CEUR-WS.org/Vol-4101/paper6.pdf

CEUR
E Workshop
Proceedings

published 2025-11-20

Towards a Hybrid LLM/Model-Based Architecture for
Robot Coaching: An Instance of Human-Machine
Collaboration

Luigi Gargioni®®*, Rachid Alami? and Daniela Fogli’

TUniversity of Brescia - Department of Information Engineering, Via Branze 38, Brescia, 25123, Italy
2LAAS-CNRS, 7 Av. du Colonel Roche, Toulouse, 31400, France

Abstract

Human-Robot Collaboration (HRC) presents significant challenges in assessing situations correctly, adapting
robotic behavior to human intentions, ensuring explainability, pertinence, and acceptability, and managing
uncertainty. Traditional model-based approaches offer reliability but struggle with human unpredictability and
approximate humans with specific models that do not consider all the possible situations. At the same time,
probabilistic methods like Large Language Models (LLMs) provide adaptability but lack deterministic guarantees.
This paper proposes a hybrid architecture that integrates structured techniques with the flexibility of LLMs to
enhance robot coaching in dynamic environments. By bridging deterministic and probabilistic techniques, our
architecture aims to advance HRC towards safer, more transparent, flexible, and adaptive interactions. The paper
provides a detailed description of the framework’s specifications; however, it should be noted that it has not yet
been fully implemented.
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1. Introduction

Human-Robot Collaboration (HRC) is a multidisciplinary research area that studies and designs interac-
tions between humans and robots. This field encompasses principles from artificial intelligence, robotics,
cognitive science, psychology, and human factors engineering to create systems that enable natural,
effective, and intuitive collaboration between humans and autonomous machines. As robots become
increasingly integrated into everyday life, from industrial automation [1, 2] to personal assistance and
healthcare [3, 4], ensuring effective collaboration between humans and robots is crucial. However,
HRC presents significant challenges beyond conventional automation. It involves robots and humans
working together to achieve common goals, requiring advanced reasoning, planning, and adaptability
mechanisms to ensure seamless cooperation and effective task completion.

One of the primary challenges in HRC is enabling machines to reason about human beliefs and
intentions and adapt their behavior accordingly. Unlike traditional automation, where predefined rules
govern robot actions, effective HRC demands that robots infer and respond dynamically to human
actions, preferences, and situational changes. Another critical aspect is the ability of robots to plan and
coordinate their actions with humans in a way that ensures legibility, explainability, and acceptability.

Several contributions in the literature address the challenges of creating more capable and adaptive
robots by exploring control architectures and cognitive-interactive systems(5, 6, 7]. These systems
are designed to integrate decisional and functional components into a unified structure that efficiently
manages the flow of information. The decisional components typically involve higher-level processes
such as situation assessment and planning, which are crucial for the robot’s ability to make decisions
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based on the presence of the human and the surrounding environment [8, 9]. On the other hand,
functional components, including perception and action, allow the robot to interact with the physical
world and respond to its surroundings in real-time [10, 11]. The complexity lies in organizing these
various components into a coherent architecture that can effectively handle the diverse needs of the
system. A limitation of these architectures is that they rely on models of human beliefs, intentions, and
preferences to guide interaction, even though human behavior is inherently unpredictable and difficult
to model with precision. This fundamental challenge restricts the system’s ability to fully anticipate
and adapt to human actions, introducing a layer of uncertainty that remains difficult to overcome.

Traditional control architectures often rely on static models of human intentions and behaviors,
which can limit their capacity to adapt to rapidly changing contexts. In contrast, cognitive frameworks
incorporating belief management and Theory of Mind (ToM) offer a more flexible approach by allowing
robots to model and interpret the mental states of human agents [12, 13]. Indeed, it is important to
endow the robot with the ability to permanently estimate the humans beliefs, to reason about them,
use them to predict human decisions and actions, and to act accordingly [14, 15, 16].

