
A Framework for LLM-Based Conceptual Modeling:
Application to BPMN Collaboration Diagrams
Aya Safan1, Julius Köpke1,*

1University of Klagenfurt, Department of Informatics Systems, Universitätsstraße 65-67, 9020 Klagenfurt am Wörthersee, Austria
https://www.aau.at/ en/ isys/ ics

Abstract
Generative AI has shown promising capabilities in translating textual descriptions into conceptual models,
opening new possibilities for supporting the modeling process. In the domain of Business Process Modeling,
several studies and prototypes have demonstrated the general applicability of Large Language Models (LLMs) for
generating process models from textual descriptions and user feedback. This paper presents a framework for
the conversational modeling of conceptual models. Our framework integrates correctness by design, generative
AI and symbolic AI in the form of classical model checking to assist the user in the modeling process. We
instantiate this framework in the domain of Business Process Modeling. This instantiation is the first approach
going beyond the control flow perspective, enabling the modeling of multi-party collaborations, including data
flow. In our evaluation, the tool demonstrated 100% syntactic correctness and notion compliance of the generated
models. A BPMN-XML baseline achieved this in less than 30% of the cases. In an additional expert user study, the
tool received strong user support; however, the usefulness of the model-checking functionality requires further
investigation.

Keywords
Large Language Models, LLMs, Process Modeling, BPMN, Model Checking

1. Introduction

Generative AI, particularly in the form of LLMs, has shown promising capabilities for translating
textual descriptions into conceptual models [1]. These capabilities allow new modeling techniques,
such as LLM-based conversational modeling. In this approach, a user first sends an initial description
to a modeling system, which then generates and displays a corresponding conceptual model. In an
interactive feedback loop, the user can provide feedback to correct potential issues and to extend or
refine the model. We argue that this approach has the potential to reduce entry barriers and advance
the productivity of the conceptual modeling process.

In the most generic form, if an LLM-based modeling system could correctly interpret metamodeling
languages such as MOF [2], it would be possible to use LLMs to generate arbitrary conceptual models
from user input. However, as demonstrated in [3], current LLMs are not yet capable of performing this
task reliably. While such a generic approach remains infeasible, several successful applications have
emerged for specific output languages, such as ontologies [4] and Business Process Models [5, 6, 7, 8, 9].
Nevertheless, existing LLM-based conversational business process modeling prototypes are limited
in scope. They typically focus on intra-organizational processes and address only the control flow
perspective. Moreover, the generated models often depend on specially designed output formats that
align with the current capabilities of LLMs.

While LLMs demonstrate notable strengths in processing natural language inputs, they are prone
to producing modeling errors. Therefore, combining generative AI with symbolic AI represents a
promising approach for developing real-world systems [10]. Models generated by LLMs often exhibit
two main types of deficits: they may misrepresent the user’s intended semantics, and they may include

ER2025: Companion Proceedings of the 44th International Conference on Conceptual Modeling: Industrial Track, ER Forum, 8th
SCME, Doctoral Consortium, Tutorials, Project Exhibitions, Posters and Demos, October 20-23, 2025, Poitiers, France
*Corresponding author.
$ aya.safan@aau.at (A. Safan); julius.koepke@aau.at (J. Köpke)
� 0000-0002-6678-5731 (J. Köpke)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-17

https://www.aau.at/en/isys/ics
mailto:aya.safan@aau.at
mailto:julius.koepke@aau.at
https://orcid.org/0000-0002-6678-5731
https://creativecommons.org/licenses/by/4.0/deed.en


domain-independent modeling errors. While only the user can judge whether the model accurately
reflects their intention, a system should guide the user in avoiding domain-independent errors. Examples
for such errors include unsatisfiable classes in ontology modeling or violations of safeness and soundness
properties in behavioral models [11]. To address these challenges, our framework combines LLM-based
conversational modeling with model checking, enabling modelers to focus on correctly representing
their intended semantics.

In this paper, we provide the following contributions: We introduce a generic framework for LLM-
based conversational conceptual modeling in Section 2. We instantiate this framework for BPMN
Collaboration Diagrams in Section 3 and present an implementation as a modeling tool in Section 4. In
Section 5, we first evaluate the syntactic correctness and notation compliance of the initially generated
models. In a second experiment, we assess the user acceptance of the tool in an expert user study.
Related work is presented in Section 6 and Section 7 concludes the paper.

2. Framework for conversational conceptual modeling

2.1. Usage scenario and requirements

In our target scenario, a user provides a textual description to initiate process modeling. This system
leverages an LLM to generate a visual model, which can be reviewed, corrected, and refined through
conversational interaction. The usage scenario imposes strict requirements:

• R1: Syntactic correctness and notation compliance: The generated models must be syntacti-
cally correct and conform to the standard specification of the target notation, ensuring they can
be rendered directly and provide a useful starting point for the conversation.

• R2: Incremental model refinement through feedback: The models returned in the feedback
loop should incorporate the user feedback adequately to incrementally improve model quality.

• R3: Deterministic rendering: The positioning of model elements should be deterministic to
reduce layout changes in the feedback loop.

• R4: Usage of standards: Standard modeling languages and serialization formats should be
supported to allow reuse and interoperability with other tools for downstream tasks.

• R5: Library of model checkers: The application should allow the integration of model checkers
for various purposes.

2.2. Framework

LLM

(1) Enter initial textual
description (d)

(5.1) (5.2.4.2) User
Feedback

(4)(8) View Graphical
Model (m)

(5.2.1) Call Model
Checkers

(5.2.4) View
Checker Response

(5.2.4.1) Forward Checker
Explanation for LLM

(3) Initial Model (m’)

(7) Updated Model (m’)

(6) Feedback Prompt (P’)

(2) Initial Prompt (P)

Prompt
Generator

Model
Transformation

m' → m

Conversational
Modeling System

 

 Model Checking Component 
 

Explanation for User gen.

Explanation for LLM gen.

