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Abstract

The Digital Transformation of manufacturing, driven by Industry 4.0 and the green transition, has led to a surge
in sensor deployment and real-time data collection. This shift gives rise to contexts in which large volumes of
complex multivariate time series data present valuable opportunities for advanced analytics, while simultaneously
posing significant challenges for effective interpretation. Analytical dashboards are widely used to support
decision-making, yet their impact is often limited when design choices do not align with users’ analytical
goals or cognitive workflows. A promising response to this challenge is data storytelling, which combines data
visualization with narrative structures to enhance comprehension, especially in high-pressure, multi-stakeholder
environments. However, in complex industrial contexts, the task of identifying and preparing relevant data for
analysis presents considerable challenges due to the massive data volume constantly generated. Recent advances
in Artificial Intelligence, particularly Large Language Models (LLMs), present new opportunities to automate and
enhance the development of such goal-oriented dashboards. It is therefore necessary to investigate how they can
be incorporated into a method that applies them for data storytelling in data-intensive contexts. In light of this,
this paper proposes a method for designing analytical dashboards that integrate multivariate sensor data with
goal-based storytelling techniques, supported by LLMs to accelerate and guide the development process. The
proposed method is instantiated in a real-world industrial case, within the PRODUTECH R3 “Industry-UP” project,
in the CEI use case for anomaly detection and operational optimization in sensorized stone-cutting machines.
The results show that the method reduces manual intervention, identifies data gaps in earlier stages, and delivers
dashboards directly traceable to strategic goals, improving both development efficiency and decision-support
quality.
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1. Introduction

The digital transformation of manufacturing environments, driven by the advent of Industry 4.0, has led
to the widespread adoption of sensors and real-time data collection systems [1]. This transformation is
increasingly intertwined with the green transition, as industries seek to enhance not only operational
efficiency but also environmental sustainability through data-driven strategies [2]. In this highly
automated and data-driven context, industrial processes now generate large amounts of multivariate
time series data, offering valuable opportunities to monitor equipment performance, detect anomalies,
and optimize operations. However, transforming these complex high-frequency data into clear and
actionable insights remains a significant challenge.

Analytical dashboards have become key tools for supporting decision-making in industrial contexts.
However, their effectiveness often falls short when the design is not aligned with the analytical goals
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and reasoning processes of users [3]. Conventional dashboards may present raw data in a visually
appealing way, but fail to guide users toward meaningful conclusions, especially when decision makers
are not experts in data analysis. Moreover, the way dashboards are organized and the elements included
in their content also highly influence their efficacy and value.

A promising approach to address this challenge is data storytelling, which combines data visualization
with narrative techniques to enhance comprehension and engagement. Rather than merely showing
data, storytelling structures information aligned with the cognitive processes of users, helping them to
make sense of complex patterns and draw actionable conclusions [4]. Therefore, in industrial contexts,
where decision-making often involves multiple stakeholders and fast-paced environments, the use of
storytelling could significantly improve communication, insight discovery, and response time.

Recent advances in Artificial Intelligence, particularly Large Language Models (LLMs), have opened
new opportunities to transform how dashboards are conceived and developed. LLMs can automate parts
of the analytical design process, such as structuring user requirements, mapping data to analytical goals,
and suggesting visualizations tailored to decision-making needs. This automation can reduce the manual
effort required, accelerate iteration cycles, and make goal-oriented dashboards more accessible even
to users without advanced technical expertise. Beyond simple assistance, LLMs can act as intelligent
mediators, embedding domain-specific knowledge into the design process and facilitating the creation
of coherent, actionable narratives from complex datasets [5].

Building on these developments, the purpose of this paper is to extend the methodology proposed
by [6] for the systematic design of storytelling dashboards, by integrating LLMs in it, to automate
specific steps. This integration enables the refinement of analytical requirements, the mapping of tasks
to available data, and the proposal of goal-aligned visualizations with reduced development overhead.
By aligning dashboard design with user needs and decision-making goals, and by leveraging LLMs to
accelerate and guide the development process, the proposed method ensures that visualizations not
only present relevant data but also support interpretation and action in complex contexts.

The main contribution of this work lies in demonstrating how LLMs can operationalize and enhance a
well-established goal-oriented methodology, showing that they can reduce the number of steps requiring
manual intervention, streamline requirements-to-visualization pipelines, and improve the traceability
between decision goals and dashboard elements. The proposed method is instantiated in an industrial
use case for the reindustrialization of production technologies.