In addition to control architectures, several planning schemes have been proposed to facilitate the
synthesis of action plans for achieving collaborative tasks between humans and machines [17, 18, 19].
These planning systems are designed to allow robots to generate effective action plans while working
in tandem with human counterparts. The key challenge in these systems is ensuring that the generated
plans account for both the robot’s capabilities and the human’s behaviors and expectations. Most
planning systems, including adaptation or learning mechanisms [20], are fundamentally model-based.
They rely on pre-defined models of the human, the task at hand, and the interaction between the human
and the machine. These models are crucial for predicting the human’s actions, understanding their
intentions, and anticipating the evolution of the task. However, due to the inherent unpredictability
of human behavior, uncertainty plays a significant role in these systems. A variety of sophisticated
methods have been proposed to address such uncertainty. Markov Decision Processes (MDPs) [21] and
Partially Observable Markov Decision Processes (POMDPs) [22] are widely used to model uncertainty
in observation and estimate the effects of actions. MDPs are helpful when the outcomes of actions are
uncertain, and the decision-making process needs to account for immediate and future rewards. POMDPs
extend this framework by incorporating scenarios where the robot has incomplete information about
the environment or the human’s state, often in human-robot collaborations. Furthermore, epistemic
planning models the belief divergence between the robot and the human [23]. By considering the
knowledge each agent has about the other’s beliefs and intentions, epistemic planning helps manage
the coordination, ensuring more seamless collaboration between the human and the machine. Other
contributions are based on non-deterministic planning schemes where the human decisions and actions
are dealt with as contingent [24]. Also, ethical planning is an interesting approach since it ensures the
production of a plan that satisfies ethical properties [25].

Despite these advancements, existing approaches struggle with the intrinsic difficulty of mind reading
and the impossibility of representing human beliefs and decisional processes, making it difficult for
robots to interpret complex or nuanced human intentions. The efficacy of these methodologies is
contingent upon an accurate model of the environment, the task, and possible ways of accomplishing
the task. However, developing a robust model of the human participant remains a significant challenge
due to the inherent unpredictability of human behavior.

To address these limitations, integrating Large Language Models (LLMs) offers a promising direc-
tion. These models can significantly expand the range of situations that robots can handle, allowing
for more flexible specifications concerning explainability and acceptability. By leveraging common
sense reasoning and contextual understanding, LLMs can help robots interpret human inputs and
the surrounding environment, infer unspoken intentions, and generate adaptive responses that align
with human expectations. However, a fully probabilistic approach remains insufficient for ensuring
reliability and safety in HRC. It is crucial to design an architecture where the plan has to be validated
and key aspects of the system, such as safety constraints and ethical considerations, are explicitly
defined and secured. Given the strengths and limitations of traditional architectures and planning
approaches and the emerging capabilities and challenges associated with LLMs, this paper explores



a hybrid framework that integrates the structured reliability of deterministic models with the adapt-
ability, common sense, and contextual reasoning offered by LLMs. In this context, hybrid refers to the
combination of deterministic techniques, which provide formal guarantees and rule-based precision,
with non-deterministic, probabilistic methods that enable learning-driven adaptability and robustness
in uncertain environments.

In this work, we explore the pertinence of a hybrid architecture based on LLMs and deterministic
approaches to enhance task execution, adaptability, and user interaction in HRC while ensuring that
the decisions and actions of the machine are safe and pertinent.

2. A Hybrid Approach

HRC presents various challenges, ranging from deterministic task execution to highly dynamic and
ambiguous human behaviors. In this context, the goal is defined and shared with the human (i.e., Human-
Robot Joint Action [26]), ensuring that both the robot and the human share a common understanding
of the desired outcome and can contribute to reaching it. This shared goal guides the robot’s actions
and decisions, aligning its behavior with human expectations. Furthermore, a task refers to a specific
activity that the robot and the human have to perform to achieve a specific goal, which can vary in
complexity from simple, predefined operations to more adaptive and interactive behaviors requiring
real-time situation assessment. The decision process is essential because, even if the task is well
specified, there are different ways to reach the objective. However, certain assumptions are present
in this context. The human and the robot are inherently different, with the robot’s role assisting the
human to accomplish the task effectively (i.e., robot coaching). Furthermore, human is regarded as an
unpredictable entity, yet it is presumed that they will collaborate with the robot and will not deceive it
with malicious intent. Both the robot and the human participate in the task, employing multimodal
verbal interaction to support the successful achievement of the objective. A hybrid approach can
integrate these deterministic and probabilistic methodologies, ensuring robustness in execution while
maintaining adaptability in complex and evolving situations. The architecture in Figure 1 is designed to
follow the concepts described in the previous section.