(5.2.2) Model (m)

(5.2.3) Checker
Response

Figure 1: LLM-based conversational modeling framework with user interactions

Based on the previously identified requirements and recent studies on conversational LLM-based
process modeling [5, 6, 9], we now define a generic framework for LLM-based conversational modeling,



as illustrated in Figure 1. We present the framework in the context of the usage scenario: A user
sends an initial textual description 𝑑 to the system to obtain a model instance of a metamodel 𝑀 .
The system then generates a prompt 𝑃 = (𝐼𝐶 , 𝐼𝐹𝑀′ ,, 𝑑), where 𝐼𝐶 is a context-setting instruction
prompt, and 𝐼𝐹𝑀′ instructs the LLM to produce an output as an instance of 𝑀 ′ in the serialization
format 𝐹𝑀 ′ . The metamodel 𝑀 ′ must permit an equivalent or subset of the instantiations of 𝑀 . In the
next step, the system transforms the model produced by the LLM to an instance of 𝑀 , which includes
the deterministic positioning of model elements. The generated model is displayed to the user using
standard visualization components.

The user can then either send their feedback or invite model checkers to join the conversation. These
are provided by a library of model checking components, each capable of accepting models in 𝐹𝑀 or
𝐹𝑀 ′ as input. A model checking component consists of a model checker and a module for generating
explanations for detected issues. For each identified issue, the component returns a set of tuples of the
form (𝑡, 𝐸), where 𝑡 denotes the issue type (error, warning), and 𝐸 is a set of tuples (𝑀𝐸,𝑚𝑢,𝑚𝑙).
Here, 𝑀𝐸 contains a set of responsible model elements, 𝑚𝑢 is an explanation for the user, and 𝑚𝑙 is a
more elaborate explanation for the LLM that may include technical details and suggested solutions.
This structure allows for providing multiple explanations for a given issue. The system then presents
the message type 𝑡 and the messages 𝑚𝑢 in the chat and allows the system to highlight the elements in
𝑀𝐸 within the model.

The user can then write a custom feedback or forward 𝑚𝑙 to the LLM. We refer to the latter option as
an auto-fix. Once the user sends a response, a feedback prompt 𝑃 ′ = (𝐼 ′, 𝐼𝐹𝑀′ , 𝑐, 𝑆) is sent to the LLM.
𝐼 ′ is an instruction for adopting the given model, 𝑆 is the context, including the previously generated
model as an instance of 𝐹𝑀 ′ , and 𝑐 is a user or auto-fix feedback. Once the user is satisfied with the
generated model, it can be exported in a standard serialization format.

This framework addresses the requirements as follows: 𝑀 ′ and its serialization 𝐹𝑀 ′ are specifically
tailored to obtain syntactically correct output models (R1). To support R2, user feedback is used to
iteratively refine the model across multiple interactions, enabling incremental improvement in model
quality. The rendering of the graphical diagrams is realized via a deterministic algorithm and not by
the LLM (R3). R4 and R5 are covered by using standard output formats and a standardized interface for
model checking components.

3. Instantiation for BPMN collaboration diagrams

We now instantiate the proposed framework for the conversational modeling of BPMN Collaboration
Diagrams. These diagrams capture the internal control and data flow in each pool, as well as commu-
nications between pools via message flows. We choose BPMN collaboration diagrams because they
introduce an additional layer of complexity compared to models that focus only on the control flow
perspective. This makes them a more realistic and demanding use case for evaluating our approach.
Accordingly, the metamodel 𝑀 in our framework corresponds to the BPMN 2.0 Collaboration spec-
ification [12]. The serialization format used for both rendering components and model checkers is
BPMN-XML, enabling the reuse of existing tools for visualization (e.g., Camunda Modeler) and model
checkers. In the following, we describe how 𝑀 ′ and 𝐹 ′

𝑀 are instantiated, and discuss the role of model
checking in this setting.

3.1. Intermediate process metamodel M’

While the proposed framework generally allows the same metamodel for both 𝑀 and 𝑀 ′, related work
[8, 5] suggests that constraining LLM output to block-structured processes [13] significantly improves
the syntactic and semantic correctness of the generated models. The restriction to block-structured
processes results in a slight reduction of expressivity. However, it also avoids substantial problems
arising from unstructured process models with data [14]. Additionally, block-structured processes offer
correctness by design for the control-flow perspective, ensuring that process instances are safe and
sound [15]. Overall, we argue that block-structured processes provide an excellent balance between



Class Diagram1

Collaboration

-label

Pool

-label

Lane

Message CatchMessage ThrowTimer

-id

Message

-label

Task

-id
-label

Data Element

Data Object Data Store

FlowNode

Event
Gateway

-condition

XOR PAR

-condition

Loop

Sequence

-position

hasMember

range of hastStartEvent: Only Message Catch, Timer or Default
range of hasEndEvent: Only Default

Default

Event-Based

-event : Event

hasBranch

-condition

xorBranch

0..1

1

0..1

1

1..*

2..*

0..1

0..* 0..*

0..1

1

reads

0..*

0..*

1

0..*

0..1

1

0.*

0..*

1

0..1

* 1

0..1

2..*

0..*
0..*

0..1

2..*

0.1

1

1..*

1 1

readFrom

writeTo

hasBranch

hasMember

hasProcess

hasEndEvent

hasStartEvent

xorBranch

hasBranch

hasBody

writes

assgined to

receives

sends

Visual Paradigm Standard(julius(AA-University of Klagenfurt))

Figure 2: Metamodel of the intermediate process model M’

expressivity and correctness. Accordingly, we base our metamodel on block-structured process models.
We extend the metamodel of our previous work in [5], which supports only control flow aspects of
intra-organizational processes, including XOR, PAR, and LOOP blocks. Our extended metamodel is
shown in Figure 2. To support BPMN Collaborations, we introduce multiple pools, each containing a
block-structured process, with each flow node assigned to exactly one lane. Communication between
pools is realized with messages; Message flows are modeled by referencing the identifier of the catch
event from the corresponding throw event. To support passive decisions, event-based gateways are
included in the model. Data handling is represented via data objects and data stores, with data flows
expressed through read and write associations connected to tasks or events. Specifically, tasks can read
from and write to data elements; throw events can read data for sending it to other pools, while catch
events can write to local data elements. Additionally, timer events are supported.

