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Abstract

To address the growing demand for personalized nutrition in the face of rising rates of obesity, diabetes and heart
disease, this paper proposes a controlled text generation framework designed to produce food recipes that meet
specific dietary restrictions and nutritional goals. Our approach uses a comprehensive database, the NutriCuisine
Index, containing 23,932 recipes with detailed dietary classifications, and transformer based models for dietary
classification and nutrient estimation. Experimental results demonstrate robust performance, with a BERT based
model achieving a macro F1 score of 0.94 for multi-label diet classification and a T5-3B model, equipped with
a custom regression layer, achieving a R? of 0.913 for predicting nutrient content (carbohydrate, protein, fat
and water). An optimization module adjusts ingredient quantities to meet user defined nutritional goals, while a
sequence-to-sequence model generates cooking instructions. This study presents a framework for generating
recipes that meet individual dietary and nutritional requirements.
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1. Introduction

The growing incidence of diet related illnesses, such as obesity, diabetes and heart disease, has increased
the demand for personalized nutrition advice [1, 2, 3]. Non-communicable diseases claim millions of
lives each year with heart disease responsible for 17.9 million deaths, cancer for 9.3 million, respiratory
conditions for 4.1 million and diabetes for 2.0 million according to the WHO!. Diets that are customized
to meet specific health needs or personal preferences like gluten-free diets for people with celiac disease,
vegan diets for those with ethical or health motivations, nut-free diets for allergy sufferers and low-sugar
diets for individuals managing blood sugar tend to be followed more consistently than standard diet
plans that aren’t tailored to anyone in particular. This is because personalized diets better match an
individual’s unique situation, making them easier and more appealing to stick with [4]. To support
such adapted eating plans, precise assessment of carbohydrates, protein, fat and water is essential for
managing energy, tissue repair, cardiovascular health and hydration [5, 6, 7, 8].

Public food datasets such as Recipe1M+ [9], USDA FoodData Central [10] and RecipeNLG [11] have
driven advances in recipe classification, information extraction and generation. However, most recipe
collections lack comprehensive diet labels and many recent generators ignore dietary constraints,
risking unhealthy suggestions [12, 13, 14]. To address this, we propose a controlled text generation
framework that produces ingredient lists and cooking steps aligned with user specified diet types and
nutritional goals [15, 16]. We outline a five stage process for the proposed system:

« Database construction: Ingredients, their nutrient profiles and supported diet types are collected.

+ Diet-type classifier: Pretrained language models are fine-tuned to assign one or more diet labels
by ingredients.

« Nutrient estimator: A regression layer is developed to estimate the quantities of carbohydrates,
protein, fat and water in grams based on ingredient list inputs.
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+ Quantity controller: Sequential Least Squares Programming is used to adjust ingredient amounts
so predicted nutrients match user targets while respecting availability and diet rules.

+ Instruction generator and validator: Step by step cooking directions are generated with a
sequence-to-sequence model then the final ingredient list is reclassified to ensure it meets the
chosen diet type with iteration if necessary.

Hypothesis

Driven by the research objectives, the following hypotheses are proposed to guide this research on
developing a Controlled Text Generation (CTG) system:

« H1: A fine-tuned transformer based model (e.g., T5, BERT, or ALBERT) can perform accurate
multi-label classification of ingredient lists into specific dietary categories (e.g., gluten-free, vegan,
nut-free, low-sugar) enabling reliable identification of diet compliant recipes.

« H2: A regression-based nutrient estimation model, built on a fine-tuned language model (e.g., T5,
BERT) can effectively predict the grams of carbohydrates, protein, fat and water from ingredient
lists based on ground truth nutritional data.

« H3: A quantity optimization algorithm can successfully adjust ingredient amounts to meet user
specified nutritional targets (e.g., grams of carbohydrates, protein, fat and water) while adhering
to dietary restrictions.

« H4: A sequence-to-sequence model, combined with a validation mechanism, can produce coherent
and diet compliant cooking instructions of high quality, ensuring usable recipe outputs.

These hypotheses will guide the research in creating a CTG system that addresses the growing
need for health conscious culinary solutions by ensuring accuracy, nutritional alignment and practical
applicability.