It is organized into interconnected modules that work collaboratively to ensure seamless interaction,
reliable task execution, and robust adaptability to evolving scenarios. It is interesting to point out in
which modules a deterministic approach is used (i.e., green rectangle and blue cloud) and in which an
LLM is used (i.e., yellow hexagons) and to explain the reasons for this in each case.

The subsequent section delineates the fundamental modules of the architecture, with each module
playing a pivotal role in the processing and execution of designated tasks. These modules transform
unstructured information into actionable outputs, ensuring seamless interaction between the user, the
environment, and the robotic system.

+ Vector Database: The vector database is the central knowledge repository, storing embeddings
derived from unstructured information (e.g., information about the human, the task, and the
environment). It can also be enriched by knowledge gained from interactions (e.g., human
preferences emerged from the interaction). The database stores relevant embeddings to provide
information for defining the task and supporting the task progress checking.

« Human-Robot Task Synthesizer: This module leverages an LLM and Retrieval-Augmented
Generation (RAG) to translate unstructured information from the Vector Database into structured
tasks. This step is critical to move from unstructured information, such as natural language, to a
structured task plan (i.e., JSON format) that can be used programmatically, either by deterministic
or probabilistic methods. This is also the starting point of the architecture workflow.

» Task and Situation Assessment: The Task and Situation Assessment module is the high-level
control unit, parsing the structured task, interpreting the task and human state, and human verbal
interaction. Thanks to a rule-based approach, it manages the workflow and the execution of the
other modules. For example, it is responsible for receiving information from the environment and
the human and passing it to the Human-Robot Task Progress module to check whether the status
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Figure 1: The proposed Hybrid Architecture

of the task has been updated or to check whether the task has been completed and update the
vector database with new knowledge (e.g., human preferences and behavior) from the interaction
with the human and the progress of the task. This module updates the state of the world, the
task, and the beliefs of the human and their preferences, behavior, and goals.

« Human-Robot Task Progress: This module leverages an LLM to monitor task execution and
ensure that the task’s progression aligns with predefined objectives. This module aims to update
the plan status according to the information received and what to do next. The flexibility of the
architecture stems from the absence of a predefined algorithm governing task evolution, thereby
avoiding excessive rigidity and enhancing adaptability to dynamic conditions. The Human-
Robot Task Progress is also responsible for checking the validity of the plan through Progress
Checking function. This function employs RAG to retrieve complementary information or verify
pre-declared ones from the Vector Database, thereby ensuring the validity and compliance of
certain Human-Robot Task Progress plan properties. This iterative loop ensures task reliability
and completion. The Progress Checking function is very important to provide robustness to
errors that may appear from the Human-Robot Task Progress module.

+ Robot Perception: The Robot Perception module exploits an LLM, specifically a Visual Language
Model (VLM), to interpret images, retrieve situational data from the environment, including task
and human state, and provide continuous feedback to the situation assessment process. This
model is characterized by its ability to draw on general knowledge and apply common sense,
enabling it to consistently provide helpful information that facilitates the progression of the task.

» Robot Effector: The Robot Effector module executes actions and communicates with the human
through vocal responses and physical actions. This module ensures real-world applicability and
contextual responsiveness. As far as the execution of voice commands for the user is concerned,



the robot’s speakers will simply be used. Then, when it comes to performing actions in the
environment, the robot will have to rely on an integrated motion planner.

The system initialization begins with collecting unstructured information, which is reported in
natural language, converted into embeddings, and added to the vector database. At the beginning
of the interaction workflow, the Human-Robot Task Synthesizer extracts and processes the relevant
information to create a structured task represented in a JSON structure. Thanks to the other modules,
the Task and Situation Assessment module integrates this task with situational data, previous task
states, and interaction history to develop an updated task plan. As the task progresses, the system
monitors its execution through the Human-Robot Task Progress module and validates outcomes using
the Progress Checking function. The robot executes the corresponding actions if task outputs meet
predefined success criteria. If discrepancies arise, the updated task returns in the Human-Robot Task
Progress, creating a feedback loop for iterative refinement. Finally, the Robot Perception module
continuously interprets task and human states, ensuring the system remains adaptable and contextually
aware. Combined with the Robot Effector module, this enables the robot to interact dynamically with
its environment while maintaining safety and user-centric functionality.