3.1.1. Intermediate serialization format 𝐹𝑀 ′

Current LLMs, such as GPT-4.1, are optimized for agent-based interactions. A key enabler is the
support for tool calling [16], where available tools and their formal input and output parameters are sent
alongside the prompt. Such LLMs can reliably generate output that conforms to a specified JSON Schema.
Accordingly, we defined a serialization format 𝐹𝑀 ′ of 𝑀 ′ in the form of an annotated JSON Schema.
The metamodel is nested with sequences on every level. This allows a simplified JSON representation
for LLMs, where sequences are represented as arrays. The JSON Schema can be found in our evaluation
repository (see Sect. 5).

3.2. Model checking components

Following the metamodel 𝑀 ′, the control flow within a single pool is safe and sound by design [11].
Safeness ensures that each place in the Petri-net representation holds at most one token, preventing



token multiplication due to improper synchronization. Soundness requires that the process can always
reach its end state without any dead transitions. Block-structured process models inherently guarantee
both properties. When extended to collaborations where each process is block-structured, as required by
our metamodel, safeness remains guaranteed by design [17]. However, this does not hold for soundness.
To address this, we include a checker that verifies safeness and soundness of multi-pool collaborations.
Data flow also introduces potential issues [18, 19], such as missing data, redundancies, or inconsistencies
due to race conditions. To detect such anomalies, we include a data flow checker in our instantiation.

4. Implementation

We have implemented our instantiation of the framework as a web-based tool1 based on the React
framework. The following subsections describe the implementation of its core components.

4.1. Prompt generation

This component is responsible for translating user input into LLM API calls. While our earlier approach
in [5] successfully employed zero-shot prompting for control flow modeling, this strategy proved
insufficient for modeling BPMN collaborations. We have therefore opted for few-shot prompting, which
has been successfully used for generating complex syntactic structures [21] and consistent models [22].
The context-setting instruction prompt contains a brief role description and explains the correct usage
of selected modeling elements such as data objects, data stores, event-based gateways, and events, and
provides examples in the JSON format. These examples are deliberately minimal and designed not to
model full processes but to demonstrate the correct usage of specific BPMN elements as defined by
our output format. The prompt is shown in Listing 1. During the feedback loop, this prompt may be
overridden by a prompt provided by a model checking component. Each prompt is accompanied by an
annotated JSON Schema that defines the reply format (see Subsection 3.1.1).

You are a business process modeling expert. Use the provided textual description of a business process to generate or edit JSON process
models.

Pools represent separate organizations. Lanes are departments or participants within a pool. Use send and receive message events to
communicate between pools only and not lanes.
Example: Customer sends a request to a company.
Model: ...

Use send and receive message events as one-to-one. Use exclusive gateways to choose one path based on a condition. Use event-based
gateways to choose a path based on incoming events.
Example: Company prepares and sends an offer to Customer, who decides to accept or reject it. If no response is received within 10 days,
the Company initiates a follow-up.
Model: ...

Use data objects, not message events, to communicate between lanes of the same pool.
Example: The sales department sends a report to finance.
Model: ...

Use data files for digital or physical files and data stores for persistent data stores and database systems.
Example: The retailer receives an order and checks the inventory database.
Model: ...

Listing 1: Few-shot instructions prompt.

4.2. Model transformation

This component consists of an implemented algorithm that transforms the intermediate process model
into a BPMN-XML representation for rendering, exporting, and model checking. It also deterministically
1https://isys.uni-klu.ac.at/pubserv/BPMN-Chatbot/v2/
The modeling tool was presented at the BPM 2025 demo session [20]. However, [20] provides only a high-level overview of
the tool’s modeling features and does not include architectural details, the general framework, prompts, meta-model, or
evaluation.

https://isys.uni-klu.ac.at/pubserv/BPMN-Chatbot/v2/


assigns graphical coordinates to model elements, satisfying R3.
We focus here on coordinate generation. Each pool is processed independently, exploiting the block-

structured form of the control flow in each pool. Relative coordinates for each flow node are established
first, starting from fixed initial positions and recursively advancing x and y values. In a final pass,
each node’s vertical position is offset by the absolute y starting position of its respective lane. Finally,
sequence and message flows are positioned based on the coordinates of their connected elements.

To support data objects, data associations are included in the model. However, in the current
implementation their corresponding visual BPMN edges are intentionally omitted to avoid visual clutter
and overlapping lines. Instead, annotations summarize which data objects are read or written. All data
objects are rendered at the end of the pool for a clean and consistent presentation. Figure 3 shows an
example process rendered by the tool.

4.3. Model checking components

Following our framework, model checkers are encapsulated as model checking components, each
comprising a checker and an explanation generator. To support an extensible library of such components,
they are implemented as independent REST services. Service discovery is managed through a central
registry: components register themselves with metadata on startup and deregister on shutdown. The
modeling system queries the registry to retrieve available components and enables users to configure
which ones to use. This architecture fulfills R5 and allows for future extensions of additional checkers.

The current implementation includes two model checking components: one for assessing the safeness
and soundness of BPMN Collaborations, based on the S³ checker [23], and another for validating data
flow, leveraging the viadee Process Application Validator (vPAV) [24]. Each component is implemented
as a Spring Boot application that invokes the underlying model checker. For each detected error, the
checker returns a context-setting instruction prompt that defines the LLM’s role as an expert on the
specific error type and includes relevant definitions, along with multiple diagnostic explanations. Each
diagnostic explanation references the relevant model elements and provides two separate descriptions:
one tailored for the user and another for the LLM. When the user opts for an “auto-fix,” the instruction
prompt and the LLM-specific description from the diagnostic explanation are sent to the LLM, forming
the feedback prompt 𝑃 ′ (see Sect. 2.2).

Diagnostic explanations are generated by one of two modules. The generic explanation module
generates predefined descriptions based on static explanatory texts associated with each error type,
including potential fixes. This approach relies entirely on the LLM’s reasoning capabilities to resolve the
issue based on the given input. In contrast, the pattern-based explanation module offers more targeted
instructions by recognizing specific (anti-)patterns linked to known issues. For instance, an unsafe
process may be further explained if a message is conditionally sent in one pool but unconditionally
received in another active pool. In such cases, the error message includes possible fixes based on the
identified pattern.

