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Abstract
Classification of movement trajectories has many applications in transportation and is a key component for large-
scale movement trajectory generation and anomaly detection which has key safety applications in environments
with unseen movement types. However, the current state-of-the-art (SOTA) are based on supervised deep learning
- which leads to challenges when they encounter novel unseen classes. We provide a neuro-symbolic rule-based
framework to conduct error correction and detection of these models to integrate into our movement trajectory
platform. We provide a suite of experiments on several recent SOTA models where we show highly accurate
error detection, the ability to improve accuracy on test data that includes novel movement types not seen in
training set, and accuracy improvement for the base use case in addition to a suite of theoretical properties
that informed algorithm development. Specifically, we show an F1 scores for predicting errors of up to 0.984,
significant performance increase for unseen movement accuracy (8.51% improvement over SOTA for zero-shot
accuracy), and accuracy improvement over the SOTA model.

1. Introduction

The identification of a mode of travel for a time-stamped sequence of global position system (GPS)
known as “movement trajectories” has important applications in travel demand analysis [1], transport
planning [2], and analysis of sea vessel movement [3]. More recently this problem has been of interest
for security applications such as leading to efforts such as the IARPA HAYSTAC program1 for which
we have created and deployed a platform for trajectory analysis. A key facet of this problem is the
proper classification of trajectories by movement type - particularly in the aftermath of an external
shock like a natural disaster. However, the current state-of-the-art has relied on supervised neural
models [4, 5] which have been shown to perform well but can experience failure when exposed
to previously unseen data, specifically previously unidentified movement types. In this paper, we
extend the current supervised neural methods with a lightweight error detection and correction rule
(EDCR) framework providing an overall neurosymbolic system. This framework further enables critical
technologies, like Artificial Intelligence for Transport, where it’s typical to encounter unseen data and
require models to not misidentify it.
The key intuition is that training and operation data can be used to learn rules that predict and

correct errors in the supervised model. Once trained, the rules are employed operationally in two
phases: first detection rules identify potentially misclassified movement trajectories. A second type of
rule to re-classify the trajectories (“correction rules”) is then used to re-assign the sample to a new class.
We present a strong theoretical framework for EDCR rooted in both logic and rule mining. We formally
prove how quantities related to learned rules (e.g., confidence and support) are related to changes
in class-level machine learning metrics such as precision and recall. To demonstrate effectiveness
empirically, we provide a suite of experiments that show this framework is highly effective in detecting
errors (F1 of detecting errors of 0.875 for the SOTA model, and as high as 0.984 based on the examined
models), unseenmovement accuracy of 8.51% over SOTA for zero-shot tuning, and standard classification
accuracy improvement over the SOTA.
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Figure 1: Overall system deployed for government testing

In what follows, we provide further background on our domain problem and our current trajectory
analysis platform (some of which is a review of [6]), introduce the algorithmic framework for EDCR
including it’s theoretical properties, and provide our suite of experimental results before concluding
with our findings and future work.

2. Background

Overall concept and deployed system. Movement types not typically included in the ground truth
data emerge with certain target environments (e.g, paid scooters in certain urban areas, auto-rickshaws
in South Asia, or boats in Venice). As a result, IARPA (Intelligence Advanced Research Projects Activity)
has identified problems relating to the characterization and generation of normal movement as a key
problem of study in the HAYSTAC program. Here, the goal is to establish models of normal human
movement at a fine-grain level and operationalize those models and techniques in a system deployed to
a government environment for evaluation. As a performer on the program, [6] examine the problem of
generating realistic movement trajectories.

Initial government tests for trajectory generation involved movement trajectories consisting of only
a single mode of transportation. However, in preparation for the transition to operational use, the
government has set requirements to analyze trajectories from various movement types - where the mode
of transportation is not known. As such, we look to operationalize a movement trajectory classification
module, which we have depicted in the context of our deployed cloud-based architecture shown in
Figure 1.
This pipeline interfaces with the government system to access the raw geospatial data with related

knowledge for various geolocations as well as historical agent trajectories and their corresponding
objective files. Our initial ingest and containerized processes are held in a directed acyclic graph
(DAG) as nodes. Our ingest mechanism first parses for the historical trajectories associated with a
given agent to stage them in the S3 bucket. Then, geospatial data stored in Neo4j is consolidated
into a knowledge graph and staged into the S3 bucket. We instantiate pods on the Amazon Elastic
Kubernetes Service (EKS) cluster for all agents with a Docker image to analyze the staging folders
and create the respective string commands specific to each agent. The trajectory classification module
identifies and tags the modes of transportation in the corresponding trajectory, which is further used
to learn rules while considering different types of movements. These rules along with the knowledge
graph are used to compute the heuristic value for an informed search method (A* search) to generate
movement trajectories [6]. As the container runs, generated movement instruction files are pushed to
the appropriate output directory as seen in Figure 1. Additionally, the generated movement abides by
predefined spatiotemporal constraints (objectives).

Movement Trajectory Classification Problem. The problem of classifying movement trajectories



has been studied in the literature [7, 8, 9, 5, 4] and we shall refer to it as the movement trajectory
classification problem (MTCP). We also note that this line of work differs from and is complementary
to trajectory generation [6, 10, 11, 12] which does not seek to identify the mode of transportation. An
MTCP instance is defined as given a sequence of GPS points, 𝜔, assign one of 𝑛 movement class from 𝒞
which is often defined [4, 5] as 𝒞 = {walk, bike, bus, drive, train}.

