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As industrial, governmental, and academic agencies 

place increasing emphasis on translational research, 

biomedical researchers are now faced with entirely 

new challenges in regards to both biomedical data 

integration and knowledge discovery. There is now 

both a strong need and a tremendous opportunity to 

apply translational bioinformatics to address the 

fundamental challenges in integrating the vast bodies 

of -omics and clinical data. Here we report on our 

preliminary work in utilizing SNOMED-CT as both a 

tool for translational data discovery, and a major 

component in a framework for the large-scale 

integration of gene expression microarray data and 

clinical laboratory data.  Annotations from 

microarray experiments in NCBI GEO were mapped 

to SNOMED-CT terms using UMLS, and these 

mappings were joined to clinical laboratory data 

using ICD9CM to SNOMED-CT mappings within 

UMLS.  We find that microarray experiments 

characterizing 211 distinct diseases can be mapped 

to clinical laboratory data measurements for 13,452 

distinct patients.  We maintain that this work 

represents critical first steps in providing a 

foundation for large-scale translational data 

integration, and underlines the important role that 

controlled clinical terminologies, such as SNOMED-

CT, can play in addressing such problems.

INTRODUCTION

Our ability to generate high-quality biomolecular data 
has advanced at considerably faster rate than our 
ability to investigate the data generated.  This 
imbalance, driven primarily by rapid advances in 
high-throughput biological data acquisition 

technologies and plummeting per-experiment costs, 
has created an entire spectrum of informatics
challenges that are, in many instances, as intangible 
and complex as the fundamental biological questions 
that these technologies were designed to address.  As 
a consequence, our ability to formulate and 
investigate important biological and medical 

questions is currently limited by our ability to 
manage and integrate the profusion of biomedical 
data.  

Problems in data integration are moving towards the 
forefront of biomedical research, driven foremost by 
the sheer diversity of measurement technologies now 

available, and the tremendous volumes of such 
measurements finding their way into the public 
domain.  The situation is further complicated by the 
fact that the majority of the public biomolecular data 
is annotated using unstructured free-text, making it

difficult to discern the various biological and medical 
contexts of the data in an automated fashion.  In 
previous work we demonstrated the feasibility of 
using controlled terminologies and straightforward 
text-mining techniques to elucidate clinical, 
environmental, and phenotypic contexts from free-
text annotations associated with public microarray 

data1, 2.  The establishment of experimental context is 
critical to linking genes to environment, phenotype, 
and ultimately medicine.   

While most major types of biomolecular data can be 
found in the public domain, it is traditionally difficult 
for researchers to gain access to clinical data.  This is 

unfortunate as the data generated on a daily basis by 
hospitals and clinicians is perhaps the richest source 
of phenotypic biomarker data currently available.  
Fortunately modern Electronic Health Record (EHR) 
systems such as the Stanford Translational Research 
Integrated Database Environment (STRIDE)3 and the 
University of Virginia Health System Clinical Data 

Repository (CDR)4 grant institutional researchers 
access to large volumes of de-identified, quantitative 
clinical data in digital form.  In recent work, we 
demonstrated the utility in applying bioinformatics 
methods to quantitative clinical data to draw new 
inferences about disease severity5, and elucidate 
novel biomarkers6.    

Genome Wide Association studies have revealed that 
for many complex diseases, the pathogenesis of the 
disease may be facilitated by relatively minor 
changes across a large number of genes interacting 
through as of yet poorly understood mechanisms7.
These findings have therefore highlighted the 

importance of linking biomolecular data with 
phenotypic quantifications in order to uncover the 
full complexity of disease etiology.  Recent work in 
integrating these two data types has offered new 
insights into disease etiology and pathology with 
direct clinical implications.  Segal and colleagues 
correlated imaging traits from computed tomography 
(CT) images of liver cancers with gene expression 
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data to reconstruct global expression signatures in 
cancer tumors that are linked to diagnosis, prognosis 
and treatment8.  A number of studies have 
demonstrated the utility of patient microarrays in 

identifying gene expression patterns linked to disease 
diagnosis9, subtypes10, 11, outcome12, and treatment13, 14.
As significant as the aforementioned findings are, 
their underlying methods are limited by the fact that, 
in all instances, they require that the biomolecular 
and clinical data be derived from the same patient.  
Given the current high costs and logistical 

complexities involved in acquiring patient data in a 
clinical setting, it would be prohibitively expensive to 
scale the same approaches to address the broad 
spectrum of human disease.  Furthermore, such an 
approach implicitly eschews the great wealth of 
public biomolecular data readily available.