The paper is organized as follows. Section 2 reviews the relevant literature on visual analytics, dash-
board design, and LLMs. Section 3 introduces the industrial use case and its specific challenges. Section
4 presents the proposed method, detailing each phase from requirements elicitation to visualization
design. Section 5 discusses the results and insights derived from the instantiation of the proposed
method in the industrial context. Finally, Section 6 concludes the paper and outlines directions for
future research.

2. Related Work

The use of dashboards in industrial and organizational contexts is crucial for data-driven decision-
making, with studies exploring their adoption and usage in manufacturing and production environments.
Works such as [7, 8] and [9] emphasize the importance of aligning visual analytics tools with user
roles, decision needs, and organizational goals. However, they also highlight persistent challenges
in transforming complex data into useful insights, especially when dashboards are designed without
considering users’ reasoning processes or analytical goals.

The effectiveness of dashboards, or their limited adoption when they are not well-aligned with
users’ mental models or tasks, is a recurring issue across the studies. Walchshofer et al. [10], for
instance, explore the socio-technical barriers encountered during the adoption of a visualization tool in
a traditional manufacturing company. The study highlights difficulties related to training, dashboard
creation, and adaptation to digital tools, illustrating the importance of more user-centric approaches.
In the same way, Musleh et al. [11] and Mahmoodpour et al. [12] recommend involving stakeholders



throughout the dashboard development process to increase usability and trust, but note a lack of
structured methodologies that link dashboard features to user goals in a clear and traceable way.

To address these challenges, several scholars have proposed goal-driven or intent-driven dashboard
design methodologies. Studies such as [13, 8] advocate for the organization of dashboards according
to decision-making goals and analytical purpose, often using intentional modeling approaches. These
frameworks aim to guide the selection and presentation of data according to the user’s comprehension
or decision-making requirements. While promising, such approaches are rarely extended to support
storytelling or enhanced interaction with the dashboard content.

Storytelling has been examined as a method to enhance analytical reasoning and improve data
interpretation. Studies such as [9, 14, 15] illustrate that storytelling functions not just as a narrative
layer but also as a systematic approach to communicate analytical intent and support users in building
explanations and making decisions. For instance, Hutchinson et al. [15] show how narrative principles
might guide users through coordinated visualizations, facilitating the connection between visual patterns
and interpretative insights. Nonetheless, several systems need manual writing or significant design
effort, limiting their applicability in fast-paced or dynamic analytical environments.

Recently, LLMs have emerged as effective tools for assisting users in data exploration and interpreta-
tion. The works [7] and [16] demonstrate the capability of LLMs to automate the generation of narratives,
assist in visualization specification, and provide contextual explanations. The LEVA framework [16], in
particular, introduces a novel structure that employs LLMs to enhance visual analytics workflows during
the on-boarding, exploration, and summarization stages, serving as an intelligent mediator to facilitate
users’ interactions with data and visual analytics systems, making them more accessible, intuitive, and
efficient. The recent survey by Hutchinson et al. [15] emphasizes the integration of foundation models,
including LLMs and multimodal LLMs, into visual analytics workflows, outlining opportunities for
multimodal interaction, automated insight creation, and user guidance. These advances are rapidly
converting dashboards into collaborative analytical partners.

Notwithstanding these advances, significant gaps remain. Existing methods often regard LLMs as
standalone tools - such as suggesting charts or summarizing data - without integrating them into
a comprehensive method that considers decision-making purpose, user reasoning, and interaction
design. For this reason, this paper presents a method that uses an LLM-supported process to accelerate
a storytelling methodology for dashboard design. In our approach, the role of users is limited to
providing analytical requirements, while the method is operationalized by a Data Engineer (DE) who
validates, refines, and contextualizes the outputs suggested by the LLM. This profile corresponds
to a professional with expertise in data management and analytics, capable of interpreting domain-
specific requirements and ensuring technical correctness. By placing the DE as mediator, the method
focuses on aligning visualizations with decision goals and creating structured, explainable narratives.
Consequently, the approach improves the comprehensibility, applicability, and overall use of analytical
tools for decision makers, even when they lack advanced data expertise, since the DE bridges the gap
between requirements and implementation.