2. Related Works

The field of recipe generation has seen steady progress toward creating systems that follow regional
styles and dietary needs. Kazama et al. were the first to identify mixtures of regional styles in recipes
and to use an LSTM model to generate cooking instructions for each style [17]. Pan et al. measured
how closely recipes match regional patterns, for example using the Mediterranean diet score [18].

Blackstone et al. compared US, Mediterranean and vegetarian diets to show how food choices affect
health and the environment [19]. Mohammadi et al. added simple language features to neural models
and saw big gains in classifying recipe difficulty [20].

Early work by Dale and Reiter built the EPICURE system, which used an ontology and grammar
to describe cooking steps in recipes rather than invent new dishes [21]. The Transformer model then
became the backbone of recipe generation. Petroni et al. showed that models like BERT store factual
knowledge without extra training [22]. Today, models such as T5, BART and GPT drive most data to
text tasks. Yin and Wan tested different sequence-to-sequence models on benchmarks like E2E, WikiBio,
WebNLG and ToTTo and found that fine-tuned transformers score higher on BLEU [23].

In controlled text generation, researchers aim to satisfy specific constraints while maintaining output
diversity. Zhang et al. utilized adversarial training to enhance the variety of generated text by matching
high-dimensional latent feature distributions of real and synthetic sentences, thereby addressing the
issue of limited output variety [24]. Ke et al. proposed Adversarial Reward Augmented Maximum
Likelihood (ARAML) for more stable training [25]. Zhou et al. created Controlled Text Generation
(CTG), which applies natural language rules with in context learning [26]. Pascual et al. built a plug and
play recipe generator with content planning to meet diet needs, showing how a plug and play approach
can handle restrictions like low salt or vegan diets [15]. Lee et al. used contrastive learning to cut down
on biased outputs in recipe generation [27] and Jie et al. showed that soft prompt tuning on T5 lets
models control attributes like sentiment or style [28].



For diet label classification, Adhikari et al. used BERT with knowledge distillation to handle long
recipe texts with multiple labels [29]. Other work applied support vector machines and enhancements
to LIBLINEAR for fast and accurate sorting of recipes by dietary labels [30, 31]. Pranesh and Shekhar
explored small models that run well on limited hardware [32].

All these studies demonstrate that classification methods can produce recipes that follow regional
styles and meet dietary needs.

3. Proposed Methodology

This paper proposes a methodology centered on framework for Controlled Text Generation (CTG),
specifically applied to recipe generation. The approach comprises several key stages designed to produce
health conscious recipes adhering to specific dietary requirements and nutritional targets.

Initially, we construct the NutriCuisine Index, a specialized database building upon foundational
datasets like RecipeNLG [11]. Our index introduces detailed dietary classifications. Each entry contains
the recipe title, servings, ingredient list with quantities, cooking instructions and assigned diet labels
(e.g., Vegan, Gluten-Free). This extension of RecipeNLG provides enriched data crucial for training the
following models.

Next, we develop a multi-label diet type classification model by fine-tuning transformer based models
(e.g., T5, ALBERT, BERT) on the NutriCuisine Index. These models learn to predict relevant diet labels
(e.g., High-Protein, Nut-Free) from an ingredient list. To handle potential class imbalance, model
evaluation prioritizes the F1-score (micro, macro, weighted). Standard fine-tuning techniques like
learning rate optimization and early stopping are employed. The resulting classifier verifies compliance
of generated recipes with user specifications.

Subsequently, we address nutrient estimation. A custom regression layer is integrated into a fine-tuned
T5 model to predict nutritional content (grams of carbohydrates, protein, fat, water) from ingredient
lists. Trained on the NutriCuisine Index using ground truth data from USDA FoodData Central [10],
the regression head outputs continuous nutrient values. Performance is evaluated using Mean Squared
Error (MSE) and compared against a naive baseline to demonstrate effectiveness.

A key control mechanism is quantity optimization. We implement a Sequential Least Squares
Programming (SLSQP) [33] optimizer to adjust ingredient quantities, directly controlling the recipe’s
nutritional profile to meet user targets for macronutrients. It utilizes predictions from the T5 regression
model and modifies quantities, potentially removing ingredients if necessary to satisfy nutritional
constraints. This process incorporates realistic quantity limits based on servings and typical ingredient
availability, ensuring the input for text generation strictly adheres to numerical and compositional
controls.