4.3.1. User interaction

When a user invites model checkers to the chat, they are called in parallel. All identified errors and
warnings are presented as chat messages from the respective checking components. If model elements
related to the issues are provided, users can highlight them directly in the graphical model. Finally, the
user can either write their own feedback or use the auto-fix functionality. Figure 3 shows an example of
such an interaction from the tool.

5. Evaluation

We evaluate our framework’s instantiation against the requirements outlined in Subsection 2.1. Specifi-
cally, we assess the syntactic correctness and notation compliance of the generated models (R1). A key
aspect of our framework is the separation between the intermediate representation used by the LLM



Figure 3: Tool interface with the warning from the checker highlighted.

and the final output format. To validate this design decision, we compare the syntactic correctness and
notation compliance of our generated models to that of a direct BPMN-XML generation baseline. This
approach is further justified by the lack of existing baselines supporting multiple pools and data flow.

Another key assumption in our framework is that interactive modeling with a feedback loop improves
the modeling process and generated model quality (R2). We therefore conduct an expert user study to
assess the general usefulness of the tool, and the usefulness of the model checkers and auto-fix feature
in particular. To the best of our knowledge, with the exception of our work in [5], prior approaches
supporting feedback loops [6, 9] have not been evaluated in this regard. All generated models, prompts,
the JSON-Schema for LLM responses, and user study results are available in our repository2.

5.1. Dataset

We compiled a dataset by collecting publicly available process descriptions from [25, 26, 27, 28, 29, 30],
resulting in 59 descriptions in total. We excluded descriptions from the PET Dataset [31], as it was
used during our initial prompt tuning and early-stage testing, and due to its widespread use, it imposes
the risk of data leakage. Additionally, we filtered process descriptions that required BPMN elements
not currently supported by our schema, such as boundary events. Descriptions exceeding 500 words,
or roughly one page, were excluded as their length would impose an unreasonable burden on expert
reviewers. After applying these criteria, 49 descriptions remained.

Since neither LLMs nor experts produce deterministic outputs, we generated three models for each
description, and each such model was evaluated by 2 experts. Including the baseline, this leads to
𝑛*2*2*3 evaluations. We therefore restrict 𝑛 to 6, and we evaluate with one LLM, leading to 72 model
evaluations. To ensure diversity, we clustered the descriptions into three groups based on complexity
2https://anonymous.4open.science/r/ER2025-5134/

https://anonymous.4open.science/r/ER2025-5134/


and modeling requirements. This clustering considered metrics such as the words and sentences count,
the estimated number of BPMN elements needed (e.g., pools, lanes, data objects, exclusive, parallel,
loop blocks), and the nesting depth. Two descriptions were then randomly selected from each cluster,
as listed in Table 1.

Case Example #W #S #P #L #D #Dec #Par #Loop Depth Cluster
1 0 [28] 66 4 2 2 2 1 1 0 2 0
2 4 [29] 50 2 1 2 1 1 0 0 1 0
3 V_k09.txt [30] 161 9 1 2 5 2 1 1 3 1
4 4 [28] 176 8 2 2 4 1 0 0 1 1
5 R_j04.txt [30] 124 10 3 3 8 2 1 1 2 2
6 11 [26] 312 21 3 5 4 2 1 0 2 2

Table 1: Selected process descriptions and their features. Abbreviations: W = words, S = sentences, P
= pools, L = lanes, D = data objects, Dec = decisions, Par = parallel constructs, Loop = loops,
Depth = nesting depth.

5.2. Initial model generation

To establish a baseline, we use a prompt designed to instruct the LLM to produce BPMN-XML directly.
This prompt was adapted from our original instruction prompt. It includes the same available modeling
elements, usage explanations, and examples. We further instructed the LLM to exclude the BPMN
diagram visualization from the output, as it falls outside the evaluation scope and is generated separately.

We generated models for both our tool and the baseline for each of the 6 textual process descriptions.
Each description was processed in three separate runs on different days to avoid prompt caching3. The
experiments were executed between April 23 and April 25 using OpenAI GPT-4.1 with a temperature
of 0.2, chosen to reduce randomness and ensure more consistent and reproducible outputs. The same
settings were also used for the second experiment. This has led to 18 models produced by our tool and
18 models produced by the BPMN-XML baseline.

5.3. Experiment 1: Syntactic Correctness and Notation Compliance

This experiment evaluates the syntactic correctness and compliance of initial process models generated
by our approach, compared to the baseline. We first assessed syntactic correctness, ensuring all models
are well-formed XML and fully conform to the BPMN 2.0 XML Schema, with no duplicate or invalid
tags or attributes. We then manually assessed correct use of the modeling language, verifying that each
model adheres to the structural and behavioral constraints defined by the BPMN 2.0 specification [12].

The evaluation results are summarized in Table 2. Our approach achieved 100% syntactic correctness
and correct use of the modeling language, compared to only 22%, respectively 28% for the baseline.
Common baseline issues included start events without outgoing sequence flows, end events without
incoming flows, use of message flows within a single pool, message flows connected to generic start
events, and data objects incorrectly used as targets of sequence flows. The results indicate that LLMs
struggle to maintain BPMN’s strict syntactic and semantic rules when generating XML directly. This
highlights the benefits of using an intermediate output format and metamodel as proposed in our
framework. Unlike direct XML, our approach clearly meets requirement R1 for conversational modeling.

Metric Our Approach Baseline

Syntactic Correctness 100% (18 of 18) 22% (4 of 18)

Correct Use of Modeling Language 100% (18 of 18) 28% (5 of 18)

Table 2: Results for initially generated models
3https://platform.openai.com/docs/guides/prompt-caching

https://platform.openai.com/docs/guides/prompt-caching


5.4. Experiment 2: Expert user study

We base our experiments on an expert user study with eighteen experts in process modeling. In this
experiment, we evaluate the tool based on a technology acceptance test [32], focusing on perceived
usefulness, ease of use, and intention to use. We also assess whether the integration of model checkers,
including the auto-fix feature, is a useful feature for modelers and whether the tool provides valuable
responses to feedback. This is measured by survey questions using a 7-point Likert scale and by an
examination of the gain in perceived model quality after the usage of the tool.