3. Industry-UP: The CEIl Use Case

The PRODUTECH R3 agenda’, funded by the Portuguese Recovery and Resilience Plan (PRR), is
an Innovation Pact aimed at transforming the Production Technologies Sector into a driving force
for national economic growth, promoting resilience, climate transition, digital transformation, and
innovation in industry. The agenda includes 15 transformative programs, grouped into 5 areas. The
Industry-UP project, in the specific area of promoting the "efficiency in the use of resources and direct
integration of renewable energies in production processes”, aims to develop a holistic operational and
retrofit structure for both new and existing industrial equipments, maximizing their efficiency, extending
their useful life, and increasing their return on investment. This project is demonstrated in five specific
industrial case studies, and the work of this paper is related to CEI's Use Case.

'https://r3.produtech.org/en
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Figure 1: Industry-UP’s CEl Use Case Data Architecture.

CEI by Zipor?, is a group established in 1995, focused on innovative, intelligent, and flexible cutting
solutions for the footwear industry. It has expanded internationally, introducing waterjet cutting
technologies and spin-offs for advanced software and hardware. In 2003, it expanded to the ornamental
stone sector and, today, with brands like Pegasil® and more than 2,500 pieces of equipment produced, it
is a benchmark in industrial cutting and testing solutions [17]. In the Industry-UP project, CEI provides
sensorized equipment for stone-cut machines, making available a vast amount of data to detect and
decrease the number of anomalies. This is the context of the CEI's use case.

For data collection and analysis, it is essential a multi-layer data architecture. Figure 1 depicts the data
architecture that delineates the information flow for condition monitoring of a Computer Numerical
Control (CNC) machine using piezoelectric vibration and temperature Sensors. These sensors capture
high-frequency (HF) and multi-axis (X, Y, Z) vibration signals, along with thermal measurements. The
VSM953 Controller processes these analogical signals, calculating key statistical indicators like
Root Mean Square (RMS) speed and RMS acceleration. The data is transmitted via the ModBus/TCP
protocol, while the CNC Control Computer communicates the machine’s operational status via
TCP/IP protocol. Both streams of data are integrated within the Data Collection System, which
performs data sampling at two-second intervals and stores the data in CSV files for analysis. The
Extract, Transform, and Load (ETL) process is carried out weekly when the data is made available in
the Data Lake, to feed the analytical repository for advanced data analytics.

4. Method for LLM-Assisted Data Storytelling

Lavalle et al. [6] propose a user-centered methodology for designing storytelling dashboards that aligns
with decision-makers’ analytical requirements and mental models. This approach ensures that the
visualization organization is aligned with these cognitive processes, improving data interpretation and
reducing the risk of misinterpretation, and optimizing the user experience compared to traditional
dashboards. The developed dashboards help users find relevant information for decision support, make
the analytical process more intuitive, and reduce the number of requirements answered incorrectly.

As highlighted by the authors of [6], in complex contexts, such as the industrial one, the task of
identifying and preparing relevant data for analysis presents considerable challenges due to the massive
data volume constantly generated. They further argue that to effectively use their methodology in
such contexts, it is necessary to support the dashboard design process with tools that help automate
parts of the visualization creation process. Moreover, they advocate that this automation must always
be grounded in a rigorous analytical structure, meaning a systematic framework that links strategic,
decision, and information goals to the supporting data and visualizations. Using this methodology as a
basis, we propose a method for LLM-assisted data storytelling (Figure 2).

*https://www.ceigroup.net/
*http://www.pegasil.pt
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Figure 2: Method for LLM-assisted Data Storytelling.

As can be seen in Figure 2, the proposed method is composed of three steps:

+ Requirements Structuring and Refinement: The analytical requirements of the users are
gathered, prioritized based on the MoSCoW approach [18], and structured in an iStar model [19]
with the support of an LLM to align strategic, decision, and information goals.

« Data Selection and Preparation: The mapping between analytical tasks and available data
is done in this step, as is the identification of relevant hierarchies and filters, and the design of
the data analytical model with the support of the LLM suggesting relationships, metrics, and
mitigation strategies for data gaps.

+ Visualizations Organization: The LLM is used to suggest suitable visualizations, and groups of
visualizations, for each strategic goal, taking into account the dimensionality and purpose of the
analysis.

These three steps are interconnected in an iterative flow. Step 1 defines the strategic, decision, and
information goals that guide all subsequent activities. Step 2 operationalizes these requirements by
mapping them to available data sources and designing the analytical model. Finally, Step 3 translates
the goals into concrete dashboard elements. The connection between Step 1 and Step 3 reflects the fact
that visualizations must remain aligned with the original decision goals, ensuring traceability between
requirements and visual outputs, even when mediated by the data selection and preparation stage.

In the following subsections, the method’s steps are presented along with information of the Industry-
UP CEI use case, highlighting their instantiation in real industrial data. For reproducibility purposes,
the detailed information can be found in [20].

