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Abstract

Implicit communication plays a crucial role in human collaboration, where contextual cues, such as intentions
and situational awareness, foster shared understanding and seamless coordination. However, translating these
capabilities to robots in collaborative tasks remains challenging. This work investigates the role of implicit com-
munication in human-robot teams through three integrated studies. First, we analyse how linguistic implicatures
influence performance and user experience in human-robot physical collaboration. Second, we explore how
multi-modal implicit cues enhance team effectiveness and alignment when used proactively and reactively by
robots. Building on these findings, the final phase focuses on designing and evaluating a multi-LLM robotics
system that learns and adapts human teammates’ communication strategies. By advancing robots’ capacity
to interpret and generate contextually appropriate implicatures, this research bridges gaps in human-robot
collaboration, enabling the natural establishment, maintenance, and dynamic adaptation of common grounds.
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1. Background

Collaborative robots (cobots) have demonstrated the potential to assist in professional and personal
contexts, though their integration as co-workers in daily human activities is still evolving and expanding.
A crucial aspect of human-robot collaboration (HRC) is the seamless coordination between humans
and robots, where effective and natural communication plays a pivotal role in ensuring successful
collaboration.

In the broader nature of human communication, much of communication operates implicitly and relies
heavily on subtle cues to convey intentions and achieve goals [1]. Drawing from linguistic pragmatics,
such cues are termed implicatures, context-dependent meanings inferred by receivers [2]. Not limited
to verbal expressions, for example, applause may overtly signal approval but also implicitly suggest the
conclusion of an event [3]. In human-robot interaction (HRI), classifying implicit communication is
often oversimplified (e.g., equating gaze with “implicit” and speech with “explicit” [4, 5]). This work
adopts a nuanced perspective: implicit communication is a way to convey latent information that
receivers can interpret under the same mutual understanding.

Implicit communication is essential in collaborative tasks in which teammates iteratively build shared
understanding over time [6, 7, 8]. Drawing from Clark’s common ground theory, human collaboration
relies on the establishment, maintenance, and dynamic adaptation of common ground, which is the
mutual knowledge, beliefs, and assumptions that underpin shared intentionality [9, 10]. Common
ground is not static; it evolves through continuous, bidirectional efforts to align understanding during
interactions. This research explores how implicit communication facilitates the three steps of the
grounding process, thus enhancing human-robot collaboration.

A notable example of implicit communication is the use of indirect speech act (ISA), a pragmatic
feature that requires the listener to infer the speaker’s intended meaning from related context [11]. For
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Let's move on to the third column. And the last one. The blue block needs to .... Oh, actually. Wait.

Figure 1: This figure presents images from our experiment, featuring representative participant utterances to
illustrate the types of requests used. The top left image depicts a direct speech act, while the rest of the images
showcase various indirect speech acts.

instance, the statement “I'm cold” can imply a request to close the window, depending on the situation.
ISAs exemplify how humans efficiently establish common ground, as they rely on mutual knowledge
and situational context while enabling listeners to actively infer unstated goals. Studies suggest
humans tend to use implicit ways to convey intentions when interacting with robots at frequencies
similar to those used with other humans [12, 13]. However, in real-world collaboration scenarios, the
appropriateness of implicit intentions is less obvious due to the lack of clarity. While ISAs hold promise
for fostering natural interaction, there remains a gap in empirical evidence regarding their effectiveness
in establishing common ground and improving team performance and user experience, particularly in
dynamic, physically human-robot collaborative settings.

Prior work in HRI has focused on implicit human-to-robot communication [14, 15, 16]. However,
collaboration thrives on bidirectional flow, where both partners contribute to sustaining shared un-
derstanding [17, 18]. There is still a need for further exploration of how robots can convey implicit
information to humans and how this affects HRC [19, 20]. To address this gap, our next work investi-
gates how robots can leverage multi-modal implicit cues to serve dual purposes, including proactively
conveying task-relevant context and reactively backchannelling to acknowledge human intent. We
examine how these cues influence both objective team outcomes and subjective human perceptions,
and understand the establishment and maintenance of common ground.

Building on the understanding of implicit communication, we aim to enhance robotic systems by
integrating multimodal implicit cue interpretation and generation, enabling robots to dynamically
adapt to evolving common ground. By leveraging multimodal large language models (LLM) that infer
different modalities such as speech, gaze, and motion, robots can potentially improve their ability to
understand and respond to implicit intentions in a more nuanced manner. Additionally, by adapting to
human behaviours and learning to generate appropriate implicit cues themselves, robots may become
more adept at facilitating natural, bidirectional communication. However, relying on a single LLM
presents several challenges. Due to knowledge gaps or misinformation, LLM outputs may suffer from
hallucination or bias [21, 22]. A cooperative approach that combines decisions from multiple LLMs
could enhance the robustness and reliability of the system [23]. Furthermore, when a single LLM is
tasked with complex scenarios, extensive fine-tuning is required for different task components (e.g.,
perception, planning, execution), along with integration of external tools (e.g., API calls) [24, 25]. By
adopting a multi-LLM approach, where each LLM focuses on a specific component, robots could extend
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Figure 2: (a) This figure illustrates the experiment setup. The participant, robot, and experimenter 1 were all
present in the same room. The participant and robot were seated on opposite sides of a table, with the shared
workspace located in the centre. Experimenter 1 sat next to the robot, near the emergency button, and operated
the robot’s speech-WoZ interface. Experimenter 2 was positioned behind a one-side mirror, allowing for a clear
view of the room, and was responsible for teleoperating the robot’s arm movements. (b) This figure shows the
experiment procedure. Each participant first completed a pre-questionnaire before being assigned to either the
ISA or non-ISA group. The participant then performed three tasks with the robot in a counter-balanced order.
Before each task, participants watched a tutorial video and read a task description. After completing each task,
they filled out a post-task questionnaire. The experiment concluded with a semi-structured interview.