Finally, the methodology includes recipe generation and validation. Using the optimized ingredient
list from the SLSQP step, a fine-tuned T5 model generates step-by-step cooking instructions via a
prompt based sequence-to-sequence approach. The prompt includes the detailed ingredient list and
target diet type(s). A critical validation step follows: the generated recipe’s ingredients are processed
by the diet type classifier. If predicted labels match the user’s specification, the recipe is considered
compliant; otherwise, the process can iterate. Recipe quality is assessed using metrics (BLEURT [34],
ROUGE [35]) and potentially supplemented by expert evaluation [36, 37, 14].

This comprehensive methodology leverages transformer models and optimization techniques for the
systematic generation of health conscious recipes meeting specific dietary and nutritional constraints.

4. Experiments

This section details the experimental procedures and results related to the construction of the NutriCui-
sine Index and the development of the nutrient estimation model.



4.1. NutriCuisine Index Construction and Characteristics

The first experimental step involved the creation of the NutriCuisine Index. We compiled a dataset
comprising 23,932 recipes sourced from publicly available websites, including BBC Good Food, Heart
UK and Delish. A thorough review confirmed compliance with special data regulations and the General
Data Protection Regulation (GDPR), permitting the use of this data for research purposes. These sources
provided essential recipe information, including ingredients, preparation steps and initial nutritional
and dietary details.

A key contribution of the NutriCuisine Index is its focus on dietary classifications, addressing a gap
present in existing datasets like RecipeNLG which often lack explicit diet type information. Our database
includes both multi-label and single-label classifications. The diet labels were established through a
two stage process: Initial labels were collected during web scraping, followed by expert validation
performed by two commissioned dietitians. These experts reviewed each recipe, verifying existing
labels and adding new ones based on professional assessment of ingredients and nutritional content.
The final database schema for NutriCuisine encompasses fields such as Title, Serve, Link, Ingredients
(with quantities), Directions, Nutrition and the validated Diets list, providing a comprehensive overview
for each recipe (detailed in Table 1).

Table 1
NutriCuisine Database Schema and Dietary Type Counts
Database Schema Dietary Type Counts
Field Description Dietary Type Count Dietary Type Count
Title Recipe name 30-Minute-Meals 129 Low-Carb 1469
Serve Number of servings Appetizers 115 Low-Sugar 1556
Link URL to original recipe source Dairy-Free 215  Lunch 58
Ingredients  List of ingredients with quan- Dinner 158  Nut-Free 2372
tities Easily-Doubled 597  One-Pot-Meals 86
Directions  Step by step cooking instruc- Easily-Halved 447  Pressure-Cooker 45
tions Freezable 4096  Salads 61
Nutrition Nutritional content per serv- Gluten-Free 11353 Slow-Cooker 63
ing Healthy 9416 Soup 60
Diets Suitable diet types for the High-Protein 864 Vegan 20438
recipe Kid-Friendly 99  Whole-30 74

4.2. Multi-Label Diet Classification

This experiment focused on classifying recipes from the NutriCuisine Index into seven key dietary
categories: Gluten-Free, Healthy, High-Protein, Low-Carb, Low-Sugar, Nut-Free and Vegan
using transformer based models trained directly on ingredient text.

Data Preparation: Ingredient lists sourced from the NutriCuisine Index were preprocessed to
ensure consistency and reduce noise. This involved numeric standardization (e.g., converting frac-
tions to decimals), text cleaning (including punctuation removal and Unicode normalization) and unit
standardization. The corresponding diet labels for the seven target categories were binarized using
MultiLabelBinarizer for multi-label classification.

Model Architecture and Training: Four transformer based models were adapted for this multi-label
classification task these are BERT-Base-Uncased, RoBERTa-Base, ALBERT-Base-V2 and DistilBERT-Base-
Uncased. The output layer of each model was configured to predict probabilities for the seven dietary
categories. The dataset was partitioned into 70% for training and 30% for testing. Models were trained
for up to 5 epochs using a batch size of 8. AdamW optimizer [38] was employed with a learning rate of
le-5 and binary cross-entropy was used as the loss function. EarlyStopping with a patience of 3 epochs
and a minimum delta of 0.02 was implemented to prevent overfitting.



Evaluation: Model performance was assessed using standard multi-label classification metrics
(precision, recall and F1-score) To account for potential class imbalance among the dietary categories,
results were reported using micro, macro and weighted averaging across the seven classes.

