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Abstract

As intelligent assistants driven by generative Artificial Intelligent (AI) such as Large Language Model (LLM) have
shown remarkable capabilities in supporting software development tasks, including code generation through
natural language, a critical question arises: how can these intelligent assistants aid in the reuse of research
software from its documentation? This thesis investigates how the research community can benefit from the
LLM revolution, specifically in the context of research software (RS) reuse. To this end, this thesis will propose
a new methodology that enables Al-based intelligent assistants to interpret, reason, plan and act upon reuse-
oriented software documentation—such as README files and procedural guides. By extracting, transforming,
and executing procedural instructions, such intelligent assistants have the potential to reduce cognitive and
technical burdens on researchers, improve the sustainability of RS, and may alleviate certain pressures associated
with modern scientific careers.

Keywords

Research Software Reuse, Multi-agent systems, Intelligent Assistant, Artificial Intelligent

1. Introduction

Today, many researchers are not only generating new knowledge using software but are also increasingly
reusing digital infrastructure—such as tools, software, and services—developed by others. A key
facilitator of this reuse process is human-generated documentation, particularly README files, which
typically provide step-by-step instructions on how to install, configure, and run research software (RS)[1].
These instructions commonly follow established methods—such as package managers, containers, source
builds, and/or setup scripts—intended to reduce friction and facilitate reuse[2, 3]. However, even when
RS is encapsulated in portable environments like Docker containers or Python packages, researchers are
often still required to manually inspect the documentation, make decisions about procedural steps, and
resolve ambiguity. Executing these instructions accurately is not a trivial task: it involves modeling the
structure of the installation process, locating where install commands may break down, and reasoning
through multiple layers of document complexity without standards. These unstructured narratives
present a major obstacle [4] to interpreting and executing instructions by both humans and machines,
ultimately limiting the automation of research software reuse from documentation [5]. As a result,
the full potential of automated research software reuse from documentation cannot be realized until
we understand what set of procedural language processing, reasoning and planning capabilities are
required to enable machines—or Al-based assistants—to effectively read, interpret, execute, and validate
complex reuse instructions contained in human-generated documentation [6]. Here, we tackle this
challenge by exploring a multidimensional approach encompassing these following tasks: (1) extracting
install-related instructions from README files and (2) transforming them into a format that can be
(3) executed by machines at a minimum cost.

The problem of automating software reuse (in general) has long been recognized in the field of Al and
software engineering [7], but has come to prominence recently with the emergence of contemporary
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Figure 1: (a) An example task for reuse assistant: a researcher specifies a software project e.g., by an URL of a git repository,
and the assistant generates an action plan and execute its commands for installation and reuse based on its documentation;
(b) An example of Intelligent Assistant architecture: the shared environment properties, the means of interactions between
assistant and the environment as manifested in the observation and action space, and the assistant components as how an
assistant acts via its policy while tracking the past in memory and how it learns how to plan and act

generative Al, particularly Large Language Models (LLMs). The possibility of using networks of LLM-
based Assistants ! to solve of interacting with documentation, generating code and performing complex
reasoning tasks. These LLM-powered assistants have greatly shown strong potential in automating
scientific workflows [10] and software engineering activities such as bug fixing, test generation, and
code synthesis [11].

Despite these potential advancements, the usage of IAs to automated reuse from documentation
remains an open challenge (central research problem). It requires not only natural language understand-
ing, but also robust planning, disambiguation, and execution capabilities. Documentation—especially
when unstructured, unintelligible, or inconsistent—demands that assistants interpret complex instruc-
tions, fill in implicit semantic knowledge, and reason through a plan or conflicting sequential steps.
Automating this process involves constructing executable representations of intent from loosely defined
human-generated procedural narratives.

To date, there has been no research study of how we can develop and evaluate a method to aid in the
RS reuse process from its documentation automatically. This gap produces a substantial obstacle for
researchers who need a reliable and scalable solution for reusing RS across a wide variety of domains.
Given the critical role that software plays in the scientific research-and the growing serious possibility of
using networks of Al-based agents (particularly those equipped by contemporary LLMs), this research
seeks to answer a key question: how can we develop and evaluate an Al-based Intelligent Assistant
methodology capable of automatically supporting the reuse of research software exclusively from its
documentation?

2. Background and related work

Prior related work can be divided under three major topics: Software reuse in the research community;,
automated approaches for RS reuse, and LLMs as Intelligent Assistants:

2.1. Software reuse in the research community

The benefits of reusing software (e.g., reducing duplication of effort) —are broadly acknowledged since
early days in the software engineering field [7]. In spite of its promise, RS reuse has not become
standard practice in RS development yet [12, 13]. Systematic efforts to enhance the reusability of
digital scientific objects have evolved over time. In early 2000s, the Semantic Web initiative, under the
power movement of World Wide Web Consortium (W3C), introduced standards such as the Resource
Description Framework (RDF) and the Web Ontology Language (OWL) [14] to convert heterogeneous

'In this thesis, intelligent assistant (IA) (or Agent) is a computer system endowed with artificial intelligence and/or machine
learning techniques capable of intelligently assisting researchers [8, 9]



knowledge across the web infrastructure into machine-readable format. Following these foundations,
the 2014 Lorentz Conference on the FAIR Principles—Findable, Accessible, Interoperable, and Reusable—
marked a single milestone in aligning good practices for representing digital scientific objects with the
aim of solving their reuse problem [15]. In 2022, the research software community adapted the FAIR
principles to create FAIR Principles for research software [16] in order to maximize its value.

