CEUR-WS.org/Vol-4100/paper2l.pdf

CEUR
E Workshop
Proceedings

published 2025-11-17

Intelligent Assistants in the Era of LLMs: A New
Methodology for Reusing Research Software from
Documentation

Carlos Utrilla Guerrero

Ontology Engineering Group (OEG), Universidad Politécnica de Madrid (UPM), Madrid, Spain

Abstract

As intelligent assistants driven by generative Artificial Intelligent (AI) such as Large Language Model (LLM) have
shown remarkable capabilities in supporting software development tasks, including code generation through
natural language, a critical question arises: how can these intelligent assistants aid in the reuse of research
software from its documentation? This thesis investigates how the research community can benefit from the
LLM revolution, specifically in the context of research software (RS) reuse. To this end, this thesis will propose
a new methodology that enables Al-based intelligent assistants to interpret, reason, plan and act upon reuse-
oriented software documentation—such as README files and procedural guides. By extracting, transforming,
and executing procedural instructions, such intelligent assistants have the potential to reduce cognitive and
technical burdens on researchers, improve the sustainability of RS, and may alleviate certain pressures associated
with modern scientific careers.

Keywords

Research Software Reuse, Multi-agent systems, Intelligent Assistant, Artificial Intelligent

1. Introduction

Today, many researchers are not only generating new knowledge using software but are also increasingly
reusing digital infrastructure—such as tools, software, and services—developed by others. A key
facilitator of this reuse process is human-generated documentation, particularly README files, which
typically provide step-by-step instructions on how to install, configure, and run research software (RS)[1].
These instructions commonly follow established methods—such as package managers, containers, source
builds, and/or setup scripts—intended to reduce friction and facilitate reuse[2, 3]. However, even when
RS is encapsulated in portable environments like Docker containers or Python packages, researchers are
often still required to manually inspect the documentation, make decisions about procedural steps, and
resolve ambiguity. Executing these instructions accurately is not a trivial task: it involves modeling the
structure of the installation process, locating where install commands may break down, and reasoning
through multiple layers of document complexity without standards. These unstructured narratives
present a major obstacle [4] to interpreting and executing instructions by both humans and machines,
ultimately limiting the automation of research software reuse from documentation [5]. As a result,
the full potential of automated research software reuse from documentation cannot be realized until
we understand what set of procedural language processing, reasoning and planning capabilities are
required to enable machines—or Al-based assistants—to effectively read, interpret, execute, and validate
complex reuse instructions contained in human-generated documentation [6]. Here, we tackle this
challenge by exploring a multidimensional approach encompassing these following tasks: (1) extracting
install-related instructions from README files and (2) transforming them into a format that can be
(3) executed by machines at a minimum cost.

The problem of automating software reuse (in general) has long been recognized in the field of Al and
software engineering [7], but has come to prominence recently with the emergence of contemporary

Doctoral Symposium on Natural Language Processing, 25 September 2025, Zaragoza, Spain.
Q carlos.utrilla.guerrero@alumnos.upm.es (C. U. Guerrero)

&} https://carlosug.github.io/ (C. U. Guerrero)

® 0000-0002-9994-1462 (C. U. Guerrero)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)
5

mailto:carlos.utrilla.guerrero@alumnos.upm.es
https://carlosug.github.io/
https://orcid.org/0000-0002-9994-1462
https://creativecommons.org/licenses/by/4.0/deed.en

ENVIRONMENT

1. Find the research 2. Generate an action plan to 5. Execute the action plan in a
software repository URL reuse from documentation digital environment

T H

2 [Execute commands E=)

Validate installation &

Observation Space
Textual
Bi-modal
Indirect

L
rrrrrrrr

INTERACTION (Grounding

w

‘\ 3. Configure epwi “’onment
ASSISTANT
- =5 Memory

G 4. Install depéndencies
Policy qLearning

(@ (b)

QIWIEIR
IAISIDIFIGIHLJ]
e ZIXICIVIBIN

Figure 1: (a) An example task for reuse assistant: a researcher specifies a software project e.g., by an URL of a git repository,
and the assistant generates an action plan and execute its commands for installation and reuse based on its documentation;
(b) An example of Intelligent Assistant architecture: the shared environment properties, the means of interactions between
assistant and the environment as manifested in the observation and action space, and the assistant components as how an
assistant acts via its policy while tracking the past in memory and how it learns how to plan and act

generative Al, particularly Large Language Models (LLMs). The possibility of using networks of LLM-
based Assistants ! to solve of interacting with documentation, generating code and performing complex
reasoning tasks. These LLM-powered assistants have greatly shown strong potential in automating
scientific workflows [10] and software engineering activities such as bug fixing, test generation, and
code synthesis [11].