Results and Analysis: The performance of the models trained is detailed in Table 2.

Table 2
Performance of Models: F1-Scores
Class BERT RoBERTa ALBERT DistilBERT

P R F | P R F | P R F | P R F

Gluten-Free 098 1.00 0.99 | 095 099 097 | 088 099 094 | 099 098 0.98
Healthy 098 097 098 | 093 098 096 | 092 097 094 | 098 098 0.98
High-Protein 095 0.97 096 | 090 091 090 | 092 0.76 0.84 | 095 0.97 0.96
Low-Carb 099 1.00 099 | 098 099 099 | 098 099 098 | 099 099 0.99
Low-Sugar 1.00 0.56 0.72 | 1.00 0.26 0.41 | 1.00 0.23 0.38 | 1.00 0.28 0.44
Nut-Free 098 097 0.97 | 094 097 095 | 093 086 089 | 094 098 0.96
Vegan 099 099 099 | 096 1.00 098 | 099 094 096 | 098 1.00 0.99

Macro Avg. 098 092 0.94 | 095 0.87 0.88 | 095 082 085|097 088 0.90

Overall, the models demonstrated strong classification capabilities on ingredients. BERT-Base-
Uncased achieved the highest macro-averaged F1-score at 0.94, indicating reliable performance across
the different diet types. DistiIBERT-Base also performed well with a macro F1 of 0.90, followed by
RoBERTa-Base (0.88) and ALBERT-Base-V2 (0.85).

Examining individual class performance reveals high F1-scores (often 0.98-0.99) for categories like
Gluten-Free, Low-Carb and Vegan across most models, suggesting these diets have distinct ingredient
patterns that are well captured. Healthy and Nut-Free also generally showed strong results (F1 typically
>0.94). High-Protein classification was solid, though slightly less consistent across models compared to
the top performers. The Low-Sugar category proved most challenging, particularly in terms of recall,
resulting in lower F1-scores compared to other categories (e.g., BERT achieved 0.72 F1, while others
were lower). These results highlight the effectiveness of transformer models for dietary classification
directly from ingredient lists, while also identifying specific categories that remain more difficult to
predict accurately based solely on text.

4.3. Nutrient Estimation Model: Setup and Results

For the nutrient estimation task, we developed and evaluated a T5Regressor model. This model adapts
the encoder component of pretrained T5 models (specifically testing T5-small, T5-base, T5-large and
T5-3B variants) for regression. The architecture uses the T5 encoder to generate contextual embeddings
from input food names. The encoder’s last hidden state is mean-pooled across the sequence length
(weighted by the attention mask) to produce a fixed size representation. This representation is then
fed into a sequential head consisting of a dropout layer (rate=0.2) and a linear layer, which outputs
four continuous values corresponding to the target nutrients: carbohydrates, protein, fat and water (in
grams).

The training and evaluation were performed using the USDA FoodData Central dataset, containing
7,793 food entries with descriptive names and corresponding nutrient values. Preprocessing involved
tokenizing the food names using the appropriate T5 tokenizer for each model variant. Analysis showed
an average token length of 12 tokens (max 32), leading us to set a maximum sequence length of 150
tokens to avoid truncation while managing computational load; shorter sequences were padded. The
target nutrient values were standardized using StandardScaler to achieve zero mean and unit variance,
aiding training stability.

The dataset was split into 80% for training (~6,234 samples) and 20% for testing (~1,559 samples) using
a fixed random seed (42) for reproducibility. Training utilized dataloaders with a batch size of 32 and



shuffling enabled for the training set. Model performance was evaluated using Mean Squared Error
(MSE) and R? score, comparing against a naive baseline that predicts the mean nutrient value for all
foods in the test set.

Model performance was evaluated using Mean Squared Error (MSE), which also served as the loss
function during training, and R? score. Additionally, we report Mean Absolute Error (MAE) and Median
Absolute Error (MDAE) to assess prediction quality from complementary perspectives. MAE quantifies
the average prediction error in absolute terms, while MDAE is more robust to outliers, capturing the
median absolute error. A naive baseline was also included, which simply predicts the mean nutrient
value of the training set for all test samples.

