xtension Yes
There is need [Analysed] Is there an proposal Is there any
for the ion proposal i issue about
suitable for your Ye the modelling

need? with KAOS?

No need for the extension proposal

Figure 3: PRAOS Sub-process 1 Analyse the Need for Extension Proposal.

it can be performed based on the support of the catalogue of KAOS extensions® [4]. At the end of this
process, a decision is made regarding the viability of the extension. If a genuine need is identified, the
extension development process can start. Otherwise, the process is terminated.

According to W3C [19], system accessibility aims to create technologies that can be used by all types
of people, regardless of their physical, sensory, or cognitive abilities. The inclusion of practices that
guarantee system accessibility ensures that people with disabilities can access websites, software, and
devices in the same way that people without disabilities can access them—ensuring digital inclusion
and preventing people with disabilities from feeling isolated from the technological world.

After identifying the context and need to create the extension, a (non-systematic) literature review
was carried out. Thus, based on these steps, the following concepts were identified: Accessible Agent,
Accessibility Requirement, Accessible Operation, and Accessible Domain Property.

It was not necessary to consult domain experts or an LLM. We modeled an example of an accessible
system using KAOS (See the complete extension specification) and identified the need to represent
accessibility concepts with a specific syntax to highlight them in KAOS models. It was not necessary to
consult KAOS experts, since the author is an expert in KAOS extensions. We did not find any related
extension in the KAOS extension catalogue.

3.4. Describe Concepts of the KAOS Extension (Sub-Process 2)

This sub-process involves several tasks and artefacts, with the Extender and the Expert in KAOS ex-
tensions as key participants. The primary artefact generated by this sub-process is the "Extension
Specification [Concepts Described]". Artefacts used by subprocess 2: Extension specification (concepts
described); Modelling and observations; List of relations between KAOS original constructs and ex-
tension constructs; List of ideas to be introduced and list of concepts to be reused. Figure 4 presents
sub-process 2.

The initial task involves searching and selecting reusable constructs. The Extender accesses the
KAOS extensions catalogue to identify and choose the constructs previously identified in the "Extension
Specification [Analysed]". Next, the process focuses on describing the extension’s concepts in detail.
This includes defining the list of constructs introduced or reused within the KAOS extension.

Subsequently, the Extender analyzes how to integrate these new extension constructs with the
existing KAOS constructs. If any integration challenges arise, the Extender consults with experts in

Shttps://kaos-catalogue-d9e49.web.app/

KAOS extensions. The Expert in KAOS extensions then provides guidance and resolves the integration
issues. LLMs can be helpful in this context, clarifying issues related to the meaning of constructs and
their integration with KAOS default constructs.

Finally, the "Extension Specification [Concepts Described]" is generated by combining the "Extension
Specification [Analysed]" with the artefacts produced in this sub-process: the "List of Constructs to be
Reused" (including their definitions) and a list defining the relationships between extension and KAOS
constructs. This sub-process concludes with a complete description of the KAOS extension concepts.

M
................. >
3 ’ W List of the relation between :Extension specification
Extension H : extension and I :[Concepts described]
specification : H List of experts in KAOS constructs -
[Analysed] 5 KAOS extensions
©21. search “2.3. Analyse how to ‘ " H 2.6. Generate
Lo N 2.4. Contact 2.5.R : 5
. and select ___|integrate the extension R .| expertsin ,ispz‘:,e;: RN GALIErED »O
H constructs with Yed KAOS extensions e specification
Need of to be reused - i | the KAOS constructs !s there any [Concepts described KAOS
extend KAOS : : : ~ issue about extension
confirmed g : how to integrate? : conceptualised
‘N S
List of constructs List of concepts to be
to be reused introduced [with concepts'

description]

Figure 4: PRAOS Sub-process 2 Describe Concepts of the KAOS Extension.

3.5. Develop KAOS Extension (Sub-Process 3)

This sub-process, initiated upon confirmation of the need for extending KAOS in sub-process 1, focuses
on defining the new concepts that will be introduced into the KAOS modelling language. The Extender is
the primary actor in this phase. Before proceeding, the Extender should carefully review the guidelines
provided by KAOS experts for developing extensions. Artefacts used in subprocess 3 include the KAOS
metamodel, Extension metamodel, validation rules, Extension specification (Developed), and Checklist
of problem verification. Figure 5 presents sub-process 3.