Therefore, each expert first reviewed two models generated by our tool and assessed the perceived
semantic quality (PSQ) [33] based on the refined framework for process models [34]. We slightly adapted
the questions to our setting; The term "conceptual model" was replaced by "generated model". The
indicators used in this evaluation, along with their definitions and associated statements, are presented
in Table 3. We excluded the perceived authenticity measure, as it reflects the quality of the textual
description rather than that of the model.

After the initial assessment, each expert used the tool to continue working on one of the previously
assessed models, with explicit instructions to also use the auto-fix feature. After completing the modeling
task, they again rated the perceived quality of their resulting model on the same 7-point Likert scale
and answered questions about the usefulness of the model checkers, the auto-fix feature, and the tool’s
responses to feedback, as well as the degree of frustration during the experiment. Finally, the experts
completed the technology acceptance questions.

Indicator Definition Statement
Correctness All statements in the representation are correct. "The generated model represents the

business process correctly."
Relevance All statements in the representation are relevant

to the problem.
"All the elements in the generated
model are relevant for the representa-
tion of the business process."

Completeness The representation contains all statements about
the domain that are correct and relevant.

"The generated model gives a complete
representation of the business process."

Table 3: PSQ indicators, definitions, and statements (adapted from [34])

Demographics: Out of the initial 18 candidates, 17 successfully finished the modeling tasks. Six
participants were professors, 10 were post-docs, and 2 participants were PhD candidates. Participants
included 13 males and five females from 11 universities; all had a strong background in process modeling,
either as part of the BPM community or by teaching BPMN-related courses.

5.4.1. Results

Technology Acceptance Regarding the acceptance of the tool, the experts gave a median rating of
6 for overall perceived usefulness, and 5 for intention to use, ease of use, and perceived productivity.
Details on the distribution are shown in Figure 4. For ease of use, 15 out of 17 participants rated the
tool 5 or higher, and 12 perceived an increase in productivity. Overall usefulness received particularly
positive feedback, with 13 responses assigning ratings of 6 or 7. Although the intention to use showed
a broader distribution, 12 participants still rated it 5 or above, indicating a generally positive inclination
toward future adoption.

Indirect Evaluation of the Feedback Loop The expert ratings of the initial models produced
median scores of 5 for correctness, 6 for relevance, and 6 for completeness. We compare the quality
assessments provided by the experts for the initial models with those made after they finished the
modeling task using the tool. The analysis is based on the normalized change score, which standardizes
relative improvement by considering both the initial evaluation scores and the maximum possible gain.



Figure 4: Distribution of Participant Ratings on Technology Acceptance

On average, we observed consistent improvements across all quality dimensions: correctness increased
by 36%, relevance by 39%, and completeness by 28%. These results suggest that expert involvement,
aided by the tool, generally led to enhanced model quality, thereby fulfilling requirement R2.

Usefulness of model checkers and Auto-Fix Experts rated the usefulness of the model checkers at
a neutral median (4), while the auto-fix feature received a lower median score of 3. The tool feedback
resulted in a median of 4, whereas frustration levels were notably low, with a median of 2. Since the
experts were asked to assess the technology acceptance questions based on their experiences when
using the tool, the high technology acceptance scores and low frustration suggest a generally positive
user experience. However, the relatively lower rating for the auto-fix feature may have contributed to
the low direct assessment of the feedback of the tool. One possible explanation is that experts were
explicitly informed before using the tool that they would be asked about the model checkers and auto-fix
functionality. This may have led to an overemphasis on these features. Moreover, some experts tried to
achieve impossible modeling goals, such as changing the process model to a non-block-structured one,
changing the representation of data associations, collapsing pools, or asking for textual responses. All
those features are not currently supported by the tool.

Overall, the high ratings for technology acceptance, low frustration levels, and the observed gains in
model quality support the usefulness of the system’s responses. However, there is no clear indication of
the usefulness of model checkers and the auto-fix feature. Further investigation into the success rates of
auto-fixes is needed, and potentially, a more sophisticated diagnosis and repair generation is required.
The underlying hypothesis of our implementation, that the LLM can repair a model based on a diagnosis
and a definition, only partially held in our experiments. Nevertheless, this limitation is specific to our
current implementation and not the framework in general, and requires further investigation.

Threats to validity The expert user study approach imposes limitations on the feasible sample
size, as volunteering experts are typically unwilling to evaluate a large number of models. Also, the
non-deterministic nature of LLM outputs necessitates evaluating multiple solutions per process. Our
restriction to 18 modeling experts and 6 process models limits the generalizability of our findings to
other processes and user groups.



Furthermore, relying on textual descriptions as a proxy for the modeler’s domain knowledge intro-
duces limitations, particularly in light of the SEQUAL framework’s emphasis on interpretation and
knowledge alignment [35, 36]. Additionally, in interactive modeling scenarios, the understanding of
the domain may evolve during the modeling process. This highlights the need for further studies on
this dynamic setting. In particular, it would be valuable to investigate how the implicit knowledge
embedded in the LLM can support users during modeling.

6. Related Works

LLMs are increasingly being explored for their potential to support conceptual modeling in information
systems development [37]. Beyond their well-known capabilities in text and code generation, recent
studies show that LLMs can assist in creating conceptual models from natural language input. They
have been used to extract domain entities and relationships [38], facilitate ontology extraction [39], and
generate suggestions for designing classes, attributes, and associations [40]. Additionally, LLMs have
shown promise in extracting process elements, such as activities, actors, and relations, from textual
descriptions [22]. Overall, LLMs are emerging as valuable assistants for conceptual modeling.

Even before the rise of LLMs, classical NLP techniques were applied to derive process models from
textual descriptions. For example, [29] used traditional NLP methods to extract fact types from text and
map them into spreadsheet-based BPMN representations, including data flow. Recent efforts shift toward
leveraging LLMs. For example, [41] evaluates open-source LLMs for generating BPMN-XML from
process descriptions, finding that smaller language models frequently fail to produce valid BPMN-XML,
even when templates are provided, limiting practical applicability. To address quality and syntactic
limitations, several approaches are based on intermediate representations to improve model quality. [8]
proposes a fine-tuned GPT model that generates regex-like expressions representing simple control
flow, which are parsed into abstract syntax trees and translated into BPMN. Similarly, [7] extracts
activities and their associated dependencies and conditions as structured JSON from text to automate
BPMN generation, including lane assignment.

