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Temporal graphs provide a natural framework for modeling complex, evolving systems, yet their analysis and
predictive modeling remain challenging due to temporal dependencies, structural heterogeneity, and diverse
evaluation protocols. In this talk, I will present a cohesive set of contributions from our group aimed at advancing
both methodology and evaluation in temporal graph learning.

We begin with TGX [1], a modular toolkit for temporal graph exploration that supports scalable preprocessing,
rich statistical analyses, and interactive visualizations of evolving network structure. These visualizations have
been instrumental for hypothesis generation and error analysis, and builds upon the insights introduced in our
Towards Better Evaluation for Dynamic Link Prediction work [2], where we argued for more transparent and
interpretable model assessment.

Building on this foundation, we turn to evaluation and benchmarking. I will discuss the Temporal Graph
Benchmark (TGB) [3] and its expanded version TGB 2 [4], part of an ongoing open-science initiative providing
standardized datasets, evaluation pipelines, and leaderboards for a wide range of temporal graph tasks. These
resources aim to enable reproducible and comprehensive comparisons across methods, while lowering barriers
for entry into temporal graph research.

Finally, I will discuss applications and recent trends on temporal graphs. These include change point detection
in dynamic and multi-view networks using spectral methods (LAD/MultiLAD [5]), epidemic forecasting through
sparse static approximations of dynamic contact networks (EdgeMST/DegMST [6]), and our recent exploration
of large language models for temporal graph tasks [7], which examines their ability to reason over evolving
network structures. Across these efforts, a common theme emerges: the integration of transparent evaluation,
rich visualization, and high-quality benchmarks to move the field from isolated experiments towards cumulative,
transferable knowledge in temporal graph learning
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