1 Are there . validation rules : : : |
KAOS idati : of the extension : : : Extension
: o) les? 0.) . : specification
metamodel : 3.1. Define the RS “~3.2.Define | ~ T [’I;eveloped]
L extension validation rules No
metamodel for extension (l
~3.4.Check and correct Yes 3.6. Generate
O/ H No problems of completeness, extension specification
KAOS consistency and conflicts [Developed] KAOS
extension Support the :
conceptualised ex(ean::,rlm_’wnh developed

ne concrete
r extension

Checklist for
verification of
problems

: Listof concrete
-syntax representation
of the extension

Extension spe«
[Concepts described]

Figure 5: PRAOS Sub-process 3 Develop KAOS Extension

The first step involves defining the metamodel for the extension. This includes determining the new
concepts, their attributes, and their relationships with existing KAOS constructs. The Extender should
refer to existing KAOS metamodels, such as those presented by Lamsweerde [10] and Matulevicius et
al. [13], as a starting point for incorporating these new extension constructs. The guidelines of the
KAOS community, particularly G1 (Preserve the original KAOS syntax) and G7 (Establish relationships
between extension constructs and existing KAOS constructs), should be strictly adhered to.

Next, the Extender defines validation rules for the extension. These rules address constraints that
cannot be directly represented within the metamodel. For example, if certain combinations of constructs
are not allowed, the Extender would define rules to enforce these constraints.

Concurrently, the Extender defines the concrete syntax for the extension. This involves determining
the graphical representation of the new extension constructs. One approach is to experiment, as
Caire et al. [3] did, to explore different representation options. The Extender should consider the
suggestion that the first level of integration involves specializing in existing KAOS constructs, such as
using textual markers as stereotypes. If this approach is not feasible, new graphical representations
should be proposed. The impact of these new graphical representations on each of the four standard
KAOS diagrams should be carefully considered. The Extender should strive to propose graphical
representations that are distinct from those used in existing KAOS extensions, while also considering
the reuse of existing KAOS constructs where appropriate.

We suggest using LLMs (such as ChatGPT and Gemini) to mitigate issues with the metamodel
definition and concrete syntax. LLMs can contribute to clarifying the representation of a new element
in the KAOS metamodel. LLMs can help indicate symbols to represent the new constructs.

Once the proposal for concrete syntaxes is finalized, a check is performed to ensure the completeness,
consistency, and absence of conflicts within the extension. This analysis covers the completeness
of the extension definition (including concepts, abstract syntax, and concrete syntax), consistency
between concepts, abstract syntax, and concrete syntax, the absence of nodes and links that conflict
with the standard KAOS syntax, the occurrence of conflicts between new constructs and existing KAOS
constructs, and the correctness of the representation of standard KAOS constructs within the extension.
The Extender should use a checklist to verify the occurrence of these potential problems and correct
any issues identified.

Ensure accessibility and
usability for all user profiles

System do not A
support screen
readers Q
Y 2
<<accessible>>
Support navigation <<accessible>> Support Ensure an In'tult!ve and /
with screen readers < ible>> WCAG images’ descriptions fast navigation
R recommendations A
Q
<<accessible>> Ensure ()

all content be
<<accessible>> q N
available by audio
Support screen readers A
R Scr?en content. <<accessible>> Adding
described by audio audio descriptions

R to theii

Audio
description
to images

Complexity of the
<<accessible>>
desciiptions / Validate quality /

P/ of images’ descriptions

O
A

<<accessible>>blind user

Figure 6: The goal model of the KAOS extension to represent accessibility requirements.

If feasible, the extension should be supported by a modelling tool. To support the extension, the
Extender should analyse the feasibility of using existing KAOS modelling tools (such as Objectiver’ and
DSM3-KAOS?®). Additionally, we proposed KAOS4Ext’, a new web modelling tool with support to add
the new extensions constructs’ to KAOS models. This new tool enables the addition of new graphical
or textual representations to create new nodes and links.

"https://objectiver.com/index.php?id=4
*https://www.cin.ufpe.br/ jhcp/dsm3goals/kaos.html
*https://kaosforge.com.br/

The Extender should test the modelling tool to ensure it allows and forbids the expected operations
within the extension. Finally, if a suitable tool is identified, the Extender should make the tool available
to other users by publishing it in a repository such as GitHub. This revised version maintains the core
information and ideas while presenting them in a more continuous and readable format.