4.1. Requirements Structuring and Refinement

The first step of the method considers as input the analytical requirements of the users, which can be
specified as a set of analytical goals that the users want to be met. As different users have different
goals, and as in complex scenarios the number of users and goals is usually high, the analytical goals
need to be prioritized. For that, this work adopts the MoSCoW approach used in software engineering
and developed by Clegg and Barker [18]. This approach prioritizes the requirements according to four
distinct groups: i) Must have: requirements with high priority, critical to meeting delivery deadlines;
ii) Should have: requirements considered as important, but not critical to meeting delivery deadlines;
iii) Could have: desirable requirements, but not critical, being incorporated only if there are time and
resources for that; and iv) Won’t have: requirements to be considered in the future.

To support the development of storytelling dashboards, the MoSCoW prioritization framework offers
a structured approach for capturing and contextualizing analytical requirements. It organizes each
requirement by ID, description, associated analytical question, required attributes, computed metrics,
and priority level, ensuring stakeholders clearly understand both the need and its intended objective.



Users should define their requirements as clear, goal-oriented statements and assign priorities using
the structure outlined in Table 1. This template, complemented by illustrative examples, helps ensure
consistent interpretation and facilitates a shared understanding among stakeholders.

Table 1
Template for the Specification of Analytical Goals/Questions.
ID Analytical Goal/Question Priority
ART  Monitor the evolution of vibrations by sensor and when they pass their threshold Should
AR2  Monitor the evolution of spindle electrical current and speed, and when they pass their  Should
threshold

In the CEl’s use case, 21 analytical requirements were gathered from the user needs and were made
available to the LLM as a numbered list format, in this particular case, ChatGPT*, to structure the
requirements in an iStar model that must consider Strategic Goals (SG), Decision Goals (DG), and
Information Goals (IGs) [21]. SGs reflect the overarching objectives of the business process being
improved, representing a transition from the current state to a desired future outcome. DGs translate
these strategic intentions into actionable decisions that leverage information to benefit the organization.
They address the question: "How can a strategic goal be achieved?". 1Gs specify the data requirements
necessary to fulfill a DG, answering: "How can decision goals be achieved in terms of information required?”.
IGs define the data to be collected, typically through analytical processes, and can be expressed either
as specific goals or as descriptions of the required analysis.

To consider the evolving nature of a development process, the LLM was provided with the MoSCoW
classification (in list format) to aid in the iStar model, allowing DEs to plan development cycles. Addition-
ally, metadata about available raw data was made available to the LLM as textual descriptions, enhancing
the efficiency of the method and aligning requirements and data while also ensuring awareness of the
application domain.

The specific prompt used to interact with the LLM in this step is as follows:

Consider the following set of analytical requirements. Consider that Strategic Goals (SGs) are related to the main objectives of the
business process that are being enhanced, representing a desired change from a current situation to a future one; Decision Goals
(DGs) represent decisions that use information to provide benefits for the organization, operationalizing the SGs into actions by
answering the question, "How can a strategic goal be achieved?"; Information Goals guide the information needed to achieve a DG
by responding to the question, "How can decision goals be achieved in terms of information required?" IGs outline the data that
must be gathered, usually through analysis. As a result, they can be described in terms of goals or in terms of the analysis process.
Consider that IGs are decomposed into Tasks (T). Based on this, suggest an iStar model to represent the analytical requirements.
For the derived SGs, DGs and IGs, classify them as Must have, Should have or Could have, considering the classification available
in the set of analytical requirements. The analytical requirements are: «to be defined».

. J

The iStar model generated by ChatGPT was returned in a structured list format, which was subse-
quently converted by the DE into a graphical representation for analysis and visualization. Figure 3
depicts the final iStar model after the refinements introduced from the interaction between the DE
and the LLM. In particular, the DE suggested a revision to IG3.1.3, highlighting that a threshold was
incorrectly assigned to the speed rate variable. This feedback led to the reformulation of 1G3.1.3 in
accordance with the provided inputs. In general, the identification of the iStar model with the support
of the LLM was very effective, requiring only a limited number of refinement iterations. The process
was relatively fast, with the DE mainly focusing on validating domain-specific aspects (e.g., correcting
thresholds or clarifying variable definitions), while the overall structure proposed by the LLM proved
consistent with the analytical requirements.

*ChatGPT-4, released by OpenAl in May 2025, accessed via the web interface at https://chat.openai.com
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Figure 3: iStar Model after the Requirements Structuring and Refinement Step.

