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Abstract Object tracking is a fundamental task in computer vision, with applications spanning
surveillance, autonomous driving, environmental monitoring, and robotics [1]. While traditional
tracking methods based on color videos have achieved remarkable success, they remain limited in
handling complex environments, such as cluttered backgrounds, significant object deformations, or
targets with similar colors and textures. Hyperspectral video tracking addresses these challenges
by capturing rich spectral signatures in addition to spatial and temporal information [2]. This joint
representation allows trackers to distinguish objects not only by their visual appearance but also by their
intrinsic material properties. In this talk, I will begin by reviewing traditional spectral-spatial analysis
methods for hyperspectral data processing. I will then introduce recent advances in hyperspectral video
dataset construction and spectral-spatial-temporal modeling for object tracking. Finally, I will conclude
with a discussion of emerging research directions and their potential impact on real-world applications.

Spectral-spatial Analysis of Hyperspectral Data: Traditional hyperspectral image processing
often relies on spectral or combined spectral-spatial analysis to extract features for tasks such as image
classification and object detection. Two widely used approaches are band selection [3], which identifies
the most informative spectral bands for a given application, and hyperspectral unmixing [4], which
estimates both the material spectra in a scene and how they are distributed across the image. Unmixing
is typically based on a linear mixture model, where the image is decomposed into an endmember matrix
(capturing the spectral signature of each material) and an abundance matrix (indicating the proportion
of each material at every pixel) [5]. To make the results physically meaningful and mathematically
well-defined, additional constraints such as sparsity [6] and smoothness [7] are often included in
the reconstruction process. These models can be solved using iterative optimization methods or
reformulated as deep neural networks that mimic the optimization steps [8]. The resulting abundance
maps provide rich spatial information, which can be combined with other features from traditional
or deep learning techniques to support downstream computer vision tasks such as object detection,
boundary detection, and image classification [9].

Object Tracking in Hyperspectral Videos: With advances in sensing technology, snapshot
hyperspectral cameras now make it possible to capture hyperspectral videos in real time. This has
enabled the creation of hyperspectral video datasets and stimulated research on spectral-spatial-temporal
analysis methods. The first high-framerate hyperspectral video dataset was introduced in 2020 [2],
and has since been extended into larger benchmark datasets used in hyperspectral object tracking
challenges [10]. In a typical hyperspectral object tracking task, the target is specified by a bounding box
in the first frame. The tracking process then proceeds through several stages: template initialization,
feature extraction, target proposal generation with a tracking model, object detection, and model update.
Throughout this pipeline, the joint modeling of spectral, spatial, and temporal information is essential
for achieving accurate and robust tracking performance.

Spectral-spatial-temporal Video Tracking: Most trackers work by comparing features extracted
from the first frame with those from subsequent frames to estimate the location and size of the target.
However, since hyperspectral images contain many more bands than conventional color images, it is
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not straightforward to directly adopt powerful color trackers trained on large video datasets for feature
extraction and representation learning. To address this issue, a hyperspectral frame can be divided into
band groups, which are converted into false-color images based on band importance estimated using an
attention mechanism [3]. Pretrained deep color trackers can then be applied to each false-color image
in parallel for object detection and tracking.

These parallel deep neural networks collectively form a Siamese fusion network [11]. Each branch
extracts features from different layers and band groups, producing a multi-scale, multi-level spectral-
spatial representation of the target. Through feature fusion, the network captures both global and local
structures, enabling it to model spatial variations as well as changes in material appearance for adaptive
online tracking. Within the same Siamese framework, the feature extraction and fusion stages can also
be replaced by modern object detection backbones such as YOLO [12], which have shown excellent
performance in complex tracking scenarios. Building on the detected objects, the tracker can be further
enhanced with a classifier and a temporal network based on gated recurrent units (GRUs). The classifier
helps distinguish between visually similar objects, while the temporal network models frame-to-frame
dependencies, improving robustness against challenges such as occlusion and scale variations.

Hyperspectral video datasets captured by different cameras often vary in band numbers and wave-
length ranges. For example, the 2025 Hyperspectral Object Tracking contest [10] provides more than
200 videos collected across the visible, near-infrared, and red-NIR ranges. However, hyperspectral
trackers developed for one dataset cannot be directly adapted to such multi-modal data. To address
this issue, Islam et al. [13] proposed an adaptive band selection strategy combined with a multimodel
ensemble approach. Their method begins with a local-global attention-based band selection module that
identifies the three most informative bands from any dataset. By doing so, the selected bands become
independent of the original number of spectral channels supported by the camera, allowing a single
model to handle hyperspectral videos with diverse configurations. Finally, a multimodel ensemble
framework refines tracking by selecting the optimal candidate proposals for the target. This is achieved
by comparing the similarity between proposals generated by base models and the target’s appearance
in historical frames.

Future Research Topics: Although hyperspectral video tracking has attracted growing attention
since 2020, research in this area remains relatively limited. To advance the field, larger datasets need to
be collected and annotated, ideally approaching the scale of existing color video datasets. In this regard,
generative Al techniques offer promising opportunities to augment training data. In addition, most
existing approaches rely heavily on detection-based tracking, without fully leveraging the temporal
information embedded in hyperspectral videos. Future work should investigate advanced temporal
modeling techniques, such as optical flow and sequence learning, to better capture object dynamics and
scene dependencies across frames. Finally, the application scope of hyperspectral video tracking should
be broadened to domains such as agriculture, environmental monitoring, healthcare, and consumer
products, thereby demonstrating its real-world impact and societal value.
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