To better illustrate this workflow, consider an assistive robot in a healthcare setting as a scenario
where a robot must assist a patient in following a prescribed therapy. We conducted preliminary testing
on selected steps of the proposed scenario using a separate single LLM (Llama 3.3 70B) that was not yet
integrated into the system architecture. This was done to assess the quality of potential outputs and
interactions. Some examples of generated outputs and interactions are provided in the scenario below.
The process unfolds as follows:

1. The daily therapy of the patient is defined (in natural language), and a caregiver (e.g., a doctor)
provides additional instructions in natural language on how to follow it, such as "It is morning
before breakfast, human and robot are present in the room. Assist and ensure that the patient takes
their daily medication as specified in the prescription.”. Optionally, the doctor could add some
additional specifications for the day. For example: "Drink more water and avoid sugar today.”,
"Skip Paracetamol today.”, or "Do physical exercise today.”.

2. These inputs are processed into structured information using embeddings stored in the vector
database, where they are combined with existing information about the patient and the context,
which is also stored in the vector database.

3. The Human-Robot Task Synthesizer module exploits relevant details (e.g., medication type, timing
constraints, assumptions notes, etc.) and formulates a structured task (i.e., JSON structure).

4. The robot, acting as both a supportive and authoritative assistant, monitors task execution through
the Task and Situation Assessment and Human-Robot Task Progress modules. It dynamically
adapts to the human’s latitude and emotional state, guiding them progressively toward task
completion. If the patient correctly takes the medication, the system validates the action and
updates the task status. If a discrepancy is detected, such as the patient refusing or missing a
dose, the robot assesses their commitment level and responds accordingly. It may initiate a gentle
reminder (e.g., "Taking it now will help you stay on track with your treatment, and it will make you
feel better. Please take this pill”) or escalate to a more authoritative intervention, such as alerting
a caregiver (e.g., “The patient refuses to take their medication at the scheduled time. Please check it
with them.”). This adaptive strategy, informed by past interactions, ensures effective assistance
while respecting the patient’s autonomy.

5. The Robot Perception module continuously interprets task and human states, ensuring real-time
adaptability. For instance, it reports whether the patient has taken medicine (e.g., "The patient
took the red pill.”) or whether the patient is sleeping and can’t reply or do anything.

6. The Robot Effector module executes the corresponding physical actions, such as referring the
medication in an accessible manner or guiding the patient through the assumption process (e.g.,
“This medicine should be taken with water just before lunch.”).



This scenario highlights how deterministic rule-based mechanisms enforce critical constraints (e.g.,
medication timing) while LLMs enhance interaction quality, contextual understanding, and user adap-
tation. By structuring the system into modules, the architecture can balance safety, adaptability, and
user-centric interaction, aligning with the overarching goal of advancing HRC research.

3. Discussion and Conclusions

The proposed hybrid architecture addresses key challenges in HRC by integrating deterministic methods
with probabilistic approaches. This balance ensures the safety and reliability of task execution and the
flexibility and adaptability needed to operate in dynamic human-centered environments.

The rationale behind this architecture is the following:

« Some aspects of the task specification and decisions for its achievement can be (and are of-
ten) formalized (e.g., a doctor’s written prescription) and efficiently handled with model-based
algorithms.

+ The actions and decisions of the patient are contingent on the machine and highly unpredictable.

+ The patient’s beliefs and potential behavior are not precisely known; information about them can
only be obtained through observation and verbal interaction in natural language.

« Interaction often requires non-structured or non-predefined verbal communication.

« Other aspects of the task and its human performance can only be specified in natural language.

+ Additionally, the specification of the machine’s desired behavior and the criteria defining an
acceptable machine response are also verbally defined. They can only be refined incrementally
through verbal interaction and observation of human behavior.

Based on this, we have structured a hybrid architecture that identifies several decisional and functional
processes involved in task performance. It determines when and how model-based algorithms and
representations are better suited and when relying on LLM abilities to assess, decide, or predict is more
pertinent. A key aspect of the presented system lies in its modular structure, which allows specialized
modules to handle different aspects of HRC. Deterministic modules, such as the Task and Situation
Assessment module, provide a robust foundation to ensure compliance and predictable behaviors.
Simultaneously, integrating advanced LLMs enhances the robot’s ability to interpret human behavior
and environmental context.