4.2. Data Selection and Preparation

Once the iStar model is identified, including the SGs, DGs and IGs, the selection and preparation of
the relevant data must be started to design and implement the analytical repository that will integrate
the relevant data and support all visualizations. The input of this step includes the iStar model (image
format) and the metadata of the available data as textual descriptions. With this information, the
LLM must: i) map the tasks integrated in the IGs to data sources, attributes and metrics (indicators)
(subsection 4.2.1); ii) identify the hierarchies and filters to be considered in the decision-making process
(subsection 4.2.2); and iii) propose the model of a data warehouse system [22], the analytical system
considered in the presented use case (subsection 4.2.3), complementing the Data Lake presented in
Figure 1.

In addition to organizing the information needed to propose the supporting data model, this second
step plays a crucial role in uncovering potential data gaps that may hinder the fulfillment of the analytical
requirements.

4.2.1. Mapping Tasks/IGs to Data Sources, Attributes, and Metrics

For this mapping, the next prompt should guide the LLM in this mapping process. The prompt used to
interact with the LLM in this step is as follows:

Consider the previous iStar model and the following metadata. Map the tasks/IGs to data sources, attributes, and metrics to better
select and prepare the data needed for analyses and detect potential data gaps. The resulting table must include the task ID, the
task description, the data source(s), the attribute(s), the metric, and, if applicable, the calculation formula. In another table, for
each identified data gap, suggest mitigation strategies. The metadata are: «to be defined>.

For the available iStar model and data sources, the resulting mapping for SG1 is depicted in Table 2.
For clarity, the resulting mapping for the other SGs is not shown. However, it can be found in [20].

For this instantiation of the method with the presented use case, five data sources were available:
i) vibr_monitor_ YYYY_MMDD.csv: stores data about the sensors’ measurements, including the
anomaly values. On a weekly basis, these files are made available containing data from the previous
week; ii) components.csv: contains contextual information about components (sensors or motor);
iii) variables.csv: contains contextual information about the variables measured by the sensors, in



particular their threshold, important to detect anomalies; iv) mat_types.csv: contains contextual
information about the materials cut by the sensorized machine; and v) tool_description.csv: contains
contextual information about the tools used to cut the materials. While Fig. 1 emphasizes the sensor
streams as the primary source of information, these readings are complemented by contextual CSV
files. These files do not represent additional independent data sources but rather provide metadata that
enriches and contextualizes the sensor measurements, enabling a more complete analytical model.

Table 2
Mapping Tasks/IGs to Data Sources, Attributes, and Metrics supported by the LLM for SG1.

Task Task Descrip- Data Source(s) Attribute(s) Metric Formula / Notes
tion

T1.1.1  Query anomaly vibr_monitor_ Time, MType Count of anoma- Filter anomaly
logs and group by  YYYYDDMM.csv, lies per material ~ events — group
material mat_types.csv by MType

T1.1.2  Query anomaly vibr_monitor_ Time, Tool Count of anoma- Filter anomaly
logs and group by  YYYYDDMM.csv, lies per tool events — group
tool tool_description.csv by Tool

T1.1.3 Cross-tab anoma- vibr_monitor_ Time, Tool, Count of anoma- Filter anomaly
lies by tool and YYYYDDMM.csv, MType lies per tool- events — group
material tool_description.csv, material pair by both Tool and

mat_types.csv MType

T1.1.4 Count anomalies vibr_monitor_ Time, V1-V12, Count of anoma- Map V1-V12 +
per sensor compo- YYYYDDMM.csv, Temp lies by sensor Temp to sensor
nent variables.csv components;

group

T1.1.5 Filter anomalies vibr_monitor_ Time, SCurr, Count of anoma- Compare SCurr,

caused by motor  YYYYDDMM.csv, SRpm lies where compo- SRpm to thresh-
components.csv nent = motor olds

T1.21 Compute time vibr_monitor_ Time Avg time between  Sort anomaly
difference be- YYYYDDMM.csv anomalies timestamps,
tween consecu- take time deltas,
tive anomalies average

T1.22 Calculate time vibr_monitor_ Time, Status/Op- Avgresume time  Need indicator
from  anomaly YYYYDDMM.csv eration flag (gap) for when work
detection to resumed
resumption

T1.2.3 Sum all machine vibr_monitor_ Time, Status/Op- Total downtime Requires event
stoppage dura- YYYYDDMM.csv eration flag (gap) logs for stop/start
tions states