Despite these potential advancements, the usage of IAs to automated reuse from documentation
remains an open challenge (central research problem). It requires not only natural language understand-
ing, but also robust planning, disambiguation, and execution capabilities. Documentation—especially
when unstructured, unintelligible, or inconsistent—demands that assistants interpret complex instruc-
tions, fill in implicit semantic knowledge, and reason through a plan or conflicting sequential steps.
Automating this process involves constructing executable representations of intent from loosely defined
human-generated procedural narratives.

To date, there has been no research study of how we can develop and evaluate a method to aid in the
RS reuse process from its documentation automatically. This gap produces a substantial obstacle for
researchers who need a reliable and scalable solution for reusing RS across a wide variety of domains.
Given the critical role that software plays in the scientific research-and the growing serious possibility of
using networks of Al-based agents (particularly those equipped by contemporary LLMs), this research
seeks to answer a key question: how can we develop and evaluate an Al-based Intelligent Assistant
methodology capable of automatically supporting the reuse of research software exclusively from its
documentation?

2. Background and related work

Prior related work can be divided under three major topics: Software reuse in the research community;,
automated approaches for RS reuse, and LLMs as Intelligent Assistants:

2.1. Software reuse in the research community

The benefits of reusing software (e.g., reducing duplication of effort) —are broadly acknowledged since
early days in the software engineering field [7]. In spite of its promise, RS reuse has not become
standard practice in RS development yet [12, 13]. Systematic efforts to enhance the reusability of
digital scientific objects have evolved over time. In early 2000s, the Semantic Web initiative, under the
power movement of World Wide Web Consortium (W3C), introduced standards such as the Resource
Description Framework (RDF) and the Web Ontology Language (OWL) [14] to convert heterogeneous

'In this thesis, intelligent assistant (IA) (or Agent) is a computer system endowed with artificial intelligence and/or machine
learning techniques capable of intelligently assisting researchers [8, 9]

knowledge across the web infrastructure into machine-readable format. Following these foundations,
the 2014 Lorentz Conference on the FAIR Principles—Findable, Accessible, Interoperable, and Reusable—
marked a single milestone in aligning good practices for representing digital scientific objects with the
aim of solving their reuse problem [15]. In 2022, the research software community adapted the FAIR
principles to create FAIR Principles for research software [16] in order to maximize its value.

Over a decade later, many individuals in the research community still regards RS reuse as potentially a
powerful means of improving the research productivity and improving software engineering practices in
scientific domains [17]. Among others, research initiatives such as Codemeta, SOFAIR, ADORE.software
and EVERSE have emerged recently to enhance research software reuse by standardizing metadata,
automating lifecycle management, and promoting software quality.

2.2. Automated approaches for RS reuse from documentation

In an effort to reduce human intervention in the reuse process, understanding how to enable machines
to learn effective representation from natural language have always enjoyed academic interest using
formal methods [4], traditional machine learning models [18], symbolic approaches [19, 20], and, more
recently, generative models [2]. Most prior research efforts on the development of automated approaches
for supporting software documentation tasks are focused on generating unit test [21], bugs [22] and
issue [23, 24] reports with summarization techniques, generating pull requests [25], recommending
good practices for ML [26], classifying README content [27] and its simplification [28], documenting
program changes [29] as well as checking conflicts and libraries vulnerabilities [30].

2.3. LLMs as Intelligent Assistants

Recent work has initiated to explore the power of LLM-based Intelligent Assistants in software engineer-
ing tasks [31] and scientific discovery [32]. Notable among these are typically repository-level tasks [33]
that aim to exploit the vast amount of code openly available in repositories. Several research projects
explore automated solutions to generate unit test [21], bugs [22] and issue [24] reports with summariza-
tion techniques for README files [28] as well as checking conflicts and libraries vulnerabilities [30].
However, a key research challenge remains insufficiently understood, which is how suitable are LLM-
powered agents to assist RS reuse from documentation. Recent work has initiated to explore the power
of LLM-based IAs in software engineering tasks [34, 35] and scientific discovery [32, 11, 36]. Notable
among these are typically classified as LLM-based using a single or multi-agent approach [35, 37, 38]. A
newly research trend is shown into the transition from LLMs to Large Action Models (LAM) designed
for action generation and execution in real-world scenario is promising, albeit robust empirical studies
and formal evaluation framework remains an open question [39].