A major problem in integrating clinical and 
biomolecular data derived from disparate sources is 
to identify attributes by which they can be 
appropriately joined.  This task is complicated by the 
fact that the majority of biomolecular data is 
annotated around the concepts of genes and gene 
products, whereas clinical data is centered on the 

concept of a patient.  We find one concept shared 
among both clinical data and vast amounts of 
biomolecular data, and that is the concept of a 
disease.  Therefore it is possible to integrate 
anonymous biomolecular data characterizing an 
aspect of a particular disease state with quantitative 
clinical data derived from patients being treated for 

the same disease. 

Central to this approach is the need for a 
comprehensive controlled disease terminology 
through which the biomedical and clinical data is 
joined in a systematic fashion.  In general, we would 
want this disease terminology to maximize three 

primary criteria: coverage, defined by the number of 
unique disease terms defined; expressiveness, which 
is the richness of relationships between disease terms; 
and resolution, which is the level of detail offered by 
the terminology structure.  A deficiency in any of 
these could negatively impact the amount and 
diversity of data that could be integrated, and 

potentially limit the types of analyses that can be 
performed on the data downstream.  There are a 
number of well-established disease terminologies in 
active use that satisfy the above criteria to varying 
degrees. Chief among these are the International 
Classification of Diseases (ICD), Medical Subject 
Headings (MeSH), and the Systemized Nomenclature 

of Medicine-Clinical Term (SNOMED-CT).  Each of 
these is suited for data integration, yet each of them 
present particular pros and cons.

The ICD terminology, evolved from a lineage that 
spans more than 100 years, is the most widely 
utilized disease terminology, with widespread 
adoption among a large number of major healthcare 

providers, the U.S. Federal Government, as well as 
the World Health Organization.  Consequently, the 
majority of clinical data is codified using ICD codes.  
Unfortunately the ICD is poorly suited for data 
integration as the approximately 14,000 unique terms 
codified by ICD is quite small compared to other 
terminologies.  Furthermore, the ICD is more a 

compendium of diagnosis and procedure codes, as it 
lacks any significant hierarchical or relational 
structure.  

MeSH, which is used primarily for the purpose of 
indexing publications, is only slightly larger than 
ICD in terms of size with more than 22,000 unique 

terms. However, the design of MeSH is much more 
structured and diverse compared to ICD.  MeSH 
terms are arranged into a hierarchy of 14 distinct top-
level categories that organize terms by Anatomy, 
Disease, Chemicals and Drugs, and Geography 
among other things.  MeSH also contains a set of 
qualifier terms that can be used to narrow the 

specificity of a descriptor term (e.g. 
"Measles/epidemiology").  While MeSH possesses 
many of the attributes desirable for translational data 
integration, its attributes modest in comparison to
those of SNOMED-CT. 

SNOMED-CT was born from a medical terminology 

lineage that traces back more than 75 years, and is 
currently in use by pathologists worldwide to perform 
precise classifications of human disease15, 16.  With 
more than 340,000 unique biomedical concepts 
organized into 19 relational hierarchies linked by 
more than 1.3 million relationships, it is by far the 
most expansive and expressive disease terminology 

in existence.  The sheer number of concepts coupled 
with the rich relational architecture in SNOMED-CT 
offers attributes superior to other disease 
terminologies.  For example, SNOMED-CT 
establishes that a clear cell carcinoma of the kidney is 
both a malignant tumor of the kidney and a malignant 

tumor of the retroperitoneum.  The ICD version 9  

(ICD-9) simply asserts that a malignant neoplasm of 

the kidney is a malignant neoplasm of the 

genitourinary organs, which is a much coarser 
designation.  Therefore assert that SNOMED-CT is 
currently the best-suited terminology for integrating 
biomolecular and clinical data by disease.