their implicit communication capabilities beyond basic tasks like object grasping to more complex,
dynamic, and collaborative manipulations [26] and also facilitate easier model updates for long-term
use [27].

In summary, the contribution of this research lies in enhancing human-robot collaboration through
implicit communication, grounded in Clark’s theory of common ground, by implementing a three-
phase approach. We present preliminary findings from the first phase, demonstrating how robots’
interpretation of ISAs improves task efficiency and user experience in collaborative manipulation tasks.
A full analysis and discussion of these results are detailed in our full paper [28]. Future work will extend
to bidirectional implicit communication (phase 2) and adaptive multi-LLM systems (phase 3), aiming to
refine robots’ ability to sustain and evolve common ground in dynamic settings. By bridging the gap
between rigid, explicit robot communication and the fluidity of human teamwork, this research paves
the way for cobots that integrate seamlessly into real-world collaborative environments.

2. Methodology

This research is based on lab empirical studies that involved a robot and a participant. We use TIAGo
(Figure 2(a)), a mobile manipulator robot with anthropomorphic features, including a 2 Degrees of
Freedom head, neck, torso, and 7 Degrees of Freedom arm. TIAGo is equipped with an RGB-D camera,
stereo microphone, and speaker that is suitable for HRI research and tabletop manipulation tasks [29].
We built a motion teleoperation interface and speech control software using the Robotics Operating
System (ROS) and the TIAGo APIL The arm actions are implemented by inverse kinematics, which
calculates the joint configuration based on the desired Cartesian coordinates of the end effector [30].
These customised tools can facilitate experiments to control the robot in pilots and user studies.

For the first phase, we conducted a lab study (Figure 1), engaging a participant and a robot in three
collaborative physical tasks, to investigate the impacts of linguistic implicatures on HRC. Specifically,
we aimed to answer these research questions: (RQ1) How does a robot’s capability to understand
indirect speech acts influence the perceived team’s performance? (RQ1.1) How does a robot’s capability



Table 1
The key results from CLMM analysis. Italics are covariates.

Fixed Effects Estimates  Std Error  95% Cl z p-value
Team Fluency Speech Mode (Non-ISA) 0.961 0.403 0.17 - 1.751 2.382  0.017*
Robot (No) 0.004 0.110 -0.211 - 0.218 0.032 0.974
Voice Assistant (Never) 0.129 0.210 -0.283 - 0.541 0.615  0.538
Physical Collaborative Tasks (Never) 0.193 0.174 -0.147 - 0533  1.112  0.266
Goal Alignment Speech Mode (Non-ISA) 2.309 0.656 1.023-3596 3.518  <0.001***
Robot (No) 0.120 0.170 -0.214 - 0.453 0.701 0.483
Voice Assistant (Never) -0.099 0.316 -0.719 - 0.521  -0.312  0.755
Physical Collaborative Tasks (Never)  0.536 0.270 0.007 - 1.064  1.985  0.047*
Performance Trust ~ Speech Mode (Non-ISA) 1.105 0.493 0.138 - 2.072  2.240  0.025"
Robot (No) -0.041 0.136 -0.307 - 0.226  -0.298 0.766
Voice Assistant (Never) 0.231 0.248 -0.255-0.717 0932  0.351
Physical Collaborative Tasks (Never)  0.400 0.211 -0.014 - 0.814 1.892  0.058
Anthropomorphism  Speech Mode (Non-ISA) 2.708 0.674 1.387 - 4.03 4.016  <0.001***
Robot (No) -0.168 0.184 -0.528 - 0.192 -0.915 0.360
Voice Assistant (Never) 0.031 0.340 -0.635 - 0.697 0.092  0.927
Physical Collaborative Tasks (Never) -0.111 0.288 -0.676 — 0.454 -0.385 0.701

to understand indirect speech acts influence the fluency of human-robot teamwork? (RQ1.2) How does
a robot’s capability to understand indirect speech acts influence the establishment of goal alignment
among the human-robot team? (RQ2) How does a robot’s capability to understand indirect speech
acts influence a human teammate’s trust in the robot’s performance? (RQ3) How does a robot’s
capability to understand indirect speech acts influence a human teammate’s perception of the robot’s
anthropomorphism?

