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Abstract
Systemic Design employs Causal Loop Diagrams (CLDs) to document and visualize the dynamics of complex
systems, describing their relevant factors, called variables, and the causal relationships between them. A systemic
approach is essential to understanding causal relationships and improving the decision-making process, especially
in complex, multidisciplinary contexts where the implementation of reactive and proactive measures is pivotal
(e.g., public health, transport, urban development, public involvement). While CLDs provide a consolidated and
widely adopted visual representation, they have yet to be formalized in the context of data-driven modeling and
analysis.

We characterize CLDs using a metamodel that clarifies the role of each component, including causal loops, i.e.,
circuits of causal relationships. Relationships within loops are characterized by a positive or negative polarity; by
aggregating the polarities along each loop, loops are then characterized as balancing or reinforcing. Within CLD
diagrams, we define the new concept of causal route, i.e., a chain of relationships connecting any two pairs of
nodes, denoted as source and destination. We can then compare any pair of causal loops having one node in
common or any causal routes having the same source and destination, and define for such a pair whether the
loops or routes are agreeing or disagreeing. Thanks to these characterizations of causal loops and routes, CLDs
enable the identification of interesting patterns that can be extracted over the meta-model, thereby empowering
systematic reasoning on complex systems diagrams and improving the related decision-making processes.
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1. Introduction

Systemic Design is an emerging field driven by the ambitious objective of understanding, making
sense of, and addressing complex problems in terms of “relationship and global dynamics”, rather than
isolated components. Being addressed mainly by design schools, the systemic design community has
created a strong Systemic Design Association (https://systemic-design.org/), which produced scholarly
publications (journals and conferences) and educational programs and is gaining interest and adop-
tion for approaching complex problems, typically fostering domain expertise exchange [1]. From a
foundational point of view, it capitalizes on well-established design approaches to complex challenges,
including design thinking [2] and systems thinking [3]. The core function of systemic design is to grasp
and assess the dynamics governing systems’ behaviors, with a broad vision, so as to ensure consistency
in solutions at the system level. From an aspirational point of view, systemic design seeks to integrate a
human-centered approach, placing humans in all their dimensions at the center of inquiry, with a social
innovation approach, addressing main societal challenges (e.g., as summarized in [4, 5]).

An important instrument of systemic design is the description of complex systems’ dynamics by
means of Causal Loop Diagrams (CLDs, [6]). These diagrams, of which Figure 1 shows an example
instance, illustrate systems’ behaviors at an abstract level, by means of nodes and edges. Nodes typically
represent variables describing factors causing or affecting the problem. Only a few variables are
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measurable (e.g., can be quantified precisely using a well-defined metric), and most variables express
generic concepts (e.g., exploitation of natural resources, or product quality vs product lifespan). Directed
edges between nodes express causal relationships (from a source to a destination node), and – in
particular – emphasize the influence of one w.r.t. another, in qualitative terms. Such influence, denoted
as polarity, is positive when the growth of the value of the source variable causes the growth of the
value of the destination variable, and negative when the growth of the value of the source variable
determines the reduction of the value of the destination variable.

Based on these simple descriptions, diagrams are inspected for finding causal loops, i.e., cyclic paths
looping from one variable back to the same variable. Each loop is associatedwith a given characterization,
namely balancing (B) or reinforcing (R), based on a simple inspection of the edges involved in the loop
(edges with negative polarity along a loop are counted, and a loop is balancing when the count is odd,
reinforcing when the count is even).

In addition to causal loops, we define the new concept of causal routes, consisting of paths of edges
connecting two nodes, denoted as source and destination. Similar to causal loops, causal routes can
also be associated with positive and negative polarity (edges with negative polarity along a route are
counted, and a route is denoted as increasing when the count is even, decreasing when the count is odd).