3. Description of the proposed research

3.1. Research Problem Statement

We define the machine problem of automatic reuse of Research Software (RS) as follows: given access
to openly available RS documentation (e.g., a URL to a public Git repository), what actions should a
system—such as an artificial intelligent assistant—perform to automatically convert human-generated
installation instructions into actionable, machine-executable commands, and execute them within a
virtual environment?

Unlike prior work that addresses isolated challenges or narrow tasks, our objective is to explore what
kind of grounded language processing model is needed for enabling machines to support researchers in
the reuse-tasks of RS, covering the full range of problems summarized in Table 1. A robust solution
to enable RS reuse at scale would need to proceed as follows: to overcome the lack of standardization
in RS documentation, including inconsistent (or siloed) machinery reuse-procedural narratives (P1
and P2), an machine first would need to extract all software metadata and alternative reuse methods

https://codemeta.github.io/
https://sofair.org/
https://adore.software/
https://sofair.org/

Table 1
Problems that machines need to address to accelerate scientific discovery through reuse of RS from documentation (e.g., README files):
Brief Explanations and representative prior work.

id Problem Explanation Prior
Work
P1 Unstructured documenta- Machines lack a formal representation or efficient algorithm to extract ~ [40]
tion install, configure, and execute commands reliably.
P2 Idiosyncrasies in procedural If one install-step in a procedure is not machinery-consumable, then 3]
narratives these exceptions must be handled, and automation is harder or impos-
sible.
P3 Complex documentation This complexity requires substantial additional capabilities for ma- [35]

chines (managing methods, dependencies, configurations robustly
across systems).

P4 Lacking instruct-to-action No structured representation linking natural-language instructions to [41]
mapping concise machine operations, preventing robust reuse workflow.

described in the README (and other files), then transforms each method’s sequence of procedural
steps into a structured format. To tackle P3 (e.g., automation in managing complex environments and
configurations) and P4 (e.g., automated solutions for execution of RS), the research community utilises
continuous and development solutions such as Github-based features; however these are relying on
permission and might not be fully automated. Therefore, a machine would need to provide detailed
thinking process (e.g., adopting the approach introduced in our previous work [2]: the PlanStep in
which a machine first breaks down a complex install methods found in a README file such “from
source” into several subtasks, and then apply reasoning to generate a plan for each subtask in a fixed,
sequential order) before generating the two targeted outputs: i) an isolated environment (e.g., via
Docker or virtual environments) and another to configure and install the RS within that environment.
Finally, the machine should evaluate outcomes concerning correctness, reliability, and accuracy (see
Figure 1).

3.2. Research Hypothesis

In light of the problems and potential solutions outlined above, the following central research hypothesis
is proposed:

“An Intelligent Assistant, powered by Al methods, particularly Large Language Models, can be designed
to autonomously interpret, reason and act upon research software documentation—such as README
files—by extracting, transforming, and executing procedural instructions. The assistant can generalize
across domains by modeling reuse tasks within documentation as sequences of machine commands and
developing automation strategies to execute them accurately.”

3.3. Research Questions
The main research question (RQ) addressed by this thesis can be formulated as follows:

RQ: How can we develop and evaluate an Al-based Intelligent Assistant that is capable of automatically
supporting the reuse of research software exclusively from its documentation?

We further decompose the main RQ into various sub-questions (Sub-RQs):

+ Sub-RQ1: What Al-based techniques and methodologies are suitable for automating the extrac-
tion, transformation, and execution of reuse instructions from research software documentation?

+ Sub-RQ2: How can these techniques and methodologies be evaluated considering the hierarchical
structure of reuse tasks and the complexity of documentation?

+ Sub-RQ3: What system architecture is effective for enabling Al-based assistants to interpret,
reason, plan, and execute reuse tasks from research software documentation?