Other works present actual tools that incorporate iterative refinement. For instance, ProMoAI [6]
uses LLMs with extensive prompts to produce Python code representing partially ordered workflow nets
(POWL), which are rendered as BPMN or PNML. Nala2BPMN [9] leverages the LangChain framework
to use LLMs for key entities, dependency and branching relations extraction to construct BPMN models.
Our previous tool [5] converts user input into BPMN models via an intermediate JSON format.

All these previous LLM-based approaches focus on generating the control flow perspective. In this
paper, we have presented in detail the first approach for conversational process modeling, going beyond
these limitations, supporting multi-pool BPMN collaboration diagrams. Surprisingly, to the best of our
knowledge, with the exception of our own previous work, all other works supporting a feedback loop
have only provided evaluations of initial models.

7. Conclusion and future works

In this paper, we introduced a generic framework for LLM-based conversational conceptual modeling.
It allows for distinguishing between the metamodel and serialization format used for the LLM and those
used for user interactions and other components. This distinction allows tuning for the capabilities of
the used LLM. Furthermore, it integrates classical model checkers into the conversational modeling
process, allowing them to take part in the chat and report on errors. Importantly, the representation of
these errors provided to the user and to the LLM can differ, enabling tailored responses optimized for
LLM usage.

We have instantiated this framework for the generation of BPMN collaboration diagrams. The
developed tool is the first LLM-based approach in the domain of process modeling that goes beyond
the control flow by supporting data objects, data flows, and multiple pools. The evaluations of the
initial models clearly demonstrate the benefit of using a custom metamodel and serialization format.



Our implementation produces process models that fully adhere to the correct syntax and language
usage. The XML baseline achieved this in only 22% and 28% of the cases. An overall assessment of
the acceptance of the tool indicates that the tool not only meets the requirements for conversational
modeling but also achieves strong user support. This tool can be utilized in various scenarios, as a
stand-alone system, be combined with traditional modeling systems for manual refinements, or receive
its input from an upstream LLM-based pipeline.

However, the implemented model checking components did not achieve comparable user support.
Future works, therefore, include a detailed investigation of the auto-fix capabilities. It is of particular
interest how classical model repair methods [42] can be combined with LLMs. Nevertheless, this current
limitation of the tool does not apply to the framework in general. To assess scalability in complex,
real-world scenarios, we also plan an evaluation with industry users. Additionally, we aim to instantiate
the framework for other modeling languages, such as UML class diagrams with OCL constraints and
ontologies. Other future works include combining the framework with LLM agents [43].

Declaration on Generative AI

During the preparation of this work, the authors used Grammarly to check grammar and spelling,
paraphrase, and reword. After using this tool/service, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s content.

References

[1] H.-G. Fill, P. Fettke, J. Köpke, Conceptual Modeling and Large Language Models: Impressions
From First Experiments With ChatGPT, Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model. 18
(2023) 3. doi:10.18417/EMISA.18.3.

[2] Object Management Group, Meta Object Facility (MOF) Specification, ISO/IEC 19502:2005, https:
//www.omg.org/spec/MOF/ISO/19502/PDF, 2005. Accessed: 2025-05-23.

[3] F. Muff, H.-G. Fill, Limitations of chatgpt in conceptual modeling: Insights from experiments
in metamodeling, in: Modellierung 2024 Satellite Events, Gesellschaft für Informatik e.V., 2024.
doi:10.18420/modellierung2024-ws-008.

[4] M. P. Joachimiak, M. A. Miller, J. H. Caufield, R. Ly, N. L. Harris, A. Tritt, C. J. Mungall,
K. E. Bouchard, The artificial intelligence ontology: Llm-assisted construction of ai con-
cept hierarchies, Applied Ontology 19 (2024) 408–418. doi:10.1177/15705838241304103.
arXiv:https://doi.org/10.1177/15705838241304103.

[5] J. Köpke, A. Safan, Efficient llm-based conversational process modeling, in: K. Gdowska, M. T.
Gómez-López, J. Rehse (Eds.), Business Process Management Workshops - BPM 2024 Interna-
tional Workshops, Krakow, Poland, September 1-6, 2024, Revised Selected Papers, volume 534
of Lecture Notes in Business Information Processing, Springer, 2024, pp. 259–270. doi:10.1007/
978-3-031-78666-2_20.

[6] H. Kourani, A. Berti, D. Schuster, W. M. P. van der Aalst, Process modeling with large language
models, in: Enterprise, Business-Process and Information Systems Modeling, Springer Nature
Switzerland, Cham, 2024, pp. 229–244.

[7] F. Ajmal, P. Wijekoon, H. Dhanamina, Y. Ravishan, D. Nawinna, B. Attanayaka, Automated bpmn
diagram generation, in: 2024 6th International Conference on Advancements in Computing (ICAC),
2024, pp. 7–12. doi:10.1109/ICAC64487.2024.10851120.

[8] Q. Nivon, G. Salaün, Automated generation of bpmn processes from textual requirements, in:
W. Gaaloul, M. Sheng, Q. Yu, S. Yangui (Eds.), Service-Oriented Computing, Springer Nature
Singapore, Singapore, 2025, pp. 185–201.

[9] A. Nour Eldin, N. Assy, O. Anesini, B. Dalmas, W. Gaaloul, Nala2bpmn: Automating bpmn model
generation with large language models, in: Cooperative Information Systems: 30th International

http://dx.doi.org/10.18417/EMISA.18.3
https://www.omg.org/spec/MOF/ISO/19502/PDF
https://www.omg.org/spec/MOF/ISO/19502/PDF
http://dx.doi.org/10.18420/modellierung2024-ws-008
http://dx.doi.org/10.1177/15705838241304103
http://arxiv.org/abs/https://doi.org/10.1177/15705838241304103
http://dx.doi.org/10.1007/978-3-031-78666-2_20
http://dx.doi.org/10.1007/978-3-031-78666-2_20
http://dx.doi.org/10.1109/ICAC64487.2024.10851120


Conference, CoopIS 2024, Porto, Portugal, November 19–21, 2024, Proceedings, Springer-Verlag,
Berlin, Heidelberg, 2025, pp. 398–404. URL: https://doi.org/10.1007/978-3-031-81375-7_27.