Figure 1: Example of a simple Causal Loop Diagram, with six variables, positive and negative edges, two loops
(circuit of variables 3, 5, 4, 3 [reinforcing (R)] and circuit of variables 3, 6, 4, 3 [balancing (B)]), and causal routes
(e.g., between variables 1 and 2 or betwen variables 3 and 4).

Diagrams provide a clear picture of mutual influences; their analysis facilitates the generation of
novel insights that can be leveraged to assess areas or intervention points, even those not immediately
apparent, and their potential impact. The simple Causal Loop Diagram in Figure 1 includes causal loops
and causal routes.

We then consider cases when causal loops share a common variable and classify them as agreeing
(i.e., all balancing or reinforcing) or disagreeing (i.e., when both options are present). Similarly, we
consider causal routes between the same pair of variables and classify them as agreeing (i.e., all routes
share the same polarity) or disagreeing (i.e., some routes have different polarity). These analyses can
help with reasoning about possible balancing or counterbalancing effects within the same diagram.

While systemic design is gaining increasing interest in the design community, so far it has not
influenced technical, engineering-oriented communities much; in particular, it is not well-known
to conceptual modeling scholars. In our article, we aim to build a first bridge by describing a CLD
metamodel (i.e., a model of diagrams’ components) and then reasoning upon the insights that such
formalization can bring. We first present a chronology and brief description of some major references
on CLDs – without any claim of being exhaustive (Section 2). Then, we present our metamodel of
CLDs (Section 3), allowing us to formally define a series of new concepts, which we deem interesting
for deepening a causality analysis. For describing the power of the CLD model, we present two large
use cases (Sections 4–5). The first one is used to explain our concepts in action, applied to the COVID-



19 pandemic; the second one targets the fashion industry, allowing us to apply systemic design at
large, generating insights that can be leveraged to assess areas or intervention points, even those
not immediately apparent, and their potential impact. Finally, we discuss the importance of assisting
systemic design with our data-driven approach (Section 6).

2. Related work on Causal Loop Diagrams

Causal Loop Diagrams were introduced in a work written in 1986 by Richardson [7], and then formalized
by Haraldsson in 2004 [6]; the latter introduces variables and their connections, explains positive and
negative polarities, and the essence of balancing and reinforcing loops based upon edge polarities. It
also introduces observed behavior patterns and uses them to illustrate several loop dynamics.

The concept of Stock/Flow Diagrams (SFD) was introduced by Binder et al. [8] in diagrams explain-
ing causal relationships; all variables are quantifiable and represent either stocks (accumulations) or
flows (activity rates); SFDs are compared/contrasted with CLDs because, while the latter are informal
descriptions of reality, the former are quantifiable descriptions, e.g., of physical processes. The article
includes a method for progressively transforming CLDs into SFDs. SFDs are also extensively described,
in a plain style, by Meadows [3].

A mathematical perspective on CLDs is offered by Hayward [9]. In this work, several mathematical
rules describe the variation of stock levels when connected within one or more loops, further describing
each flow as a mathematical function, with first and second derivatives. The author explains several
biological models, including epidemic growth and the predator-prey model. Among more speculative
works, CLDs are explained in terms of Algebraic Quantum Field Theory in modern mathematics [10].

Methods for advancing the development and use of CLDs are constantly being researched (e.g., in the
Ph.D. thesis of Kenzie [11] and the recent generation through LLMs [12, 13, 14]). In terms of applications,
several efforts employed CLDs for bridging domain expertise gaps [1] or explaining complex/critical
domains. Specific examples concern the obesity causes and possible interventions [15, 16], fashion
retail supply chain [17], tourism management [18], or sustainable conflict/peace balance [19].

A formalization of the design process for complex CLD, with multiple stakeholders, is described in [18]
in the context of renewable energy technology (RET) adoption for hotels in Queensland (Australia).
It shows several versions of CLDs, each one undergoing phases of proposition and approvals. In the
final CLD version, most variables are provided with some reference that explains/justifies them, and
some variables introduced in the early phases of the process are removed based on deeper analysis. The
process is very laborious and time-consuming, but in the end, the system designers succeed in their
mission, i.e., to show the pros and cons of RET adoption at a high conceptual level; they acknowledge
that achieving convergence (e.g., about which variables and relationships should be selected or retained)
through several rounds of discussions involving different stakeholders requires a lot of time and energy.