« Sub-RQ4: What evaluation framework and quality indicators are needed to assess the Al-based
assistant’s performance across diverse software and documentation types?

3.4. Research Objectives

To address the main RQ and subsequent sub-research questions (Sub-RQs), this thesis will aim to
achieve the following objectives (depicted in Figure 2): (RO1) Review and catalog existing methods
that support software reuse from documentation, including their core techniques and evaluation
strategies; (RO2) Develop and implement an Al-based Intelligent Assistant methodology capable of
autonomously assisting with a range of reuse tasks from its documentation; and (RO3) Evaluate and
validate empirically the methodology to assess its effectiveness in executing reuse-related tasks at scale
as well as defining and applying relevant quality indicators to research software documentation and
(re)-usability.

ourfiew methodology at scalé\and

define quality indicators.

(RO2) Develop

Systematic Review

Mining Study

OO0

Design a new Al-based
assistant for research software reuse
tasks and its evaluation framework.

Experiment

(RO1) Review
Catalog existing methods and techniques
that support research software reuse
from documentation.

Figure 2: Research Objectives (RO’s) and its proposed empirical methods (grey-scale).

3.5. Research Methodology

To tackle the above research questions, we apply the Design Science Research (DSR) methodology [42],
which relies on an iterative process of investigating the problem, generating a solution, implementing it,
and evaluating its effectiveness in a research context. Our research objectives previously presented, align
with the DSR approach, as it strives to create a method designed to tackle the challenge of automating
reuse processes in research software from documentation.

In our research context, this DSR methodology is structured into three unique phases (Ps) as illustrated
in Figure 3: (1) Review and collect prior work: a comprehensive systematic literature review on
existing methods that support software reuse from documentation, including their core techniques
and evaluation strategies; (2) design and implement an Al-based Intelligent Assistant framework
capable of autonomously assisting with a range of reuse tasks (e.g., installation, configuration and
execution of research software); (3) Evaluation and Validation: empirically evaluate and validate the
methodology to assess its effectiveness in executing reuse-related tasks at scale as well as defining and
applying relevant quality indicators to research software documentation and (re)-usability.

P1. Review prior work

P2. Design & Implementation

P3. Evaluation & Validation

() () ()
Sub-RQI: Sub-RQ2: Sub-RQ4:
Scoping survey Create reuse Automatic
: task taxonomy Evaluation

Sub-RQ2:

Collect existing

benchmarks

Sub-RQ3:
Propose IA
Framework

Sub-RQ4:
Domain Experts
Validation

Refinement Loop

Figure 3: PhD research workflow illustrating the modular stages and their corresponding sub-research questions

(Sub-RQs)

Extract _ o {
|
arXiv

Article—> UeF?I? > Clone —> Eyiract

repo README (install text) |1

Transform o

Analyse —> Generate—>Transform

install_plan.json .sh and

Execute e
(g
Locate —> Execute —> %

Figure 4: A high-level overview of ETE Agent Workflow - An illustration of how ETE agent make progress from
initial extraction stage (1) through transformation of these outputs into machine executable files (2), and to
subsequently the execution of these files into a local environment (3)

.sh and i bash

(Plans and Step)

4. Proposed Research Methods

This thesis investigates the feasibility of adapting Al-based techniques for the reuse scenario from
documentation, and how to evaluate them. To answer the previously defined research question, we
propose the following empirical methods:

1. Systematic Literature Review: This review will provide a foundational and comprehensive
overview of existing methods for automating research software reuse from documentation,
propose a taxonomy of reuse tasks to be accomplished by an assistant, and define the evaluation
criteria.

2. Quantitative Analysis and Mining Study: The goal of this study is to characterise research
software documentation complexity, extract reuse-relevant elements, identify their properties
such as installation plans and steps associated, and formulate a taxonomy of tasks that reflect
real-world reuse activities across different scientific domains. Based on these findings, we will
create a benchmark and evaluation corpus for assessing intelligent assistants in reuse scenarios.
This benchmark will consist of an automated approach to annotate software documentation in
real-world reuse scenarios. It is expected to use this benchmark to evaluate task performance in
areas such as instruction extraction, interpretation, planning, reasoning and automated execution.