[10] R. Buchmann, J. Eder, H. Fill, U. Frank, D. Karagiannis, E. Laurenzi, J. Mylopoulos, D. Plexousakis,
M. Y. Santos, Large language models: Expectations for semantics-driven systems engineering,
Data Knowl. Eng. 152 (2024) 102324. doi:10.1016/J.DATAK.2024.102324.

[11] W. M. P. van der Aalst, Workflow Verification: Finding Control-Flow Errors Using Petri-Net-Based
Techniques, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 161–183.

[12] Object Management Group, Business process model and notation (bpmn) version 2.0, https:
//www.omg.org/spec/BPMN/2.0/, 2011. OMG Document Number: formal/2011-01-03.

[13] O. Kopp, D. Martin, D. Wutke, F. Leymann, The difference between graph-based and block-
structured business process modelling languages, Enterp. Model. Inf. Syst. Archit. Int. J. Concept.
Model. 4 (2009) 3–13. doi:10.18417/EMISA.4.1.1.

[14] C. Combi, M. Gambini, Flaws in the flow: The weakness of unstructured business process modeling
languages dealing with data, in: OTM Confederated International Conferences" On the Move to
Meaningful Internet Systems", Springer, 2009, pp. 42–59.

[15] W. M. P. van der Aalst, Structural characterizations of sound workflow nets, Technical Report
9623, Technische Universiteit Eindhoven, 1996.

[16] Z. Shen, Llm with tools: A survey, 2024. URL: https://arxiv.org/abs/2409.18807.
arXiv:2409.18807.

[17] F. Corradini, A. Morichetta, C. Muzi, B. Re, F. Tiezzi, Well-structuredness, safeness and sound-
ness: A formal classification of bpmn collaborations, Journal of Logical and Algebraic Meth-
ods in Programming 119 (2021) 100630. URL: https://www.sciencedirect.com/science/article/pii/
S2352220820301152. doi:https://doi.org/10.1016/j.jlamp.2020.100630.

[18] S. Sadiq, M. Orlowska, W. Sadiq, C. Foulger, Data flow and validation in workflow modelling, in:
Proceedings of the 15th Australasian database conference-Volume 27, 2004, pp. 207–214.

[19] S. Von Stackelberg, S. Putze, J. Mülle, K. Böhm, Detecting data-flow errors in bpmn 2.0, Open
Journal of Information Systems (OJIS) 1 (2014) 1–19.

[20] A. Safan, J. Köpke, BPMN-Chatbot++: LLM-Based Modeling of Collaboration Diagrams with Data,
in: Proceedings of the BPM 2025 Demos & Resources Forum, 2025. To appear.

[21] M. B. Chaaben, L. Burgueño, H. Sahraoui, Towards using few-shot prompt learning for au-
tomating model completion, in: Proceedings of the 45th International Conference on Soft-
ware Engineering: New Ideas and Emerging Results, ICSE-NIER ’23, IEEE Press, 2023, p. 7–12.
doi:10.1109/ICSE-NIER58687.2023.00008.

[22] J. Neuberger, L. Ackermann, H. van der Aa, S. Jablonski, A universal prompting strategy for
extracting process model information from natural language text using large language models, in:
W. Maass, H. Han, H. Yasar, N. J. Multari (Eds.), Conceptual Modeling - 43rd International Confer-
ence, ER 2024, Pittsburgh, PA, USA, October 28-31, 2024, Proceedings, volume 15238 of Lecture
Notes in Computer Science, Springer, 2024, pp. 38–55. doi:10.1007/978-3-031-75872-0_3.

[23] F. Corradini, A. Morichetta, A. Polini, B. Re, L. Rossi, F. Tiezzi, Correctness checking for bpmn
collaborations with sub-processes, Journal of Systems and Software 166 (2020) 110594. URL:
https://www.sciencedirect.com/science/article/pii/S0164121220300716. doi:https://doi.org/
10.1016/j.jss.2020.110594.

[24] K. Schneid, S. D. Bernardo, H. Kuchen, S. Thöne, Data-Flow Analysis of BPMN-based Process-
Driven Applications: Detecting anomalies across model and code, ERCIS Working Paper 38,
Münster, 2021. URL: https://hdl.handle.net/10419/243142.

[25] O. Holschke, Impact of granularity on adjustment behavior in adaptive reuse of business process
models, in: R. Hull, J. Mendling, S. Tai (Eds.), Business Process Management, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 112–127.

[26] F. Friedrich, J. Mendling, F. Puhlmann, Text2process: Process model generation from natural
language text, 2015. URL: https://github.com/FabianFriedrich/Text2Process.

[27] Camunda, BPMN for Research, https://github.com/camunda/bpmn-for-research, 2015. URL: https://
github.com/camunda/bpmn-for-research, a collection of BPMN diagrams created during Camunda

https://doi.org/10.1007/978-3-031-81375-7_27
http://dx.doi.org/10.1016/J.DATAK.2024.102324
https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/BPMN/2.0/
http://dx.doi.org/10.18417/EMISA.4.1.1
https://arxiv.org/abs/2409.18807
http://arxiv.org/abs/2409.18807
https://www.sciencedirect.com/science/article/pii/S2352220820301152
https://www.sciencedirect.com/science/article/pii/S2352220820301152
http://dx.doi.org/https://doi.org/10.1016/j.jlamp.2020.100630
http://dx.doi.org/10.1109/ICSE-NIER58687.2023.00008
http://dx.doi.org/10.1007/978-3-031-75872-0_3
https://www.sciencedirect.com/science/article/pii/S0164121220300716
http://dx.doi.org/https://doi.org/10.1016/j.jss.2020.110594
http://dx.doi.org/https://doi.org/10.1016/j.jss.2020.110594
https://hdl.handle.net/10419/243142
https://github.com/FabianFriedrich/Text2Process
https://github.com/camunda/bpmn-for-research
https://github.com/camunda/bpmn-for-research
https://github.com/camunda/bpmn-for-research


training sessions, intended for academic and research purposes.
[28] B. Schäfer, H. van der Aa, H. Leopold, H. Stuckenschmidt, Sketch2bpmn: Automatic recognition

of hand-drawn bpmn models, in: Advanced Information Systems Engineering, Lecture Notes in
Computer Science, Springer International Publishing, 2021.