Regarding the new KAOS extension for accessibility, we included the new constructs in the KAOS
metamodel by specialisation of existing Agent, Requirement, operation, and domain property constructs.
The extension metamodel can be found in the complete extension specification. It was not required to
propose validation rules.

The concrete syntax represented the constructs through textual stereotypes associated with their
specialised constructs. The extension impacts the four (4) KAOS diagrams in which the base constructs
appear. We analyzed the extension using the checklist for verification of problems and did not find any
issues with completeness, consistency, or conflicts. Figure 6 presents an example of a goal model created
with the proposed extension, in which we can identify accessible agents, accessible requirements, and
accessible domain properties.

3.6. Validate and Evaluate the KAOS Extension (Sub-Process 4)

The sub-process presented in Figure 7 comprises three pairs of analysis and the corresponding correc-
tions for the KAOS extension. Initially, the Extender conducts the first validation using the proposed
extension to model a system. The Extender should select non-trivial and realistic examples to demon-
strate the extension’s capabilities. This process includes documenting the steps required to use the
extension effectively. The necessary adjustments are made if the Extender identifies any corrections or
improvements during this phase, such as missing relationships between concepts. In the second pair,
the KAOS extension is submitted to domain experts (in KAOS extensions and the application domain)
for their analysis and feedback. Given that LLMs can be utilized during the process, we emphasize
the importance of evaluation by at least one KAOS expert to verify the proposed KAOS extension and
identify potential errors. The third pair focuses on evaluating the effectiveness of the extension. This
can be achieved through various methods, including experiments, qualitative studies, or surveys.

Extension
SOTTICRIONT 45 35575 ovies o R SR e S e I 5

[Developed] No
No B e :
@ - A%
[} 8|
4.1. Use the KAOS = 4.2. Apply 4.3.Consult 0 44.Applythe
»| extensionproposedto | , »| corrections/improvements from > experts » »| corrections/improvements from
model a system > Yes the usage . Yes the experts
KAOS :
Were A Arethere N
developed corrections/improv i corrections/ i
Suelope ements identified? improvements ... vcerr'le; :;lg;:‘o;'
- : suggested? problems
Extension {}.‘ : List of experts i
specification erennes 3 in KAOS
[Validated/ H : extensions No
evaluated] . '
H : Evaluate the
Extension? Yes
No

Q. — BO

evaluated/
validated

i
1{.7‘ Generate extension specification
[Validated/evaluated]

0 =

S . L

4.6. Apply the improvements 4 5. Evaluate the KAOS
from the evaluation Yes extension

Are there
improvements of
the KAOS
extensions
defined?

Figure 7: PRAOS Sub-process 4 Validate and Evaluate the KAOS Extensions

If the evaluation identifies any areas for improvement, the necessary corrections are applied. Artefacts
used in subprocess 4:

« List of KAOS experts: List of the foremost KAOS experts to be contacted if there is a need to
clarify issues.

« Extension specification (Validated/Evaluated): Generation of the extension specification.
« Problem verification checklist: Checklist with the main problems to ensure that recognised
problems are not present in the extension proposal.

Regarding the extension proposed with PRAOS, we modeled the accessibility for people who are blind
as an example. Figure 6 presents the goal model to our example. Additionally, a survey was conducted
to evaluate the proposed extension among researchers in the area of human-computer interaction and
assess their opinions on the proposed extension. The study included 20 participants from the Brazilian
HCI community. The survey addressed issues related to the need to create the proposed extension, its
usefulness, feasibility, impact on the HCI community, and recommendations for its use. The possible
responses ranged from one (1) to five (5) on a Likert scale. Responses ranged from three (3) to five (5)
for all items evaluated, demonstrating evidence of community acceptance of the proposed extension.
The detailed evaluation can be found in the complete extension specification.

3.7. Check Other New Constructs to be Introduced (Task 5)

This task involves identifying the necessary constructs for the KAOS extension that were not initially
identified in the first subprocess and were subsequently discovered in subprocesses 2, 3, or 4. When
new constructs are identified, it becomes necessary to iterate through subprocesses 2, 3, and 4 again to
incorporate them into the extension. We did not find any additional constructs during the proposed
extension for accessibility.