While CLDs are effective as an instrument for describing complex systems at a high level of abstraction,
bridging them to design activities concerning the development of information systems is not trivial;
to our knowledge, the only method for bridging CLDs to information system design is provided by
Tulinayo et al. in [20] and further discussed in [21].

Conceptually, CLDs can be compared to the i* framework [22], used in software engineering, to
support goal-oriented modeling of socio-technical systems and organizations [23]. CLDs are rooted
in systems thinking and emphasize feedback loops, capturing the dynamic interdependencies and
cause-effect relationships among system variables. They are particularly effective for visualizing how
changes propagate through a system over time, making them well-suited for understanding system
behavior and identifying leverage points for intervention. In contrast, the i* framework centers on
intentionality and strategic relationships among actors within a system. It models goals, dependencies,
and rationales behind actors’ behaviors, offering a more agent-oriented perspective, especially useful in
early-stage requirements engineering and socio-technical system analysis.



Figure 2: Metamodel for Causal Loop Diagrams. Note that we represent entities as rounded rectangles -
together with their attributes described by their name - and relationships as edges; the name of the relationship
is provided along the edge, while min-max cardinalities of relationships are shown at the start and end of the
edge, along the notation used in [25]. The new entities and attributes introduced by us (in addition to standard
CLD elements) are enclosed by dotted lines and highlighted by shaded (yellow) filling.

3. A metamodel for Causal Loop Diagrams

Causal Loop Diagrams (CLDs) represent networks of variables connected by directed edges; next, we
describe the metamodel of CLDs, in the form of an ER diagram, to make their semantics accessible to
the Conceptual Modeling community. The graphical language of CLDs is represented in Figure 2, a
metamodel (in the sense of [24]) showing the available graphic modeling primitives and their abstract
syntax (to provide a unique interpretation of CLDs introduced next); here we avoid specifying context-
conditions, which are made clear in the text. The metamodel describes all possible CLD models, which
in turn provide a description of reality. In addition to modeling the standard graphic elements, we also
model new elements introduced by us, enclosed by dotted lines and highlighted by shaded (yellow)
filling.

Nodes, edges, and their properties. In CLDs, Variables are visualized as nodes; they are character-
ized by an identifier and a name; the identifier is sometimes omitted from the representation. Variables
may be quantified by means of a Measure, in turn characterized by a measureUnit and, sometimes,
an intendedLevel. In particular, some nodes may be regarded as stocks, to represent accumulations of
material or information that have built up over time [3], or flows, to represent rates at which activities
take place or situations evolve [8]; else, we mark them as other. This terminology is borrowed from
Stock-Flow Diagrams (see Section 2). One variable is considered the most important one (isMain-
Variable), as the whole diagram is designed around it, with the purpose of studying its dynamics and
interactions. Variables are included in (possibly many) ThematicRegions – equipped with their name
and description – that represent an area of interest for a given system/context.

Variables are connected through CausalityLinks (i.e., connections), which are directed arrows
indicating how the change in one variable (tail of the link) influences another variable (head of the link).
Each connection has a polarity that can be positive or negative; positive connections are represented in



CLDs by continuous-line arrows, and negative connections by dashed-line arrows. Positive polarity of
an edge from X to Y occurs when a growth of X causes a growth of Y, or, equivalently, a reduction of X
causes a reduction of Y1; conversely, negative polarity of an edge from X to Y occurs when a growth of X
causes a reduction of Y, or, symmetrically, a reduction of X causes a growth of Y. Positive and negative
polarities can be defined even when they connect variables that are not measurable. Finally, the effects
of a causality link can be delayed; when this aspect deserves attention, the symbol // is used on the
arrow, and the attribute withDelay is true.