[29] S. Sholiq, R. Sarno, E. S. Astuti, Generating bpmn diagram from textual requirements, Jour-
nal of King Saud University - Computer and Information Sciences 34 (2022) 10079–10093. URL:
https://www.sciencedirect.com/science/article/pii/S1319157822003585. doi:https://doi.org/
10.1016/j.jksuci.2022.10.007.

[30] J. Mangler, N. Klievtsova, Textual process descriptions and corresponding bpmn models, 2023.
doi:10.5281/zenodo.7783492.

[31] P. Bellan, et. Al., Process extraction from natural language text: the PET dataset and annotation
guidelines, in: Proceedings of NL4AI’2022), volume 3287 of CEUR Workshop Proceedings, CEUR-
WS.org, 2022, pp. 177–191. URL: https://ceur-ws.org/Vol-3287/paper18.pdf.

[32] F. Davis, F. Davis, Perceived usefulness, perceived ease of use, and user acceptance of information
technology, MIS Quarterly 13 (1989) 319–. doi:10.2307/249008.

[33] G. Poels, A. Maes, F. Gailly, R. Paemeleire, Measuring the perceived semantic quality of information
models, in: J. Akoka, S. W. Liddle, I.-Y. Song, M. Bertolotto, I. Comyn-Wattiau, W.-J. van den Heuvel,
M. Kolp, J. Trujillo, C. Kop, H. C. Mayr (Eds.), Perspectives in Conceptual Modeling, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 376–385.

[34] P. Rittgen, Quality and perceived usefulness of process models, in: Proceedings of the 2010 ACM
Symposium on Applied Computing, 2010, pp. 65–72.

[35] J. Krogstie, G. Sindre, H. Jørgensen, Process models representing knowledge for action: a revised
quality framework, Eur. J. Inf. Syst. 15 (2006) 91–102. doi:10.1057/palgrave.ejis.3000598.

[36] J. Krogstie, Quality of business process models, volume 134, 2012, pp. 76–90. doi:10.1007/
978-3-642-34549-4_6.

[37] V. Storey, O. Pastor, G. Guizzardi, S. Liddle, W. Maass, J. Parsons, J. Ralyté, M. Santos, Large
language models for conceptual modeling: Assessment and application potential, 2025. doi:10.
2139/ssrn.5170458.

[38] T. D. Stojanović, K. Jovanović, S. D. Lazarević, Evaluation of gpt-generated conceptual models
based on verbal descriptions: accuracy and quality analysis, in: 2025 29th International Conference
on Information Technology (IT), 2025, pp. 1–4. doi:10.1109/IT64745.2025.10930270.

[39] M. Abolhasani, R. Pan, Leveraging llm for automated ontology extraction and knowledge graph
generation, 2024. doi:10.48550/arXiv.2412.00608.

[40] D. Prokop, Š. Stenchlák, P. Škoda, J. Klímek, M. Nečaský, Enhancing domain modeling with pre-
trained large language models: An automated assistant for domain modelers, in: W. Maass, H. Han,
H. Yasar, N. Multari (Eds.), Conceptual Modeling, Springer Nature Switzerland, Cham, 2025, pp.
235–253.

[41] C. Lauer, P. Pfeiffer, A. Rombach, N. Mehdiyev, Conversational business process modeling using
llms: Initial results and challenges, in: EMISA 2025, Gesellschaft für Informatik e.V., Bonn, 2025,
pp. P3+2–O4+5. doi:10.18420/EMISA2025_03.

[42] A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca-Grau, Repairing unsatisfiable concepts in owl ontologies,
in: European Semantic Web Conference, Springer, 2006, pp. 170–184.

[43] P. Fettke, J. Köpke, H. Fill, Llm, lam, lxm agent: From talking to acting machines insights from the
perspective of conceptual modeling, Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model. 20
(2025). URL: https://doi.org/10.18417/emisa.20.3. doi:10.18417/EMISA.20.3.

https://www.sciencedirect.com/science/article/pii/S1319157822003585
http://dx.doi.org/https://doi.org/10.1016/j.jksuci.2022.10.007
http://dx.doi.org/https://doi.org/10.1016/j.jksuci.2022.10.007
http://dx.doi.org/10.5281/zenodo.7783492
https://ceur-ws.org/Vol-3287/paper18.pdf
http://dx.doi.org/10.2307/249008
http://dx.doi.org/10.1057/palgrave.ejis.3000598
http://dx.doi.org/10.1007/978-3-642-34549-4_6
http://dx.doi.org/10.1007/978-3-642-34549-4_6
http://dx.doi.org/10.2139/ssrn.5170458
http://dx.doi.org/10.2139/ssrn.5170458
http://dx.doi.org/10.1109/IT64745.2025.10930270
http://dx.doi.org/10.48550/arXiv.2412.00608
http://dx.doi.org/10.18420/EMISA2025_03
https://doi.org/10.18417/emisa.20.3
http://dx.doi.org/10.18417/EMISA.20.3

	1 Introduction
	2 Framework for conversational conceptual modeling
	2.1 Usage scenario and requirements
	2.2 Framework

	3 Instantiation for BPMN collaboration diagrams
	3.1 Intermediate process metamodel M'
	3.1.1 Intermediate serialization format FM'

	3.2 Model checking components

	4 Implementation
	4.1 Prompt generation
	4.2 Model transformation
	4.3 Model checking components
	4.3.1 User interaction


	5 Evaluation
	5.1 Dataset
	5.2 Initial model generation
	5.3 Experiment 1: Syntactic Correctness and Notation Compliance
	5.4 Experiment 2: Expert user study
	5.4.1 Results


	6 Related Works
	7 Conclusion and future works