Over a decade later, many individuals in the research community still regards RS reuse as potentially a
powerful means of improving the research productivity and improving software engineering practices in
scientific domains [17]. Among others, research initiatives such as Codemeta, SOFAIR, ADORE.software
and EVERSE have emerged recently to enhance research software reuse by standardizing metadata,
automating lifecycle management, and promoting software quality.

2.2. Automated approaches for RS reuse from documentation

In an effort to reduce human intervention in the reuse process, understanding how to enable machines
to learn effective representation from natural language have always enjoyed academic interest using
formal methods [4], traditional machine learning models [18], symbolic approaches [19, 20], and, more
recently, generative models [2]. Most prior research efforts on the development of automated approaches
for supporting software documentation tasks are focused on generating unit test [21], bugs [22] and
issue [23, 24] reports with summarization techniques, generating pull requests [25], recommending
good practices for ML [26], classifying README content [27] and its simplification [28], documenting
program changes [29] as well as checking conflicts and libraries vulnerabilities [30].

2.3. LLMs as Intelligent Assistants

Recent work has initiated to explore the power of LLM-based Intelligent Assistants in software engineer-
ing tasks [31] and scientific discovery [32]. Notable among these are typically repository-level tasks [33]
that aim to exploit the vast amount of code openly available in repositories. Several research projects
explore automated solutions to generate unit test [21], bugs [22] and issue [24] reports with summariza-
tion techniques for README files [28] as well as checking conflicts and libraries vulnerabilities [30].
However, a key research challenge remains insufficiently understood, which is how suitable are LLM-
powered agents to assist RS reuse from documentation. Recent work has initiated to explore the power
of LLM-based IAs in software engineering tasks [34, 35] and scientific discovery [32, 11, 36]. Notable
among these are typically classified as LLM-based using a single or multi-agent approach [35, 37, 38]. A
newly research trend is shown into the transition from LLMs to Large Action Models (LAM) designed
for action generation and execution in real-world scenario is promising, albeit robust empirical studies
and formal evaluation framework remains an open question [39].

3. Description of the proposed research

3.1. Research Problem Statement

We define the machine problem of automatic reuse of Research Software (RS) as follows: given access
to openly available RS documentation (e.g., a URL to a public Git repository), what actions should a
system—such as an artificial intelligent assistant—perform to automatically convert human-generated
installation instructions into actionable, machine-executable commands, and execute them within a
virtual environment?

Unlike prior work that addresses isolated challenges or narrow tasks, our objective is to explore what
kind of grounded language processing model is needed for enabling machines to support researchers in
the reuse-tasks of RS, covering the full range of problems summarized in Table 1. A robust solution
to enable RS reuse at scale would need to proceed as follows: to overcome the lack of standardization
in RS documentation, including inconsistent (or siloed) machinery reuse-procedural narratives (P1
and P2), an machine first would need to extract all software metadata and alternative reuse methods
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Table 1
Problems that machines need to address to accelerate scientific discovery through reuse of RS from documentation (e.g., README files):
Brief Explanations and representative prior work.

id  Problem Explanation Prior
Work
P1  Unstructured documenta- Machines lack a formal representation or efficient algorithm to extract ~ [40]
tion install, configure, and execute commands reliably.
P2 Idiosyncrasies in procedural  If one install-step in a procedure is not machinery-consumable, then 3]
narratives these exceptions must be handled, and automation is harder or impos-
sible.
P3  Complex documentation This complexity requires substantial additional capabilities for ma-  [35]

chines (managing methods, dependencies, configurations robustly
across systems).

P4 Lacking instruct-to-action  No structured representation linking natural-language instructions to  [41]
mapping concise machine operations, preventing robust reuse workflow.

described in the README (and other files), then transforms each method’s sequence of procedural
steps into a structured format. To tackle P3 (e.g., automation in managing complex environments and
configurations) and P4 (e.g., automated solutions for execution of RS), the research community utilises
continuous and development solutions such as Github-based features; however these are relying on
permission and might not be fully automated. Therefore, a machine would need to provide detailed
thinking process (e.g., adopting the approach introduced in our previous work [2]: the PlanStep in
which a machine first breaks down a complex install methods found in a README file such “from
source” into several subtasks, and then apply reasoning to generate a plan for each subtask in a fixed,
sequential order) before generating the two targeted outputs: i) an isolated environment (e.g., via
Docker or virtual environments) and another to configure and install the RS within that environment.
Finally, the machine should evaluate outcomes concerning correctness, reliability, and accuracy (see
Figure 1).