Despite its advantages, the proposed architecture faces certain limitations. While improving adapt-
ability, the reliance on LLMs introduces challenges related to computational resource demands and
potential biases and errors in model outputs. Ensuring real-time performance, error robustness, and
addressing ethical considerations, such as fairness and transparency in decision-making, will require
further optimization and rigorous testing.

Future developments will focus on further specifying the duties of the different LLMs and determining
whether additional models are needed to divide each task step better. Another area of future work
is optimizing the Progress Checking function and knowledge management. Enhancing these two
aspects will strengthen the approach’s fault-tolerant adaptability and scalability. Finally, to ascertain
the viability of the proposed architecture, a real-world scenario must be conducted and subsequently
evaluated by users. To establish a reference point, a comparative study will be carried out with systems
based on planning and strictly deterministic methods. Ablation experiments will also be performed to
assess the importance of each module in the architecture.

As robots become integral to human-centered environments, advancing HRC systems with hybrid
approaches will be crucial to ensure seamless and effective integration. The presented approach aims
to contribute to the broader goal of creating intelligent, adaptable, and user-centric robotic systems,
paving the way for safer and more efficient human-robot collaborations.



Declaration on Generative Al

During the preparation of this work, the authors used ChatGPT and Grammarly in order to: grammar
and spelling check, paraphrase, and reword. After using these services, the authors reviewed and edited
the content as needed, thus, they take full responsibility for the publication’s content.

References

[1]

V. Villani, F. Pini, F. Leali, C. Secchi, Survey on human-robot collaboration in industrial settings:
Safety, intuitive interfaces and applications, Mechatronics 55 (2018) 248-266. doi:10.1016/].
mechatronics.2018.02.009.

[2] J. E. Michaelis, A. Siebert-Evenstone, D. W. Shaffer, B. Mutlu, Collaborative or simply uncaged?

understanding human-cobot interactions in automation, in: Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems, CHI ’20, Association for Computing Machinery,
New York, NY, USA, 2020, p. 1-12. doi:10.1145/3313831.3376547.

W. Weiss, F. Fuhrmann, H. Zeiner, R. Unterberger, Towards an architecture for collaborative
human robot interaction in physiotherapeutic applications, in: Proceedings of the Companion of
the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 2017, pp. 319-320.
L. Gargioni, D. Fogli, P. Baroni, Preparation of personalized medicines through collaborative
robots: A hybrid approach to the end-user development of robot programs, ACM Journal on
Responsible Computing (2025).

[5] J. G. Trafton, L. M. Hiatt, A. M. Harrison, F. P. Tamborello, S. S. Khemlani, A. C. Schultz, Act-r/e: An

embodied cognitive architecture for human-robot interaction, Journal of Human-Robot Interaction
2 (2013) 30-55.

P.E.Baxter, J. de Greeff, T. Belpaeme, Cognitive architecture for human-robot interaction: Towards
behavioural alignment, Biologically Inspired Cognitive Architectures 6 (2013) 30-39.

A. Umbrico, R. De Benedictis, F. Fracasso, A. Cesta, A. Orlandini, G. Cortellessa, A mind-inspired
architecture for adaptive hri, International Journal of Social Robotics 15 (2023) 371-391.

S. Lemaignan, M. Warnier, E. A. Sisbot, A. Clodic, R. Alami, Artificial cognition for social human-
robot interaction: An implementation, Artificial Intelligence 247 (2017) 45-69.

K. Darvish, E. Simetti, F. Mastrogiovanni, G. Casalino, A hierarchical architecture for human-robot
cooperation processes, IEEE Transactions on Robotics 37 (2020) 567-586.

[10] J. P4ez, E. Gonzélez, Human-robot scaffolding: An architecture to foster problem-solving skills,

[11]

ACM Transactions on Human-Robot Interaction (THRI) 11 (2022) 1-17.
P. Foggia, A. Greco, A. Roberto, A. Saggese, M. Vento, A social robot architecture for personalized
real-time human-robot interaction, IEEE Internet of Things Journal (2023).