3.8. Publicise the KAOS Extension (Sub-Process 6)

This sub-process intends to increase the visibility of new extensions within the research community.
Artifacts used in sub-process 6 are the List of KAOS experts and the Extension specification (validat-
ed/evaluated). This sub-process begins with updating the KAOS extension catalog. The Extender links
the related publication or updates the existing Extension Specification.

Additionally, the Extender is required to provide essential information about the extension, including
title, abstract, application area, extension base, level of extension, compatibility between metamodel
and concrete syntax, metamodel completeness, concept definitions, proposed construction method,
reasoning approach, tool support, validation methods, validation rules, and added constructs.

If experts in KAOS extensions participated in developing the new extension, they would endorse
it. Otherwise, the Extender notifies relevant experts about the new extension. The Extender should
contact at least one expert in KAOS extensions to inform them about including the new extension in
the catalog. These contacted experts can endorse the KAOS extension if they deem it well-defined.

In parallel, the Extender actively seeks to publish the KAOS extension. This may involve presenting
the extension at conferences, publishing it in journals, or disseminating it through blogs or discussion
lists. Finally, the sub-process concludes when the KAOS extension has been published and endorsed.
Consequently, the extension proposal is considered complete.

An expert in KAOS extension was part of the proposal for the new KAOS extension. He endorsed
the new KAOS extension. Finally, this paper is the final step in this proposal, as one of its goals is to
publicize the new KAOS extension.

4. EVALUATION

We conducted a qualitative study based on semi-structured interviews to identify the perspectives about
PRAOS from researchers who have proposed KAOS extensions. An interview script containing opened
questions was developed and validated by a researcher experienced in goal-oriented modelling languages
and extensions. We also conducted a pilot study with two undergraduate students in computing from
the Federal University of Ceara, who had no prior knowledge of PRAOS or KAOS, and a pilot study
with a master’s student in computing who was familiar with KAOS extensions. These previous analyses

Table 1
Interview Script for the PRAOS Evaluation
1. Profile questions: How many years of experience do you have using KAOS? How many KAOS extensions have
you proposed? What is your current position (Professor/developer)? Do you work in academia, industry, or both?
2. Do you know of any process for creating KAOS extensions? Which ones?
3. What is your opinion about PRAOS?
4. What are the strengths of PRAOS?
5. What are the weaknesses of PRAOS?
6. How difficult is it to understand PRAOS? What are the hardest and easiest parts of PRAOS?
7. Do you consider PRAOS necessary/useful? Why? Is PRAOS suitable/important to support the proposal of
KAOS extensions by the KAOS community? Why? For whom (beginners, experts, or both)?
8. How do you think the process would be used to create extensions? As proposed or with changes/part of it?
9. Do you have any suggestions/observations related to PRAOS?

10. Is there anything about PRAOS that we did not mention in the interview that you would like to comment on?

of the script helped to improve it. The pilot data were not considered in the study. The final version of
the interview script is available in Table 1. Participants watched a video about PRAOS in Portuguese,
English and/or French after question 2.

The universe of this research (population) comprises authors of KAOS extensions. Thus, our universe
(population) is 113 authors of KAOS extensions. We selected a sample of 13 researchers with more
experience in KAOS extensions based on the analyses presented in the KAOS extensions RSL (Section 4).
We obtained confirmation of participation from five (5) members of the sample, who are our participants.

The participants are geographically distributed: one (1) from Brazil, two (2) from Italy, one (1)
from Portugal, and one (1) from France. The five (5) participants have a PhD, four (4) professors,
and one is a technology director and professor at a company. Regarding the experience with KAOS,
three participants used KAOS for 8, 9, and 15 years, respectively. The other two commented that
their experience was specific to the model concepts of a particular domain. Regarding the number of
extensions each participant produced, only P2 proposed two extensions, while the others produced
only one (1).

The interviews were conducted via Google Meet, and each participant was interviewed individually.
Each interview was recorded with the participant’s consent. Each interview had an average duration of
30 minutes. The qualitative data from the interviews were then analysed using Merriam’s [14] basic
qualitative research procedures, in which we studied the answers to the questions and presented the

main highlights.

4.1. Analysis

No participant reported knowing of any other method to extend KAOS. When asked about PRAOS,
P5 commented: "PRAOS covers all the steps necessary to carry out an extension systematically and
produce consistent quality results. The process is also quite complete".