In this study we investigate the feasibility of using 
SNOMED-CT to integrate gene expression data from 
a public microarray repository with de-identified 
clinical laboratory data obtained from a hospital EHR 
system by disease.  We propose that SNOMED-CT is 
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well suited for this approach as it is the largest 
disease vocabulary currently available.  We evaluate 
the effectiveness of this approach based on the extent 
of data successfully joined. 

METHODS

A high level representation of the data integration 
approach is detailed in figure 1.  The microarray 
experiment data was obtained from the NCBI GEO 
FTP site (downloaded 11/27/2007), which was parsed 
into a relational structure and stored in a MySQL 
database.  The de-identified clinical laboratory data 

was obtained from the Lucile Packard Children’s 
hospital via STRIDE as delimited text files.  UMLS 
release 2007 AA was used as the vocabulary source.   
The integration steps were performed as follows.  

Figure 1 – Schematic representation of the 

approached used to join gene expression data with 

clinical laboratory data.  Annotations from GDS are 

first mapped to UMLS CUIs that map to at least one 

SNOMED CT term, and the ICD9 CM codes from the 

patient records are mapped to SNOMED CT terms 

using the relational architecture of UMLS.

Mapping microarray experiments to diseases

Clinically relevant microarray data was identified 
using a previously described method17.  In brief, we 
queried the NCBI Gene Expression Omnibus (GEO)18

to obtain all GEO DataSet experiments with 

associated PubMed identifiers.  For each PubMed 
identifier we obtained the associated MeSH headings 
using NCBI eUtils.  Each of the MeSH headings was 
mapped to a UMLS CUI using the MRCONSO table.  
Using the MRSTY table, we obtained the semantic 
type identifier (TUI) for the mapped CUIs, and if any 
MeSH term is found to have a semantic type among 

Injury or Poisoning (T037), Pathologic Function 
(T046), Disease or Syndrome (T047), Mental or 
Behavioral Dysfunction (T048), Experimental Model 
of Disease (T050), or Neoplastic Process (T191) then 
the associated experiment is determined to be 
disease-associated and therefore clinically relevant.  
This resulted in the positive identification of 737 

disease-associated experiments. 

The disease-associated experiments are investigated 
by a second previously described text-mining 
technique that examines GEO DataSet (GDS) subset 
annotations to identify when a disease state is being 
compared to a normal control state2.  GDS are higher-

level representations of microarray experiment in 
which samples are organized into biologically 
informative collections known as subsets. The 
subsets are representative of the experimental axis 
under examination (figure 2). An attempt is made to 
map the free-text annotations associated with the 
GDS subsets to SNOMED-CT disease terms using 

UMLS concepts.  These mappings are subsequently 
manually reviewed for accuracy, where erroneous 
codifications are corrected if found.

Figure 2 – Example of microarray data subsets 

defined by GEO GDS experiments.

Mapping patient laboratory data to diseases

Clinical laboratory data for pediatric patients from 
the Lucile Packard Children’s Hospital was obtained 
digitally from the STRIDE system.  All of the 

laboratory measurements were received pre-encoded 
with ICD-9 codes.  These ICD-9 codes were mapped 
to SNOMED-CT codes by first querying UMLS to 
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find the CUI identifier associated with the ICD-9
code.  We then took advantage of the inter-
terminology mappings provided by the UMLS 
(MRMAP) table to translate the ICD-9 codes into 

SNOMED-CT concepts using associated CUIs.

Joining the microarray and patient lab data by 
disease

The GDS subsets with mappings to SNOMED-CT 
disease CUIs were joined with the clinical laboratory 
data using the UMLS CUIs derived from mapping 

the ICD-9 codes to SNOMED-CT terms using the 
UMLS MRMAP table. Of the 238 unique disease 
concepts mapped to the microarray data, 90% were 
mapped to quantitative clinical laboratory data for at 
least one patient.    