[12] J. G. Trafton, N. L. Cassimatis, M. D. Bugajska, D. P. Brock, F. E. Mintz, A. C. Schultz, Enabling ef-

[13]

[15]

[16]

fective human-robot interaction using perspective-taking in robots, Systems, Man and Cybernetics
35 (2005) 460-470.

L. M. Hiatt, A. M. Harrison, J. G. Trafton, Accommodating human variability in human-robot
teams through theory of mind, in: Int. Joint Conf. on Artificial Intelligence, volume 22, 2011, p.
2066.

S. Devin, R. Alami, An Implemented Theory of Mind to Improve Human-Robot Shared Plans
Execution, in: The Eleventh ACM/IEEE International Conference on Human Robot Interation, The
Eleventh ACM/IEEE International Conference on Human Robot Interation, Christchurch, New
Zealand, 2016, pp. 319-326. doi:10.1109/HRI.2016.7451768.

M. Romeo, P. E. McKenna, D. A. Robb, G. Rajendran, B. Nesset, A. Cangelosi, H. Hastie, Exploring
theory of mind for human-robot collaboration, in: 2022 31st IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN), IEEE, 2022, pp. 461-468.

A. Favier, S. Shekhar, R. Alami, Models and Algorithms for Human-Aware Task Planning with
Integrated Theory of Mind, in: IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN), 2023. doi:10.1109/R0-MAN57019.2023.10309437.


http://dx.doi.org/10.1016/j.mechatronics.2018.02.009
http://dx.doi.org/10.1016/j.mechatronics.2018.02.009
http://dx.doi.org/10.1145/3313831.3376547
http://dx.doi.org/10.1109/HRI.2016.7451768
http://dx.doi.org/10.1109/RO-MAN57019.2023.10309437

[17]

[18]

[24]
[25]

[26]

G. Hoffman, C. Breazeal, Effects of anticipatory action on human-robot teamwork efficiency,
fluency, and perception of team, in: Proceedings of the ACM/IEEE international conference on
Human-robot interaction, 2007, pp. 1-8.

F. Pecora, M. Cirillo, F. Dell’Osa, J. Ullberg, A. Saffiotti, A constraint-based approach for proactive,
context-aware human support, Journal of Ambient Intelligence and Smart Environments 4 (2012)
347-367.

M. C. Gombolay, R. A. Gutierrez, S. G. Clarke, G. F. Sturla, J. A. Shah, Decision-making authority,
team efficiency and human worker satisfaction in mixed human-robot teams, Autonomous Robots
39 (2015) 293-312.

K.Ramachandruni, C. Kent, S. Chernova, Uhtp: A user-aware hierarchical task planning framework
for communication-free, mutually-adaptive human-robot collaboration, ACM Transactions on
Human-Robot Interaction 13 (2024) 1-27.

B. Hayes, J. A. Shah, Improving robot controller transparency through autonomous policy
explanation, in: Proceedings of the 2017 ACM/IEEE international conference on human-robot
interaction, 2017, pp. 303-312.

V. V. Unhelkar, S. Li, J. A. Shah, Decision-making for bidirectional communication in sequential
human-robot collaborative tasks, in: Proceedings of the 2020 ACM/IEEE International Conference
on Human-Robot Interaction, 2020, pp. 329-341.

G. Buisan, A. Favier, A. Mayima, R. Alami, Hatp/ehda: A robot task planner anticipating and elicit-
ing human decisions and actions, in: 2022 International Conference on Robotics and Automation
(ICRA), IEEE, 2022, pp. 2818-2824.

A. Favier, R. Alami, A model of concurrent and compliant human-robot joint action to plan and
supervise collaborative robot actions, in: Advances in Cognitive Systems (ACS), 2024, pp. 1-16.
T. Parker, U. Grandi, E. Lorini, A. Clodic, R. Alami, Ethical planning with multiple temporal values,
in: Social Robots in Social Institutions, IOS Press, 2023, pp. 435-444.

A. Clodic, E. Pacherie, R. Alami, R. Chatila, Key elements for human-robot joint action, Sociality
and normativity for robots: philosophical inquiries into human-robot interactions (2017) 159-177.



	1 Introduction
	2 A Hybrid Approach
	3 Discussion and Conclusions