FeedbackLoops, CausalRoutes and their properties. Variables and CausalityLinks enable repre-
senting arbitrary graphs over thematic regions; the relevant patterns associated with a graph can be
derived from them, and represent FeedbackLoops, CausalRoutes (introduced in this paper, not included
in the original definitions [6]), and their properties.

A FeedbackLoop is created for each cyclic path of two or more edges going from one variable,
called “target variable”, back to the same variable. Each loop is either balancing (B) or reinforcing (R).
This notation is typically placed on a round sticker along the loop; usually, only loops that have been
identified as interesting by designers are marked on the visual diagram. The association of loops with
stickers may be ambiguous when several loops interfere with each other; for this reason, we denote
loops by a list of node identifiers along the cyclic path.

The loop dynamic is dictated by a simple rule: loops are balancing when they contain an odd number
of negative connections, they are reinforcing when they contain an even number of negative connections.
This rule is motivated as follows: if the number of negative connections is odd (1, 3, 5, ...), we can
compose the edges’ interpretations and say that the growth of the target variable along the outgoing
edge will eventually be compensated by a decrease of the same target variable produced by the last
(incoming) edge of the loop, regardless of the number of intermediate steps. Thus, growths will be
balanced by decreases, whereas decreases will be balanced by growths. Instead, if the number of
negative connections is even (0, 2, 4,...), then a growth along the outgoing edge eventually causes a
growth of the target variable along the incoming edge, generating a positive reinforcement along the
loop – and likewise for a negative reinforcement. Feedback loops have a referenceBehaviourPattern
referred to their target variable; these are (purely conceptual) functions, drawn on a temporal scale,
providing an indication of how the variables will behave as a consequence of changes occurring in the
loop. Patterns reflect typical stereotypes: linear, superlinear, and sublinear; once associated with either
growth or decrease, this yields six possible behavior patterns for each loop. In particular, linear and
superlinear stereotypes denote reinforcing loops, while sublinear stereotypes denote balancing loops,
as they show a trend toward stabilization.

In addition to feedback loops, we introduce the new concept of CausalRoute, consisting of a
sequence of connections from a source node to a destination node. Causal routes are characterized as
increasing/decreasing, based on the even vs. odd count of negative polarities along their connections, as
discussed for balancing and reinforcing loops. In addition, their cumulativeTrend provides a (purely
conceptual) indication of how the destination variable grows or decreases as a function of the growth
or decrease of the source variable; trends reflect typical stereotypes: linear, superlinear, and sublinear;
once associated with either growth or decrease, this yields to six possible behavior patterns for each
causal route.

As an addition to the original formalization, we also add the AlternativeLoops concept, representing
those loops that have an arbitrary sharedVariable (not necessarily the target one); they are agreeing
when they are all balancing or reinforcing, disagreeing when at least one is balancing and at least
one is reinforcing. Similarly, we add the concept of AlternativeRoutes, representing two or more
causal routes connecting the same source and destination variables; they are agreeing when they are
all increasing or decreasing; they are disagreeing when at least one is increasing and at least one is
decreasing.

1We provide both readings because, when causality links form loops or routes, one of the readings more naturally explains the
link role in relation to the entire route.



Feedback loops in some CLD examples are also described by means of an ObservedBehaviour-
Pattern, listing several ordered observations of measured variables to show their phased evolution
(growth or decrease along the cycle). As these patterns are not well formalized and we consider them as
not very effective in the description of complex systems, we disregard them in CLDs that are presented
next.

We deliberately excluded from the metamodel some CLD aspects, for instance, the discussion of loop
dominance [8], as it was hard to systematically deal with it; similarly, we did not make use of observed
behavior patterns, i.e., the gathering of quantitative variable observations, as we found this aspect not
at the same level of abstraction w.r.t. the systemic design approach.