3. Experiments: The goal of this computational experiment is to evaluate the suitability of Al-based
Intelligent Assistants to aid in the reuse-task of researchers in real-world scenarios. We have
recently explored a first minimal prototype of a Large Language Model (LLM)-based agent—de-
signed to assist researchers in research software reuse by extracting human-generated installation
instructions from documentation (e.g., GitHub README files), transforming them into structured
sequential steps, and executing them in a virtual environment (so called ETE-Agent ? which
architectural approach is shown in Figure 4).

“The proposed agent is publicly available at https://github.com/carlosug/agent.rse

https://github.com/carlosug/agent.rse/tree/ete-version

Acknowledgments

This work is supported by the Ontology Engineering Group (OEG) under the PhD in Artificial Intelli-
gence Program with Universidad Politécnica de Madrid, and through the exceptional support of the
research team supervisor Dr. Prof. Daniel Garijo and director Dr. Prof. Oscar Corcho. The author would
also like to warmly thank the mentors for their wise and thoughtful comments, which significantly
helped improve the quality and clarity of this work.

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.

References

[1] N.P.Chue Hong, D. S. Katz, M. Barker, A.-L. Lamprecht, C. Martinez, F. E. Psomopoulos, J. Harrow,
L.J. Castro, M. Gruenpeter, P. A. Martinez, T. Honeyman, FAIR Principles for Research Software
(FAIR4RS Principles) (2021). doi:10. 15497 /RDA00068.

[2] C. Utrilla Guerrero, O. Corcho, D. Garijo, Automated Extraction of Research Software Installation
Instructions from README Files: An Initial Analysis, Lecture Notes in Computer Science 14770
LNAI (2024) 114-133. d0i:10.1007/978-3-031-65794-8_8.

[3] H. Gao, C. Treude, M. Zahedi, ’Add more config detail”: A Taxonomy of Installation Instruction
Changes, 2023. URL: http://arxiv.org/abs/2312.03250.

[4] L. Salerno, C. Treude, P. Thongtanunam, P. Thongtatunam, Challenges and Strategies For Novice
Developers, Technical Report, 2024.

[5] S.Yuan, K. Song,J. Chen, X. Tan, Y. Shen, R. Kan, D. Li, D. Yang, EASYTOOL: Enhancing LLM-based
Agents with Concise Tool Instruction, 2024. URL: http://arxiv.org/abs/2401.06201.

[6] M. M. Wagner, W. R. Hogan, J. D. Levander, M. Diller, Towards machine-fair: Representing
software and datasets to facilitate reuse and scientific discovery by machines, Journal of biomedical
informatics 154 (2024) 104647.

[7] P.Naur, B. Randell, Software engineering: Report on a conference by the nato science commitee,
NATO Scientific Affairs Division, Briissel (1968).

[8] R.S. Sutton, A. G. Barto, et al., Reinforcement learning: An introduction, volume 1, MIT press
Cambridge, 1998.

[9] S.J. Russell, P. Norvig, Artificial intelligence: a modern approach, pearson, 2016.

[10] S. M. Narayanan, J. D. Braza, R.-R. Griffiths, A. Bou, G. Wellawatte, M. C. Ramos, L. Mitchener,
S. G. Rodriques, A. D. White, Training a scientific reasoning model for chemistry, arXiv preprint
arXiv:2506.17238 (2025).

[11] Z.Luo, Z. Yang, Z. Xu, W. Yang, X. Du, Llm4sr: A survey on large language models for scientific
research, arXiv preprint arXiv:2501.04306 (2025).

[12] C. Goodwin, S. Woolley, Barriers to device longevity and reuse: A vintage device empirical study,
Journal of Systems and Software 211 (2024) 111991.

[13] M. Karimzadeh, M. M. Hoffman, Top considerations for creating bioinformatics software docu-
mentation, Briefings in Bioinformatics 19 (2018) 693-699. doi:10.1093/bib/bbw134.

[14] N. Shadbolt, T. Berners-Lee, W. Hall, The semantic web revisited, IEEE intelligent systems 21
(2006) 96-101.

[15] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg,
J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, et al., The fair guiding principles for scientific data
management and stewardship, Scientific data 3 (2016) 1-9.