Results and Analysis: The fine-tuned T5 models demonstrated effective learning for nutrient predic-
tion. As shown in Table 3, all T5 variants significantly outperformed the naive baseline. Performance
scaled directly with model size: T5-small achieved an R? of 0.648 and MSE of 139.84, while the largest
model, T5-3B, yielded the best results with an R? 0f0.913 and an MSE of 40.87, indicating it could explain
approximately 91.3% of the variance in the true nutrient values. T5-large also performed strongly (R?
0.894, MSE 47.63), offering a compelling balance between performance and model size, while T5-base
performed intermediately. The “Loss” column in Table 3 reflects the final validation loss (MSE) during
training.

Table 3
Overall performance comparison of fine-tuned T5 models, sorted by R?

Model R?> Loss MAE MDAE MSE

T5-3B 0913 0.0932 3.16 1.60  40.87
T5-large 0.894 0.1130 3.55 1.85 47.63
T5-base 0.838 0.1740 4.43 241  65.99
T5-small 0.648 0.3835 6.90 4.08 139.84

Analysis of predictions for individual nutrients (detailed in Table 4) revealed that protein consistently
had the lowest MSE across all models, suggesting it was the easiest nutrient to predict from food names.
Conversely, water exhibited the highest MSE, indicating greater prediction difficulty. Carbohydrates
and fat fell in between, with carbohydrates generally showing slightly higher MSE than fat. Importantly,
even the smallest T5 model substantially improved upon the baseline for all nutrients (e.g., T5-3B
reduced carbohydrate MSE from the baseline’s 649.65 to 52.30), confirming that the models learned
meaningful patterns from the food names related to nutritional content.

Table 4
Detailed MSE comparison for fine-tuned T5 models and the naive baseline across nutritional components. Lower
values are better.

Model MSE

Carbohydrate Protein Fat Water

T5-3B 52.30 11.72 26.66  72.81

T5-large 57.91 15.71 32.84 84.08
T5-base 84.53 30.07 46.18 103.16
T5-small 152.34 5299 147.70 206.34

Naive Baseline 649.65 125.24  283.90 897.33




5. Points for Further Discussion

While our controlled recipe generation system yields promising outcomes, still have a long way to go
to develop and complete the framework. First, we plan to expand the NutriCuisine Index to include
a broader diversity of cuisines and diet types, such as regional emerging dietary trends, to improve
the system’s applicability and generalization across varied culinary contexts. Second, integrating user
feedback mechanisms such as ratings for taste, feasibility, or ingredient preferences could refine the
personalization of generated recipes, making them more responsive to individual needs. Apart from this,
we are still working on the methodology we propose, which is to control and optimize the nutritional
values according to the desired amounts and to transform the obtained results into a recipe through a
language model.
Beyond these planned improvements, several open questions invite further investigation:

« Cultural and Regional Adaptation: How can the system effectively incorporate cultural and
regional culinary variations while ensuring compliance with dietary restrictions?

« Transparency and Explainability: What approaches can be developed to make the recipe
generation process more interpretable, such as explaining ingredient selections or quantity
adjustments to foster user trust and engagement?

« Real World Validation: How do the generated recipes perform in practical settings? Compre-
hensive evaluations with diverse user groups are needed to assess taste, preparation feasibility
and nutritional adequacy compared to human crafted recipes.

Addressing these challenges and questions will be critical to advancing controlled recipe generation,
ultimately enabling the delivery of highly personalized, health focused culinary solutions that meet
both practical and nutritional demands.

Data and Software Availability

The datasets and source code supporting the findings and methodology presented in this study are
publicly available to ensure reproducibility and encourage further research. The specific resources
include:

« Multi-Label Diet Classification Code: The implementation of our diet classification model
can be found at: https://github.com/NutriCuisine/NERonLLM

+ Nutrient Estimation Model Code: The source code for the nutrient estimation component is
available at: https://github.com/NutriCuisine/NutrientsFinder

+ NutriCuisine Index: The dataset developed for this work is hosted at: https://github.com/
NutriCuisine/database

« FoodData Central Dataset: We utilized the publicly available USDA FoodData Central SR

Legacy dataset (April 2018 release, JSON format) for foundational nutrient information, accessible
via: https://fdc.nal.usda.gov/fdc-datasets/FoodData_Central_sr_legacy_food_json_2018-04.zip
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