4. Causal Loop Diagram for the COVID-19 pandemic

The COVID-19 pandemic has moved the scientific community at large in order to study its effects;
a number of models have studied in-depth mitigation measures [26, 27] economic aspects [28], and
misinformation impact [29]. Several CLDs have been employed during the COVID-19 pandemic to
analyze the complexity of the unprecedented business response [30] and socio-economic impacts [31],
along with the environmental-health impacts [32]. In Figure 3, we summarize salient systemic aspects
that regard: economic growth, government actions, impacts on society, and healthcare management
related to the number of confirmed cases; we omit to discuss the effects of vaccinations, therefore,
temporally situating our CLD at the beginning of 2021. In this way, we put to work our systematic CLD
analysis, supported by metamodeling, in confirming aspects that are rather well-known, as they have
been in the public interest of relatively recent years. In particular, we see that the main variable of this
CLD is the number of confirmed cases; most strategies at government levels, although quite different
within different regions/states and at different times of the pandemic, were instrumented to react to
increases of this accumulation variable.

Our first analysis is concerned with feedback loops that target this variable. Confirmed cases rise
when a new dangerous variant becomes dominant. We recognize a main loop B1 (circuit 12, 9, 6, 12)
that sees an increase of intensive care admissions (an immediate measure of the disease’s spread and
severity) causing an increase of interventions bringing, with a given delay, to the reduction of confirmed
cases. Another similar loop B2 (circuit 12, 8, 6, 12) justifies an increase in interventions as a result of a
(delayed) government action. These two alternative loops agree on their balancing effect.

Another interesting loop is B3 (circuit 12, 14, 15, 16, 9, 6, 12), which also agrees with B1 and B2.
It is also balancing, along the reasoning that an increase of confirmed cases causes an increase of load
on health workers, hence a reduced health service capacity that translates to a reduced access to health
services, and then to an increase of intensive care admissions because patients reach the hospital when
their health status is already very severe; then B3 merges with B1’s last two edges. Note the reading of
this balancing loop, where the odd number of negative loops produces, in the end, a balancing effect
over the target variable.

However, the increase in health worker load is at the base of two reinforcing loops, R2 and R3. Loop
R2 (circuit 14, 15, 14) indicates a well-known deadly spiral in which healthcare has been trapped during
the pandemic, where, as a consequence of the high load of health workers, health service capacity has
been reduced, leading to even higher health worker load due to COVID-19 and other emergencies. Loop
R3 (circuit 14, 15, 16, 18, 14) illustrates that a reduction of health services causes, with some delay, a
reduction of prevention practices for many pathologies other than COVID-19, causing -in the long run-
heavier health worker loads. Thus, when R2 and R3 are observed by taking the health worker load as
their shared variable, these two alternative loops are both reinforcing and agreeing.

The (relatively) simple CLD shown in Figure 3 shows another reinforcing loop R1 (circuit 4, 1, 2, 4),
at the intersection of the economy-government thematic regions, reflecting another deadly spiral, this
time relative to the job market, where interventions cause business restrictions, which in turn cause a
reduction of economic growth, which in turn causes an increase of unemployment and therefore a further
increase of business restrictions.



Figure 3: Causal Loop Diagram for COVID-19.

Figure 4: Alternative routes in the COVID19 Causal Loop Diagram.

The just discussed R1 reinforcement loop introduces an interesting alternative route from interventions
to economic growth (see Figure 4A), where stimulus packages introduced by the government lead to
increasing economic growth and compensate, although with delay, for the restrictions on travel and
businesses, which instead cause a reduction of economic growth (as discussed above). Summary
edges represented at the center of figures describing alternative routes clarify each route’s polarity:
the route on the left side is increasing (it has no negative edges, hence an even number of negative



connections), whereas the route on the right side is decreasing (one negative connection). This simple set
of disagreeing causal routes hints at the huge, complex decision processes leading to the deliberation, by
the world’s governments, of effective stimulus packages for combating the negative effects of COVID-19
on economic growth.