Regarding the level of effort and difficulty in understanding the process, the participants found it easy
to comprehend. All participants commented that they would use the method with changes. The main
modifications mentioned were not consulting experts and skipping some steps, as seen in P2’s comment:
"I think it is possible to remove the expert from the group completely" Although some participants
commented on the difficulty of getting experts in touch, one participant highlighted the value of this
step.

The value observed in the use of PRAOS is not only due to the rigorous methodology, according to
some participants, but also because there are certain domains in which this rigor is essential, such as in
security. A general analysis of the interview’s points to predominantly positive feedback, with several
essential suggestions and observations that could significantly contribute to improving the process.
Here are the main points highlighted:

« Overall Approval of the Process: The participants expressed satisfaction with the process

developed for creating new KAOS extensions. They considered the process well-structured and
comprehensive, with a straightforward approach to defining and implementing new constructs.

+ Relevance of Adapted iStar Guidelines: It has been widely acknowledged that adapting the
iStar guidelines for KAOS is a valuable addition. Participants believe that these guidelines help
create a solid foundation for extension development by aligning the process with established and
well-known practices in goal-oriented modeling.

+ The usefulness of Guidelines and Structure: The PRAOS structure and included guidelines
were considered appropriate and helpful. Participants appreciated the organization of the process
into clear sub-processes and the detailed steps that ensured the effective creation of extensions.

« Adjustments to the Applicability of the Guidelines: Some participants suggested adjustments
to the adapted guidelines to better reflect the particularities of KAOS. Although the iStar guidelines
were well adapted, there was a recommendation to further fine-tune the policies to fit the specific
context and needs of KAOS.

« Inclusion of Practical Examples: It was suggested that including practical examples of how the
new constructs were applied in real cases would clarify the practical application of the guidelines
and facilitate understanding.

« Expert Support and Collaboration: The researchers highlighted the importance of continued
collaboration with experts and suggested creating a forum or discussion group to promote the
exchange of knowledge and experiences among KAOS extension developers.

4.2. Threats to Validity

In this section, we describe the threats to Criterion, Construct, Face, and Content validity, as outlined
by Kitchenham and Pfleeger [12].

Criterion Validity: We identified a previous qualitative study (Gongalves et al., 2020) with a similar
objective. However, the survey by Goncalves et al. [9] aims to analyze a process proposed to support
iStar extensions, whereas this one analyzes a process proposed to support KAOS extensions. Thus, the
instruments used in these studies share similarities and yield satisfactory results for their respective
purposes. Construct Validity: We recorded the audio during the interviews to enable its transcription
and analysis, so we asked for permission at the beginning of the interview. This information could
inhibit the participants’ responses. We mitigated this threat by informing the participants that the audio
files and transcripts would be kept confidential and anonymous. We also presented a confidentiality and
privacy term. Face Validity: The interview script was tested with two undergraduate computer science
students without experience with KAQS, its extensions, or PRAOS. They provided valuable feedback on
the script, which led us to make corrections for better understanding. Content Validity: The script
was tested through three pilots. We recognized this limitation and mitigated it by evaluating the script
with the help of a researcher experienced in goal-oriented modelling languages and extensions.

5. CONCLUSION AND FUTURE WORK

The KAOS modelling language has been widely used and extended since its creation in the 90’s. However,
these extensions were developed non-systemically, resulting in problems such as specification of the
extension only at the concrete syntax level, inconsistency between syntaxes, and lack of support from
CASE tools. The process to support the creation of KAOS extensions was proposed based on an existing
method for another goal-oriented requirements language, the PRISE process. With the adaptations
ready, the new process, called PRAOS, outlines the key characteristics of creating KAOS extensions. We
then proceeded to validate PRAOS. To this end, a new KAOS extension was created using PRAOS as a
base. The result was an extension aimed at supporting accessibility requirements modelling. Finally, we
performed a qualitative study with researchers experienced in KAOS extensions.

As future work, we propose a tool to support the use of PRAOS and another to facilitate the application
and modeling of the new constructs proposed by the extension.