3.2. Research Hypothesis

In light of the problems and potential solutions outlined above, the following central research hypothesis
is proposed:

“An Intelligent Assistant, powered by Al methods, particularly Large Language Models, can be designed
to autonomously interpret, reason and act upon research software documentation—such as README
files—by extracting, transforming, and executing procedural instructions. The assistant can generalize
across domains by modeling reuse tasks within documentation as sequences of machine commands and
developing automation strategies to execute them accurately.”

3.3. Research Questions
The main research question (RQ) addressed by this thesis can be formulated as follows:

RQ: How can we develop and evaluate an Al-based Intelligent Assistant that is capable of automatically
supporting the reuse of research software exclusively from its documentation?

We further decompose the main RQ into various sub-questions (Sub-RQs):

+ Sub-RQ1: What Al-based techniques and methodologies are suitable for automating the extrac-
tion, transformation, and execution of reuse instructions from research software documentation?

+ Sub-RQ2: How can these techniques and methodologies be evaluated considering the hierarchical
structure of reuse tasks and the complexity of documentation?



+ Sub-RQ3: What system architecture is effective for enabling Al-based assistants to interpret,
reason, plan, and execute reuse tasks from research software documentation?

« Sub-RQ4: What evaluation framework and quality indicators are needed to assess the Al-based
assistant’s performance across diverse software and documentation types?

3.4. Research Objectives

To address the main RQ and subsequent sub-research questions (Sub-RQs), this thesis will aim to
achieve the following objectives (depicted in Figure 2): (RO1) Review and catalog existing methods
that support software reuse from documentation, including their core techniques and evaluation
strategies; (RO2) Develop and implement an Al-based Intelligent Assistant methodology capable of
autonomously assisting with a range of reuse tasks from its documentation; and (RO3) Evaluate and
validate empirically the methodology to assess its effectiveness in executing reuse-related tasks at scale
as well as defining and applying relevant quality indicators to research software documentation and
(re)-usability.
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Figure 2: Research Objectives (RO’s) and its proposed empirical methods (grey-scale).

3.5. Research Methodology

To tackle the above research questions, we apply the Design Science Research (DSR) methodology [42],
which relies on an iterative process of investigating the problem, generating a solution, implementing it,
and evaluating its effectiveness in a research context. Our research objectives previously presented, align
with the DSR approach, as it strives to create a method designed to tackle the challenge of automating
reuse processes in research software from documentation.

In our research context, this DSR methodology is structured into three unique phases (Ps) as illustrated
in Figure 3: (1) Review and collect prior work: a comprehensive systematic literature review on
existing methods that support software reuse from documentation, including their core techniques
and evaluation strategies; (2) design and implement an Al-based Intelligent Assistant framework
capable of autonomously assisting with a range of reuse tasks (e.g., installation, configuration and
execution of research software); (3) Evaluation and Validation: empirically evaluate and validate the
methodology to assess its effectiveness in executing reuse-related tasks at scale as well as defining and
applying relevant quality indicators to research software documentation and (re)-usability.
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Figure 3: PhD research workflow illustrating the modular stages and their corresponding sub-research questions
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4. Proposed Research Methods

This thesis investigates the feasibility of adapting Al-based techniques for the reuse scenario from
documentation, and how to evaluate them. To answer the previously defined research question, we
propose the following empirical methods:

1. Systematic Literature Review: This review will provide a foundational and comprehensive
overview of existing methods for automating research software reuse from documentation,
propose a taxonomy of reuse tasks to be accomplished by an assistant, and define the evaluation
criteria.

2. Quantitative Analysis and Mining Study: The goal of this study is to characterise research
software documentation complexity, extract reuse-relevant elements, identify their properties
such as installation plans and steps associated, and formulate a taxonomy of tasks that reflect
real-world reuse activities across different scientific domains. Based on these findings, we will
create a benchmark and evaluation corpus for assessing intelligent assistants in reuse scenarios.
This benchmark will consist of an automated approach to annotate software documentation in
real-world reuse scenarios. It is expected to use this benchmark to evaluate task performance in
areas such as instruction extraction, interpretation, planning, reasoning and automated execution.

3. Experiments: The goal of this computational experiment is to evaluate the suitability of Al-based
Intelligent Assistants to aid in the reuse-task of researchers in real-world scenarios. We have
recently explored a first minimal prototype of a Large Language Model (LLM)-based agent—de-
signed to assist researchers in research software reuse by extracting human-generated installation
instructions from documentation (e.g., GitHub README files), transforming them into structured
sequential steps, and executing them in a virtual environment (so called ETE-Agent ? which
architectural approach is shown in Figure 4).

“The proposed agent is publicly available at https://github.com/carlosug/agent.rse
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