As mentioned, identifying data gaps is key for formulating effective mitigation strategies. Table 3
highlights several gaps detected by the LLM, along with proposed solutions to address them. It is the
DE’s responsibility to validate and, if necessary, refine these strategies. In this instantiation, refinement
involved selecting the most appropriate suggestion based on the specific context of the use case. For
instance, in G2, the LLM initially suggested the following mitigation strategy: “Add record of machine
status (running/inactive) or infer from parameter changes”. However, the best option is to infer from
the parameter, since we know from the process rules that when an anomaly is detected, the machine
automatically stops working and the speed attribute is equal to zero. When the machine resumes
working, the speed attribute will be non-zero.

Despite these refinements, another adjustment was necessary. The LLM identified a gap in the
variable.csv dataset: it expected a direct mapping between sensors and variables, but in this dataset
the mapping is implicit, since each variable entry already includes an attribute that indicates the
corresponding component. In other words, although the LLM did not recognize the sensor as a
component, the dataset contained the information needed to establish this relationship.



Table 3
Data Gaps and Mitigation Strategies suggested by the LLM and refined by the DE.

Gap ID Description Mitigation Strategy

G1 No explicit anomaly flag/event in Define anomaly rules based on thresholds in
vibr_monitor YYYDDMM.csv variables.csv and mark events

G2 No "work resumption” indicator for T1.2.2 Infer indicator from speed parameter changes

G3 No explicit "machine stop/start” events for T1.2.3  Derive from zero-speed/zero-current periods
and T2.1.1

G4 No explicit tool change event logs for T2.1.3, Infer when Tool changes between records
T2.1.4,T2.2.1

G5 No start/end operation markers for T2.2.3 Infer operation by pair material-tool

G6 Tool active time not directly logged for T2.2.2 Track active intervals per tool using continuous

readings

4.2.2. Hierarchies and Filters

For the identification of hierarchies and filters, the following prompt is used:

Taking into account the previous suggested mapping, suggest hierarchies and potential filters that can be applied to the data. The
hierarchy definition will allow decision-makers to explore the storytelling dashboard at different levels of detail. The filters serve as
a tool to identify the reusable data. The dashboard filters will reduce the dimensionality of the data being visualized while also
removing their graphical representation. Please, identify the filters taking into account the DGs.

Identifying hierarchies and filters has several benefits. Hierarchies allow "drill-down" in the story-
telling elements (such as charts, tables or maps, for instance), while filters let users isolate relevant
slices of data depending on the decision goal, reducing dimensionality and improving performance
and clarity. When combined, both help to reuse data for different goals, since filters standardize how
subsets of data are selected.

Regarding the hierarchies, after refinements of the DE, the LLM identified the following:

+ H1 - Time based hierarchy: Year -Month —Day —Hour —Minute —Second.

« H2 - Equipment hierarchy: Component —Variable.

« H3 - Material hierarchy: Material Type —Hardness —Material ID.

+ H4 - Operational state hierarchy: Operation Classification —Derived Event Details.

It is important to clarify that H4 - Operational state hierarchy relies on derived data through the data
gap mitigation strategies and, therefore, cannot be inferred directly from the original metadata.

For the filters, the suggested and refined filters are grouped by DG to match the intended analytical
exploration purposes:

« DG1.1: Time, Material, Tool, Component, Variable.

« DG1.2: Time, Operation Classification, Derived Event Details.

« DG2.1: Time, Operation Classification, Material, Tool.

« DG2.2: Time, Tool, Operation Classification, Derived Event Details.
« DG2.3: Time, Material, Tool, Component, Variable.

« DG3.1: Time, Component, Variable.

« DG3.2: Time, Component, Variable, Material, Tool.

In this instantiation, the hierarchy and filter proposals were refined to reflect the real availability
of data and analytical requirements. The final version presented here already incorporates these
refinements: some hierarchy levels were removed since they did not exist in the metadata, incorrect
relationships were corrected, and inconsistent concepts eliminated. These adjustments were mostly
punctual but ensured the hierarchies and filters remained feasible and aligned with requirements. For
instance, in the Material hierarchy, levels Material Type, Material Hardness, and Material ID were
consolidated under a single broader concept while still allowing drill-down exploration when required.
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Figure 4: Analytical Data Model proposed by the LLM and refined by the DE.

4.2.3. Analytical Data Model

With all previous information, the LLM can suggest the model of the data warehouse to be implemented
to support the visualizations. The DE is in charge of verifying and refining the model, if needed. The
prompt used in this task is as follows:

Considering the suggested mapping, hierarchies, and filters, propose an analytical data model, based on a Data Warehouse system,
that responds to the analytical requirements.