[16] M. Barker, N. P. Chue Hong, D. S. Katz, A. L. Lamprecht, C. Martinez-Ortiz, F. Psomopoulos,
J. Harrow, L. J. Castro, M. Gruenpeter, P. A. Martinez, T. Honeyman, Introducing the FAIR
Principles for research software, Scientific Data 9 (2022). doi:10.1038/s41597-022-01710-x.

http://dx.doi.org/10.15497/RDA00068
http://dx.doi.org/10.1007/978-3-031-65794-8_8
http://arxiv.org/abs/2312.03250
http://arxiv.org/abs/2401.06201
http://dx.doi.org/10.1093/bib/bbw134
http://dx.doi.org/10.1038/s41597-022-01710-x

[17]

[18]

[19]

[20]

[24]

[25]

[26]

[31]
[32]

[33]

[34]
[35]

[36]

M. David, M. Colom, D. Garijo, L. J. Castro, V. Louvet, E. Ronchieri, M. Torquati, L. del Cafio,
L. Cerlane, M. Van den Bossche, I. Campos, R. Di Cosmo, Ensure Software Quality, Technical
Report, 2024. doi:10.5281/ZENODO.10723608.

G. A. Randrianaina, D. E. Khelladi, O. Zendra, M. Acher, Options Matter: Documenting and Fixing
Non-Reproducible Builds in Highly-Configurable Systems (2024).

R. Celebi, J. Rebelo Moreira, A. A. Hassan, S. Ayyar, L. Ridder, T. Kuhn, M. Dumontier, Towards
FAIR protocols and workflows: the OpenPREDICT use case, Peer] Computer Science 6 (2020) e281.
doi:10.7717/peerj-cs.281.

K. Belhajjame, J. Zhao, D. Garijo, M. Gamble, K. Hettne, R. Palma, E. Mina, O. Corcho, J. M. Gémez-
Pérez, S. Bechhofer, G. Klyne, C. Goble, Using a suite of ontologies for preserving workflow-centric
research objects, Journal of Web Semantics 32 (2015) 16—42. URL: https://www.sciencedirect.com/
science/article/pii/S1570826815000049. doi:10.1016/j.websem.2015.01.003.

B. Li, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk, N. A. Kraft, Automatically Documenting
Unit Test Cases, Proceedings - 2016 IEEE International Conference on Software Testing, Verification
and Validation, ICST 2016 (2016) 341-352. doi:10.1109/ICST.2016. 30.

S. Rastkar, G. C. Murphy, G. Murray, Automatic summarization of bug reports, IEEE Transactions
on Software Engineering 40 (2014) 366—380. doi:10.1109/TSE. 2013.2297712.

N. Nikeghbal, A. H. Kargaran, A. Heydarnoori, GIRT-Model: Automated Generation of Issue Report
Templates, Proceedings - 2024 IEEE/ACM,, MSR 2024 (2024). doi:10.1145/3643991.3644906.

G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, K. Vijay-Shanker, Towards automatically generating
summary comments for Java methods, ASE’10 - Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (2010) 43-52. doi:10.1145/1858996.1859006.
Z.Liu, X. Xia, C. Treude, D. Lo, S. Li, Automatic generation of pull request descriptions, Proceedings
- 2019 34th IEEE/ACM International Conference on Automated Software Engineering (2019). URL:
https://dl.acm.org/doi/10.1109/ASE.2019.00026.

L. Cabra-Acela, A. Mojica-Hanke, M. Linares-Vasquez, S. Herbold, On using information retrieval
to recommend machine learning good practices for software engineers, in: Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2023, pp. 2142-2146.

S. Ikeda, €@ Akinori, I. @Raula, G. Kula, K. Matsumoto, An Empirical Study on README contents
for JavaScript Packages (2018). URL: https://www.npmjs.com/package/express.

H. Gao, C. Treude, M. Zahedi, Evaluating Transfer Learning for Simplifying GitHub README:s,
in: Proceedings of the 31st ACM Joint European Software Engineering Conference, 2023. doi:10.
1145/3611643.3616291.

R. P. L. Buse, W. R. Weimer, Automatically documenting program changes, in: Proceedings of the
25th IEEE/ACM International Conference on Automated Software Engineering, Association for
Computing Machinery, 2010. doi:10.1145/1858996.1859005.

H. O. Delicheh, A. Decan, T. Mens, Quantifying Security Issues in Reusable JavaScript Actions
in GitHub Workflows, Proceedings - 2024 IEEE/ACM 21st International Conference on Mining
Software Repositories, MSR 2024 (2024) 692-703. doi:10.1145/3643991.3644899.