Another intriguing decision process is discussed in Figure 4B and concerns the connection of interven-
tions to the one health concept [33], i.e., the inclusion within health factors of a number of dimensions
and not just disease treatment. In particular, along the increasing route on the left, we see that interven-
tions reduce confirmed cases, which reduce the health worker loads, which then increase the health service
capacity, hence the (general) access to health services, thus improving one health. Along the decreasing
route on the right, we see that interventions cause an increase of social restrictions, leading to a reduction
of social interactions, hence a reduction of mental wellbeing, thus worsening one health. In general, the
one health concept is developed with the ambition of finding many other determinants, not necessarily
related to our health (for instance, including animal health), so as to holistically consider them; an
encompassing study of the one health concept using CLDs could lead to many significant insights.

5. Causal Loop Diagram for the fashion industry footprint and
sustainability

Our second use case is dedicated to analyzing the fashion industry; in particular, it is focused on a
critical assessment of the industry’s footprint and sustainability, looking for hidden/interesting aspects.
The CLD, with fashion industry footprint as its target variable, is illustrated in Figure 5; it spans over the
Market, Consumption, Production, and Policies thematic regions, and is weakly inspired by the CLD
presented in [34].

Figure 5: Causal Loop Diagram for the footprint analysis of the fashion industry.



Figure 6: Analysis of six alternative loops sharing the purchase of new clothes variable.

As in our first use case, we start with a focus on feedback loops, shown in Figure 6, which highlights
several alternative loops sharing the purchase of new clothes variable. Reinforcement loop R1 describes a
simple consumerist behavior (circuit 7, 9, 12, 7): with purchases of new clothes, owned clothes increase,
then thrown-away clothes increase, and finally, new clothes are purchased. Along this reasoning, loop
B0 (circuit 9, 12, 9) simply indicates that an increase in thrown-away clothes causes a decrease in owned
clothes.

More interestingly, the balancing loop B1 (circuit 12, 10, 7, 9, 12) signals that when clothes are thrown
away, there is a higher availability of second-hand clothes, and this can reduce the purchase of new
clothes; thus, R1 and B2 are alternative and disagreeing. An increasing causal route, common to loops
R2 and B2, goes from purchases of new clothes to clothes thrown away (sequence 7, 8, 11, 13, 12) occurs
because, with increased purchases of new clothes, production intensity increases, but then the quality
of clothes decreases; this reduces the lifespan of clothes, and eventually, more clothes are thrown away.
This route can be completed both as a reinforcing loop R2 (by considering the direct connection to
purchases of new clothes) and a balancing loop B2 (through second-hand clothes availability, node 10).

Other feedback loops share the purchase of new clothes; in particular, reinforcing loop R3 (circuit 7, 6,
3, 4, 7), along classic mechanisms of expanding markets, indicates that an increase in purchases of new
clothes increases the fashion industry’s profit, which in turn increases investments in the market, which
in turn increases customer’s desire to buy, yielding to increasing of purchases of new clothes; this loop
only includes positive connections. A more subtle balancing loop B3, however, involves consumers’
awareness of the fashion industry’s footprint (circuit 7, 8, 5, 1, 2, 7). Along with an increase in purchases
of new clothes, production intensity rises, which then causes greater resource exploitation and therefore
an increase in the fashion industry’s footprint. This may, in the long run, affect consumer awareness
and cause a reduction in new clothes purchases.

At this point, six loops insist on the shared variable purchase of new clothes, out of which three are
balancing (B1, B2, B3) and three are reinforcing (R1, R2, R3); understanding their interdependencies and
determining the strengths of each of them requires deeper analyses, but their underlying mechanisms
are well identified.