Figure 4 depicts the model verified by the DE, a constellation schema that includes two fact tables and
six dimension tables. The Fact_Reading table allows the storage and analysis of continuous readings
from the sensorized equipment, supporting time-series analyses, calculation of performance indicators
and monitoring of operational parameters over time. The Fact_Anomaly table supports recording and
analysis of threshold-exceeding occurrences, enabling the evaluation of anomaly frequency, distribution,
and impact. The Dim_Date and Dim_Time dimensions provide temporal granularity for trend analysis
and comparisons, while the remaining dimensions give the necessary context to link readings and
anomalies to materials, tools, components, and monitored variables.

Identifying the final version of the analytical data model required the highest level of intervention
from the DE compared to other steps. The LLM produced an initial constellation schema that captured
the main entities and relationships, but several refinements were needed to adapt it to best practices
in data warehousing [22] and to the specifications of the industrial case. For instance, the original
Dim_Time was split into two separate dimensions (Dim_Time and Dim_Date), and discussions were
necessary regarding the optimal number of fact tables and the definition of materialized views to ensure
performance. Despite this higher level of intervention, the process was still more efficient than manual
design from scratch, as the LLM provided a solid starting point that accelerated the overall development.

4.3. Visualizations Organization

To structure the storytelling dashboards, the LLM is tasked with organizing storytelling dashboards
by SG, considering the type and dimensionality of data when proposing visualizations. This involves



identifying the best visualization type (line chart, bar chart, table, map, etc.) for each element in a
dashboard, ensuring alignment between data and targeted analysis. The used prompt is as follows:

Considering the refined analytical data model and the refined iStar model, suggest the type of visualizations (line chart, bar chart,
table, map, etc.) that best fits the targeting analysis to include in each dashboard. Organize each dashboard by SG and consider
the type and dimensionality of the data when proposing the visualizations to adopt. Provide the output in a table. Suggest the best
way to organize the visualizations in the dashboards, taking into account the best practices of information visualization.

The proposed story includes 3 dashboards, each related to a specific SG, covering the 21 analytical
tasks. Table 4 presents the proposals of visualizations for SG1 - Reduce machine downtime and improve
operational efficiency, which was refined in the interaction of the DE with the LLM. Due to space
constraints, only the proposed visualizations for SG1 are presented, as the corresponding requirements
were classified as "Must have" in the MoSCoW approach. In this step, one example of the refinements
made can be seen in T1.2.2. Initially, the LLM suggested a gauge chart to represent the average resume
time, but there is no indication of a targeting value for this time. Therefore, it was necessary to suggest
a change in the visualization type, to a KPI card, in order to better meet the analytical requirement.

Table 4
Visualizations proposed by the LLM and refined by the DE for SGT1.
Strategic Goal Task Visualization
SG1 - Reduce machine downtime and  T1.1.1 Query anomaly logs and group by  Horizontal bar chart
improve operational efficiency (Must) material
T1.1.2 Query anomaly logs and group by  Horizontal bar chart
tool

T1.1.3 Cross-tabulate anomalies by tool Heatmap

and material

T1.1.4 Count anomalies per sensor ID Horizontal bar chart
T1.1.5 Filter anomaly records by “motor”  Side-by-side bar chart
as cause/source

T1.2.1 Compute time difference between  KPI card
consecutive anomalies

T1.2.2 Calculate time from anomaly de-  KPI card

tection to work resumption

T1.2.3 Sum all machine stoppage dura- KPI card

tions

Regarding the visualization proposals, the LLM produced a mockup that organized how the data
should be displayed across the dashboard. This mockup served as a starting point for the DE, who
refined the layout, adjusted visualization types, and ensured consistency with analytical requirements.
The refined version was then implemented in the dashboarding tool. This process reduced design
effort, as the LLM accelerated the structuring of the dashboards while leaving final validation and
improvements to the DE. The complete set of refined visualization proposals is available in the shared
repository [20], and the dashboard presented in Section 5 corresponds to this final validated version.

5. Results and Discussion

Figure 5 presents the dashboard developed for SG1, which aggregates all analytical tasks derived
from the iStar model into a coherent and interactive visualization environment. The dashboard was
implemented in Grafana®, fed by a refined Data Warehouse schema and materialized views that ensure
performance and responsiveness during user interaction.