M. Pezzé, S. Abrahio, B. Penzenstadler, D. Poshyvanyk, A. Roychoudhury, T. Yue, A 2030 roadmap
for software engineering, ACM Transactions on Software Engineering and Methodology (2025).
A. Ghafarollahi, M. J. Buehler, Sciagents: Automating scientific discovery through multi-agent
intelligent graph reasoning, arXiv preprint arXiv:2409.05556 (2024).

R. Bairi, A. Sonwane, A. Kanade, V. D. C, A. Iyer, S. Parthasarathy, S. Rajamani, B. Ashok, S. Shet,
CodePlan: Repository-level Coding using LLMs and Planning, 2023. URL: http://arxiv.org/abs/
2309.12499.

J. Liu, K. Wang, Y. Chen, X. Peng, Z. Chen, L. Zhang, Y. Lou, Large language model-based agents
for software engineering: A survey, arXiv preprint arXiv:2409.02977 (2024).

I. Bouzenia, P. Devanbu, M. Pradel, Repairagent: An autonomous, llm-based agent for program
repair, arXiv preprint arXiv:2403.17134 (2024).

Y. Yamada, R. T. Lange, C. Lu, S. Hu, C. Lu, J. Foerster, J. Clune, D. Ha, The ai scientist-v2: Workshop-

http://dx.doi.org/10.5281/ZENODO.10723608
http://dx.doi.org/10.7717/peerj-cs.281
https://www.sciencedirect.com/science/article/pii/S1570826815000049
https://www.sciencedirect.com/science/article/pii/S1570826815000049
http://dx.doi.org/10.1016/j.websem.2015.01.003
http://dx.doi.org/10.1109/ICST.2016.30
http://dx.doi.org/10.1109/TSE.2013.2297712
http://dx.doi.org/10.1145/3643991.3644906
http://dx.doi.org/10.1145/1858996.1859006
https://dl.acm.org/doi/10.1109/ASE.2019.00026
https://www.npmjs.com/package/express
http://dx.doi.org/10.1145/3611643.3616291
http://dx.doi.org/10.1145/3611643.3616291
http://dx.doi.org/10.1145/1858996.1859005
http://dx.doi.org/10.1145/3643991.3644899
http://arxiv.org/abs/2309.12499
http://arxiv.org/abs/2309.12499

[37]

level automated scientific discovery via agentic tree search, arXiv preprint arXiv:2504.08066 (2025).
B.Liu, X.Li, J. Zhang, J. Wang, T. He, S. Hong, H. Liu, S. Zhang, K. Song, K. Zhu, et al., Advances and
challenges in foundation agents: From brain-inspired intelligence to evolutionary, collaborative,
and safe systems, arXiv preprint arXiv:2504.01990 (2025).

[38] J. He, C. Treude, D. Lo, LIm-based multi-agent systems for software engineering: Literature review,

[39]

[40]

vision and the road ahead, ACM Transactions on Software Engineering and Methodology (2024).
L. Wang, F. Yang, C. Zhang, J. Lu, J. Qian, S. He, P. Zhao, B. Qiao, R. Huang, S. Qin, et al., Large
action models: From inception to implementation, arXiv preprint arXiv:2412.10047 (2024).

A. Mao, D. Garijo, S. Fakhraei, Somef: A framework for capturing scientific software metadata
from its documentation, in: 2019 IEEE International Conference on Big Data (Big Data), 2019, pp.
3032-3037. doi:10.1109/Bighata47090.2019.9006447.

D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al,,
Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, arXiv preprint
arXiv:2501.12948 (2025).

K. Peffers, T. Tuunanen, M. A. Rothenberger, S. Chatterjee, A design science research methodology
for information systems research, Journal of management information systems 24 (2007) 45-77.

http://dx.doi.org/10.1109/BigData47090.2019.9006447

	1 Introduction
	2 Background and related work
	2.1 Software reuse in the research community
	2.2 Automated approaches for RS reuse from documentation
	2.3 LLMs as Intelligent Assistants

	3 Description of the proposed research
	3.1 Research Problem Statement
	3.2 Research Hypothesis
	3.3 Research Questions
	3.4 Research Objectives
	3.5 Research Methodology

	4 Proposed Research Methods