Acknowledgements

This work is supported by NOVA LINCS (UIDB/04516/2020) with the financial support of FCT- Fundacao
para a Ciéncia e a Tecnologia, through national funds

Declaration on Generative Al

During the preparation of this work, the author(s) used Gemini and Grammarly in order to: Grammar
and spelling check, Paraphrase and reword. After using this tool/service, the author(s) reviewed and
edited the content as needed and take(s) full responsibility for the publication’s content.

References

[1] M. Brambilla, J. Cabot, M. Wimmer, Model-driven software engineering in practice, Morgan &
Claypool Publishers, 2017.

[2] R. Braun, H. Schlieter, M. Burwitz, W. Esswein, BPMN4CP revised-extending BPMN for multi-
perspective modeling of clinical pathways, Hawaii International Conference on System Sciences,
2016.

[3] P. Caire, N. Genon, P. Heymans, D. Moody, Visual notation design 2.0: towards user comprehensible
requirements engineering notations, 21 IEEE International Requirements Engineering Conference
(RE), pp 115-124, 2013.

[4] P. Carvalho Junior, E. Gongalves, R. Carvalho, M. A. De Oliveira, A catalogue of KAOS extensions,
25th Workshop on Requirements Engineering, 2022.

[5] A. Dardenne, A. van Lamsweerde, S. Fickas, Goal-directed requirements acquisition, Science of
Computer Programming 20, 3-50, 1993.

[6] M. Fowler, UML distilled: a brief guide to the standard object modelling language, Addison-Wesley,
2nd Edition, 2003.

[7] R.France, B. Rumpe, Model-driven development of complex software: a research roadmap, Future of
Software Engineering. IEEE Computer Society, 2007.

[8] E. Gongalves, L. Monte, S. Souza, M. Oliveira, J. Araujo, A systematic literature review of KAOS
extensions, 31st International Working Conference on Requirements Engineering Foundation for
Software Quality, 2025.

[9] E. Gongalves, J. Araujo, J. Castro, PRISE: a process to support iStar extensions, Journal of Systems and
Software, Elsevier, v. 168, 2020.

[10] A.van Lamsweerde, The KAOS meta-model: ten years after, University Catholique Louvain, 1993.

[11] S.Kelly, J. Tolvanen, Domain-specific modelling: enabling full code generation, John Wiley & Sons,
2008.

[12] B. Kitchenham, S. Pfleeger, Principles of survey research, software engineering notes, v. 27, n. 5, pp.
1- 20, 2002.

[13] R. Matulevicius, P. Heymans, A. L. Opdahl, Ontological analysis of kaos using separation of references,
Contemporary Issues in Database Design and Information Systems Development: IGI Global, 2007.

[14] S. Merriam, Qualitative research: a guide to design and implementation, Jossey-Bass, 2009.

[15] R. Matulevicius, P. S. Heymans, Visually compelling goal models using KAOS, International Confer-
ence on Conceptual Modelling, p. 265-275, 2007.

[16] S. Pfleeger, Software engineering: theory and practice, Pearson, 2003.

[17] L.J.R. Stroppi, O. Chiotti, P. D. Villarreal, Extending BPMN 2.0: method and tool support, Springer-
Verlag Berlin Heidelberg, 2011.

[18] A. Sutcliffe, P. Sawyer, Modeling personalized adaptive systems, 25th International Conference on
Advanced Information Systems Engineering, 2013.

[19] W3C: What is Acessibility? Available at: https://www.w3c.br/pub/Materiais/PublicacoesW3C/cartilha-
w3cbr-acessibilidade-web-fasciculo-Lhtml, last accessed 2024/11/10.

	1 Introduction
	2 BACKGROUND
	2.1 Modelling Languages Development and Extension
	2.2 KAOS and KAOS Extensions

	3 Description of the PRAOS Process
	3.1 Analysis of PRISE
	3.2 Describing PRAOS
	3.3 Analyse the Need for Extension Proposal (Sub-Process 1)
	3.4 Describe Concepts of the KAOS Extension (Sub-Process 2)
	3.5 Develop KAOS Extension (Sub-Process 3)
	3.6 Validate and Evaluate the KAOS Extension (Sub-Process 4)
	3.7 Check Other New Constructs to be Introduced (Task 5)
	3.8 Publicise the KAOS Extension (Sub-Process 6)

	4 EVALUATION
	4.1 Analysis
	4.2 Threats to Validity

	5 CONCLUSION AND FUTURE WORK