The dashboard offers a comprehensive view of anomaly occurrences and downtime, providing both
diagnostic and descriptive analytics. The top-left panels show horizontal bar charts ranking materials

*https://grafana.com/
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Figure 5: Dashboard of SG1 - Reduce machine downtime and improve operational efficiency.

and tools by the total number of anomalies detected. In the example shown, Material34 and Tool 8 emerge
as the most frequent sources of anomalies. This direct ranking allows operators to prioritize inspection
and maintenance efforts on the most problematic resources. The central heatmap reveals the interaction
between materials and tools, highlighting specific combinations that produce disproportionately high
anomaly counts (e.g., Tool 9 with Material22). This supports targeted corrective actions rather than
general adjustments. Separate panels provide breakdowns of anomalies by sensor readings and by
motor-related variables. This distinction helps identify whether anomalies originate from mechanical
were captured by the sensors or from deviations in motor performance (e.g., abnormal current or
rotation values). The lower section of the dashboard presents KPIs for operational continuity: average
time between anomalies, average resume time after an anomaly, and total stoppage time. For the
available data, the monitored CNC stone-cutting machine experienced an average of 1.2 days between
anomalies, a 45.9-minute average resume time, and an accumulated downtime of 11.1 weeks, which are
useful insights for production planning and maintenance scheduling.

The SG1 dashboard is just one example of the method’s output. The same approach was applied to
SG2 and SG3, proving that the process is replicable, scalable, and adaptable to different industrial goals
while maintaining strong alignment between high-level strategy and operational data analytics.

Although the dashboards were not formally validated by the industrial stakeholder at this stage, they
demonstrate the feasibility of the method by producing coherent, goal-oriented visualizations aligned
with the defined analytical requirements. The process also confirmed that using the LLM accelerated
development: instead of designing dashboards from scratch, the DE build on structured proposals and
mockups generated by the LLM, which significantly reduced design effort and iteration time.

The proposed method offers several distinctive advantages. The main identified advantage is the
reduction of the number of steps in the methodology that serves as the basis for the proposed method
[6]. This demonstrates that LLMs can effectively automate parts of visualization creation - such as
requirements structuring and refinement, data selection and preparation, and visualization organization
- which is crucial for adopting a storytelling methodology in complex industrial contexts. The SG-DG-
IG-T chain ensures a direct link between strategic goals and the final visualizations (tasks, T), providing
transparency for stakeholders, facilitating validation, and guaranteeing alignment with organizational
priorities. Concretely, the method allowed the identification of potential data gaps at an early stage and
the definition of corresponding mitigation strategies, as well as the selection of visualization types that
remained aligned with the analytical requirements. This alignment reduced the risk of inconsistencies
between requirements, data, and dashboards, supporting a more reliable and efficient design process.

An important observation from the case study is that the interaction between the DE and the LLM
proved to be efficient. While the DE retained responsibility for validating and refining the outputs, the



majority of suggestions generated by the LLM required minor adjustments. This reduced the number of
manual interventions and corrections, showing that the LLM acted as a valuable accelerator rather than
an additional source of overhead.

6. Conclusion and Future Work

This paper introduces an LLM-assisted method for designing analytical dashboards that integrates
multivariate sensor data with a goal-based storytelling approach. By extending an established method-
ology with automation capabilities, the method uses LLMs to support the structuring of analytical
requirements, mapping of tasks to available data, and selection of visualizations aligned with user goals.

The results showed that, while human validation remains necessary, LLMs can anticipate a significant
portion of the design process, accelerating dashboard development and enhancing the traceability
between analytical requirements and final visualizations. In practice, the DE plays a critical role in
reviewing and validating the outputs at every stage, ensuring that proposed mappings, hierarchies, and
visualizations are both technically correct and contextually relevant. This validation step is particularly
important given the possibility of LLM hallucinations, where outputs may appear plausible but lack
factual accuracy or alignment with the available data. Acknowledging these limitations does not
diminish the contribution of the LLM; rather, it underscores the value of combining human expertise
with automation. When guided and verified by domain experts, the LLM becomes a powerful accelerator,
reducing repetitive work and enabling a more efficient and traceable design process.

Future work should expand the application and evaluation of the method in a wider variety of
industrial and non-industrial contexts, identifying strengths and limitations and assessing its practical
impact. It should also focus on quantifying improvements in decision-making performance, development
time, and user satisfaction, as well as exploring ways to refine the interaction between LLMs and human
designers to maximize the benefits of automation while preserving contextual accuracy and relevance.
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