RESULTS

Using automated methods, were able to identify 737 

GDS microarray experiments in NCBI GEO related 
to human disease.  The GDS subsets were 
investigated for terms related to UMLS concepts that 
were linked to a SNOMED-CT disease term, 
resulting in the identification of 238 unique human 
disease concepts.  In total, 29,451 microarray samples 
were codified with SNOMED-CT disease identifiers.  

Note however that method was restricted to include 
only those GDS for which a disease and normal 
control subset could be identified.  This restriction 
ensures that a disease vs. normal vector of change can 
be extracted from the data to establish a baseline 
disease expression signature for downstream
analysis.

Disease� SNOMED 
Terms�

ICD9CM 
Terms� Ind�

Allergic 
asthma� 1� 1� 2240�

Asthma� 1� 1� 2240�

Allergic 
asthma NEC� 1� 1� 2240�

Esophageal 

Reflux 1� 1� 1895�

H. pylori 
infection� 1� 2� 1322�

Colitis� 1� 1� 1299�

Primary 
Hypertension� 1� 1� 1017�

Hypertension� 1� 1� 1017�

Obesity� 2� 1� 1010�

Type 1 
diabetes� 1� 1� 843�

Table 1 – Top ten data mappings ordered by the 

number of patient lab records matched.  

We retrieved quantitative clinical laboratory data 
representing diagnostic biomarkers for 49,414 
patients across 9,997 distinct diagnosis codes.  These 

codes mapped to 20,049 distinct UMLS CUIs.  It is 
interesting to note that in mapping ICD to UMLS we 
find that twice as many UMLS concepts as ICD-9
terms are found.  This likely resulted from the fact 
that ICD-9 is generally a more high-level 
terminology, and therefore terms related to rare 
genetic disorders, for example, may only be 

represented by one ICD-9 code, whereas UMLS may 
allow for more fine-grained attribution of specific 
rare genetic disorders.

In joining the ICD-9 disease codes from the clinical 
laboratory data to the microarray data using 
SNOMED-CT disease codes, we find that 211 of the 

unique disease concepts annotating the microarray 
data can be mapped to clinical laboratory data.  In 
total, clinical laboratory data for 13, 452 patients was 
mapped to SNOMED-CT disease codes that were 
used to annotate the microarray GDS experiments.  
Table 1 shows the top diseases by the number of 
patients mapped.  

Disease� SNOMED 
Terms�

ICD9CM 
Terms� Ind�

Follicular 
lymphoma� 4� 3� 136�

Hamman-Rich 
syndrome� 4� 2� 18�

Mycobacterial 
infection� 3� 2� 26�

Mixed 
hyperlipidemia� 3� 2� 90�

Hepatoma� 3� 2� 67�

Fetal alcohol 
syndrome� 3� 1� 10�

Diabetic 
nephropathy� 3� 2� 30�

Megakaryocytic 
leukemia 2� 2� 125�

Acute monocytic 

leukemia 2� 1� 7�

Status epilepticus 2� 1� 84�

Table 2 – Top ten data mappings sorted by the 

number of SNOMED-CT terms matched.

As evident from the data listed in table 1, there are 
cases in which distinct SNOMED-CT terms will map 
to the same ICD-9 term.  To explore the ambiguities 
of mapping terms between the SNOMED-CT and 
ICD-9 using CUIs, we investigated the overall 

pattern of the mapping cardinalities. Table 2 shows 
cases in which a single UMLS CUI maps to multiple 
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SNOMED-CT terms.  This could indicate that there 
is some degree of ambiguity in the SNOMED-CT to 
ICD-9 UMLS mappings, and perhaps a dampening of 
SNOMED-CT term resolution when using UMLS 

concepts.

To better understand the influence of UMLS CUI 
definitions with regards to source identifier 
consolidation, we calculated summary statistics for 
several terminologies with UMLS and restricted the 
results to CUIs representing a disease.  The summary 

statistics are listed in table 3.

Source Total disease 
concepts

Identifiers per 
concept

SNOMED-CT 74,611 1.4

ICD-9-CM 12,631 1.1

NCI 12,257 1.0

MeSH 6,613 1.0

Table 3 – Summary statistics for select disease 

terminologies sorted by total number of disease 

concepts (CUI).