The analysis of some alternative and disagreeing causal routes of the original CLD in Figure 5 provides
more insights. We first consider, in Figure 7A, the polarity of environmental regulations upon the fashion



Figure 7: Analysis of alternative disagreeing causal routes in fashion industry CLD.

industry profit. The standard causal route, with a negative polarity, indicates that environmental
regulations require higher industry investment in sustainability, causing a reduction of production
intensity and, therefore, an increase in production costs, and then a decrease in profits. However,
a less obvious causal route, with a positive polarity (contributed by a sequence of connections with
positive polarities) indicates that greater investments in sustainability can generate greater innovation
for supporting the sustainability transition, followed by higher investments in marketing that highlight
these achievements, and these in turn may rise the customer’s attention and desire, leading to higher
purchases of new clothes and eventually to an increase of profits.

We next consider, in Figure 7B, the influence of purchases of new clothes upon the fashion industry
footprint. As before, the standard causal route, with a positive polarity, indicates that an increase in
purchases causes a more massive production, a higher production intensity, hence higher exploitation
in all six considered categories, and eventually a rise in the industry footprint. However, an alternative
route considers the rise of profits, which descends from higher purchases of new clothes, which are used
for investing in sustainability, thereby facilitating the industry’s transition and eventually obtaining
higher sustainability, leading to a reduced industry footprint.

6. Discussion and conclusion

CLDs are a formalism providing high-level descriptions of complex systems; as such, they allow focusing
on areas of intervention that can be deepened/assessed by means of further analysis. An example is
provided, in our fashion design use case, by the insight that improving the fashion footprint not only
causes an increase in the cost of production but also can be a factor for pushing innovation and a
means for stimulating the consumer’s awareness and creating a new strategy for market penetration,
thus balancing the “negative” impact of increased costs with possible “positive” outcomes – process
innovation and marketing positioning. A complementary analysis could be performed on fast-fashion
influence on countries from the Global South, such as Bangladesh, with a garment industry worth
55B US dollars a year, now facing an unsettled future after protests, due to low pay and poor working
conditions, particularly for women [35].

In parallel work [36], we describe a demo application that implements all our concepts; the prototype
includes as predefined cases the COVID and Fashion Design use case; it also includes the use case about
renewable energy technology (RET) adoption for hotels in Queensland (Australia) described in [18], the
largest and most documented CLD that we found in the literature, with 42 variables, 74 relationships,
143 causal loops and 62171 causal routes. Our prototype incoporates LOOPY [37], a open-source visual
tool, for entering a new CLD; it supports the systematic analysis of causal loops and causal routes,
the selection of specific loops and routes for direct comparison, and the production of a PDF report
where the result of an explorative interaction can be extracted, together with selected loops or routes.



The prototype demonstrates the potential of computational tools to support systemic modeling and
reasoning; practitioners can use it to identify leverage points and explore the systemic consequences of
interventions, while researchers gain a framework for formalizing and querying alternative models
within the same domain.

The current prototype is a basis for building a more robust infrastructure, capable of documenting the
design process for a given use case (using different progressive CLD versions) and organizing several
use cases within a CLD repository. The combination of metamodeling, structured representation, and
a queryable CLD repository will provide the foundations for more deliberate and evidence-informed
systemic design.

Looking ahead, future work could include the integration of dynamic simulation capabilities, the
use of external data sources for real-time or evidence-based modeling, and the implementation of
collaborative features. Additional potential lies in the application of machine learning to detect recurring
causal archetypes and in the development of natural language interfaces to support accessibility. An
additional interesting research concerns the exploitation of suitably trained Large Language Models to
automatically recognize causal relationships and their polarities from texts.

As a further opportunity for investigation, we noted possible synergies with the i* framework.
Currently, the systemic design community and the i* community both offer valuable perspectives for
modeling complex systems, but they differ significantly in focus and methodology. While CLDs provide
a macro-level view of system dynamics, the i* framework offers a micro-level view of stakeholder
motivations and interactions. Taken together, these approaches could complement each other, with
CLDs shedding light on system-level feedback and i* revealing the underlying intentions that drive
individual and organizational actions.
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