The experiment involved 36 participants, who were divided into two groups: one interacting with
a robot capable of interpreting ISAs and another interacting with a robot that could only respond to
direct commands. Each participant engaged in three tasks: assembly, sorting, and polishing. This was
a Wizard-of-Oz (WoZ) study and employed a mixed-methods approach, using both quantitative data
(team fluency [31], goal alignment [31], performance trust [32], and robot anthropomorphism [33]
questionnaires) and qualitative data (semi-structured interviews). Cumulative Link Mixed Models
(CLMMs) via the “ordinal” package in R [34] have been used for quantitative data analysis. This analysis
is appropriate given the ordinal nature of dependent variables, while also allowing us to account for
effects for each participant, the type of tasks, and each sub-item of the used scales. The interview results
were transcribed and analysed using thematic analysis [35] by two researchers. After individually
coding the transcripts and identifying initial themes, they discussed any discrepancies and refined the
themes through consensus. The experiment setup and the procedure are shown in Figure 2.

3. Preliminary Results

Our findings demonstrate that the robot’s capacity to interpret linguistic implicatures plays a pivotal
role in establishing common ground during HRC, although its effectiveness can vary depending on
the context. The quantitative results show the robot’s ability to comprehend implicatures significantly
enhances participants’ perceived team fluency, goal alignment, trust, and anthropomorphism Table 1.
Moreover, this alignment of understanding fosters a sense of joint agency, where humans perceive the
robot not as a passive tool but as an active partner engaged in co-constructing shared context.

Other qualitative results show that participants felt more confident in having established common
ground with the robot when they successfully used ISAs to communicate. These indirect requests
often emerged subconsciously, reflecting a natural inclination to leverage shared context, such as
prior commands, environmental affordance (e.g., object locations), and multimodal cues (e.g., gestures).
However, the effectiveness of ISAs can be task- and context-dependent. While indirect requests enhanced
trust in ideal scenarios, participants expressed concerns about error-prone real-world settings, where
misinterpretations could lead to mistrust.



These insights highlight the inherent limitations of relying solely on explicit command-based interac-
tions, which lack the subtlety required for establishing shared understanding and the sense of teaming.
The results also emphasise the importance of using implicit communication in a contextually adaptive
and appropriate manner. Therefore, the careful integration of explicit information and implicatures in
verbal communication emerges as a critical factor in optimising the performance and overall experience
of human-robot collaboration.

4. Future Work

Based on the findings from phase one, where humans and robots established common ground by
linguistic implicatures, phase two investigates how robots can maintain shared understanding through
bidirectional implicit communication in physical collaborative tasks. We evaluate three interaction
paradigms: 1) when the robot proactively uses implicatures to convey contextual information; 2) when
the robot uses implicit cues as backchanneling to respond to human-implied intentions. Specifically,
we compare four methods of communication: explicit speech, implicit speech, explicit motion, and
implicit motion, across two scenarios: human-lead (robot backchannels) and robot-lead (robot initiates).
Metrics include team fluency, efficiency, goal alignment, and trust. Overall, this phase aims to identify
how implicit cues maintain common ground in physical collaborative tasks and how mismatched
communication disrupt collaboration.

Phase three integrates insights from phases one and two into designing and evaluating a robotic
system that employs cooperative multimodal multi-LLMs for human-robot collaborative manipulation
tasks. In this system, each LLM will be initialised from a pre-trained base model and progressively
fine-tuned for distinct roles, such as interaction perceiver, interaction generator, environment perceiver,
task planner, and executor. The LLMs will cooperate to generate responses for each role, mitigating
issues such as hallucinations. A user experiment will compare the performance of the multi-LLM
system with that of a single LLM system on a simple pick-and-place task (low ambiguity) and a complex
manipulation task (dynamic context shifts). The system evaluation will include both quantitative metrics,
such as response time and task success rate, and qualitative analysis of failure cases. Additionally,
we will assess the interaction through quantitative measures, including team fluency, efficiency, goal
alignment, and trust, alongside qualitative insights into human perception of how effectively the system
adapts to common ground. This phase bridges the iterative establishment and maintenance of shared
understanding with real-time adaptation, advancing robots from rigid collaborators to partners capable
of fluid, human-like coordination.

5. Conclusion

This research enhances human-robot collaboration by integrating implicit communication through three
phases, guided by Clark’s common ground theory. By advancing robots’ ability to establish, maintain,
and dynamically adapt shared understanding through multimodal implicit cues, we aim to enable more
natural and context-aware teamwork. Our current findings demonstrate that implicit communication
fosters the establishment of common ground, improving both team performance and user experience.
Future work will explore how robots can maintain alignment using multimodal cues and dynamically
adapt their strategies through multi-LLM architectures, ensuring robust collaboration in complex real-
world environments. This research aims to transition HRC from rigid, direct communication to natural,
nuanced, yet effective communication, ensuring adaptability and inclusivity for diverse populations in
dynamic real-world environments.

6. Declaration on Generative Al

During the preparation of this work, the author(s) used ChatGPT and Grammarly to check grammar
and spelling. After using this tool/service, the author(s) reviewed and edited the content as needed and



take(s) full responsibility for the publication’s content.
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