DISCUSSION

The profusion of large public data repositories of 
genome-scale measures, coupled with the pressing 
imperative to translate such data into medicine, has 
precipitated the need to develop informatics tools and 

techniques for integrating disparate forms of 
biomolecular and clinical data. The purpose of this 
investigation was to explore the feasibility of using 
SNOMED-CT for such integrative efforts.  We 
assessed the feasibility of SNOMED-CT as a 
translational joining factor by using it to integrate 
anonymous gene expression data from a public 

microarray repository with de-identified clinical 
laboratory data by disease.  

We find that SNOMED-CT is effective as a disease 
terminology for integrating these two types of 
biomolecular and clinical data. The cases in which 
microarray data could not be mapped to clinical 

laboratory data largely reflect the fact that only 
pediatric data was used.  The unmapped terms 
contain diseases such as Parkinson’s disease,
macular degeneration, Alzheimer’s disease and other 
diseases not generally found in children.  Other failed 
mappings represent relatively rare disorders, such as 
Yersiniosis and Luteoma.  Better mappings might be 

obtained by leveraging the relational structure of 
UMLS to map terms that are parent or child 
relationships to the disease terms.

The many-to-many and many-to-one SNOMED-CT 
to ICD-9 mappings using UMLS CUIs do present an 
interesting problem.  These could lead to ambiguities 

in the mappings such that a highly specific disease 
variant is mapped to a more generalized disease 
category.  This could have a negative impact on the 
downstream utilization of the integrated data.  The 

data in table 3 suggests that large source vocabularies 
like SNOMED-CT have been constrained and 
compressed by the smaller vocabularies within 
UMLS to the degree that original source vocabulary 
resolution is lost.  This may suggest and alternative 
strategy in which the biomolecular samples are 
labeled only with SNOMED-CT identifiers and the 

translation between SNOMED-CT and ICD-9 is 
performed outside of UMLS CUI constraints.  

There are several caveats in the interpretation of the 
results.  First off, the data sets were not generalized 
in that the clinical laboratory data only represented 
pediatric patients and the microarray experiments 

were limited to those in which a disease and a normal 
control distinction was evident.  Furthermore, this 
study offered only a focus on SNOMED-CT and did 
not apply the same techniques to the alternative 
disease terminologies mentioned to offer any 
quantitative comparison.  Although the investigation 
revealed that SNOMED-CT was capable of joining 

the two data types, it offers no statistical 
characterization of the joining to assess its overall 
quality and reliability.  Of course we also 
acknowledge that the text mining aspects of this 
approach are prone to errors, such as miscodings of 
the data.

The results demonstrate that current and future 
translational data integration endeavors can leverage 
existing clinical terminologies, such as SNOMED-
CT, to integrate clinical and biomolecular data types 
and shift valuable efforts to downstream discovery.  
Furthermore, this study provides support for the 
continued development and use of SNOMED-CT for 

translational data integration, and brings to light the 
importance inter-terminology mappings resources 
such as UMLS.  As demonstrated by our own work, 
and the work of others, the straightforward act of 
integrating data from the molecular and clinical 
worlds can have profound and direct impact on 
human health.  

Although our initial work focused on the integration 
of microarray data and patient lab data specifically, 
we are now working to expand the application of the 
underlying system to integrate additional data types.  
In order to integrate new forms of biomolecular data 
into our current framework we must develop 

improved text-mining methods to map the underlying 
experimental data to SNOMED-CT identifiers.  From 
the clinical perspective we will continue to integrate 
new data obtained from the STRIDE system and look 
to incorporate additional clinical data types as well.  
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We must also develop methods to test and improve 
the reliability of the clinical data, as hospital workers 
will inevitably miscode a small percentage of the 
data.  We must also account for the fact that the 

application of clinical codes is subject to a number of 
non-scientific influences, such as hospital billing 
policies, insurance companies, and pharmaceutical 
regulations.  Any future work in this area should also 
entail the development of statistical metrics to 
evaluate the joining terminology, such that a 
principled decision can be made to identify the most 

appropriate terminology for a particular integration 
scenario.  
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