The current paradigm for the MTCP problem is to create a neural model 𝑓𝜃 that maps sequences
to movement classes using a set of weights, 𝜃. In this approach traditional methods (i.e., gradient
descent) are used to find a set of parameters such that a loss function is minimized based on some
training set 𝒯 (where each sample 𝜔 ∈ 𝒯 is associated with a ground truth class 𝑔𝑡(𝜔)). Formally:
argmin𝜃 𝔼𝜔∈𝒯Loss(𝑓𝜃(𝜔), 𝑔𝑡(𝜔)). Within this paradigm, several approaches have been proposed. Most
notably a CNN-based architecture [5] and the current state-of-the-art approach known as Long-term
Recurrent Convolutional Network (LRCN) [4] which combines lower CNN layers and upper LSTM
layers - both of which we use as baselines in addition to an extension of LRCN that uses an additional
attention head (LRCNa).

Limitations of Current SOTA. However, there are several limitations to these approaches that are
problematic in the context of the IARPA HAYSTAC use case.

• Not designed for unseen movements. Any supervised MTCP model requires a data set whose
movement classes match the target environment. To address the more dynamic needs of our
government customer, we require approaches that can identify when they are likely to give
incorrect results to adapt to novel environments.

• All classes known a-priori. In the prior work, set 𝒞 is treated as static and complete meaning that
novel movement types not in training set will not be properly classified and not identified as
being different than a movement type in class 𝒞.

• Previous Results Evaluated on Overlapping Training and Testing Sets. As noted in [13], the standard
evaluation of MTCP approaches has been on datasets that experience leakage between train and
test. Due to the operational nature of this work, we must examine other splits.

Deploying movement trajectory classification models to a certain environments can lead to movements
not seen in training (e.g., paid scooters are not seen in training but prevalent in certain urban areas).
Hence, these “novel movements” will inherently be classified incorrectly. The common element in
all of these limitations is an understanding of when such classifiers are likely wrong. However, this
goes beyond retraining or selecting from different training data as the government customer envisions
use-cases with unseen movement types- hence training data would be limited. This generally precludes
meta-learning and domain generalization [14, 15, 16, 17] which attempt to account for changes in the
distribution of data and/or selection of a model that was trained on data similar to the current problem.
This work also differs from approached like One-Class Support Vector Machine [18] because of the
inherent rule-based method in EDCR that can be leveraged for explainability and can further be built
upon machine learning models.

Additionally, these problems must also be addressed in the context of our existing system (Figure 1),
which employs symbolic reasoning to generate movement trajectories - ensuring they attain a degree
of normalcy [6]. As a result, we examined approaches for characterizing failures in machine learning
models such as introspection [19, 20], however, these approaches only predict model failure and do
not attempt to explain or correct it. Another area of related work is machine learning verification
that [21, 22, 23]) that looks to ensure the output of an ML model meets a logical specification - however
to-date this work has not been applied to correct the output of a machine learning model and generally
depend on the logical specifications being known a-priori (not an assumption we could make for our use
case). In recent studies on abductive learning [24, 25] and neural symbolic reasoning [26], incorporate
error correction mechanisms rooted in inconsistency with domain knowledge as logical rules - but as
with verification, we do not have this symbolic knowledge a-priori.



3. Error Detection and Correction Rules

To address the issues of the previous section, we are employing a rule-based approach to correcting
MTCP model 𝑓𝜃. The intuition is that using limited data, we will learn a set of rules (denoted Π) that will
be able to detect and correct errors of 𝑓𝜃 by logical reasoning [27]. Then, upon deployment for some
new sequence 𝜔, we would first compute the class 𝑓𝜃(𝜔) and then use the rules in set Π to conclude if
the result of 𝑓𝜃 should be accepted and if not, provide an alternate class in an attempt to correct the
mistake. In this section, we formalize the error correcting framework with a simple first order logic
(FOL) and provide analytical results relating aspects of learned rules that inform our analytical approach
to learning such error detecting and correcting rules. We complete the section with a discussion on
how various potential “failure conditions” are extracted to create the rules to correct errors.
In this paper, we shall assume a set 𝒪 of operational sequences for which there is ground truth

available after model training. This set can be the set of training data, a subset, or a superset. We
notate the set of training data with 𝒯. Later, in our experiments, we look at cases where 𝒪 = 𝒯 and
𝒯 ⊆ 𝒪 - however these are not requirements as our results are based on model performance on 𝒪
- and we envision use-cases where 𝒪 is significantly different from 𝒯. On these samples, for each
class 𝑖, the model (𝑓𝜃) returns class 𝑖 for 𝑁𝑖 of the samples, and for each class 𝑖 we have the number of
true positives 𝑇𝑃𝑖, false positives 𝐹𝑃𝑖, true negatives 𝑇𝑁𝑖, and false negatives 𝐹𝑁𝑖. We have precision
𝑃𝑖 = 𝑇𝑃𝑖/𝑁𝑖 = 𝑇𝑃𝑖/(𝑇𝑃𝑖 + 𝐹𝑃𝑖), recall 𝑅𝑖 = 𝑇𝑃𝑖/(𝑇𝑃𝑖 + 𝐹𝑁𝑖), and prior of predicting class 𝑖: 𝒫𝑖 = 𝑁𝑖/𝑁.
Language. We use a simple first-order language where samples are represented by constant symbols
(𝜔). We define set 𝐶 of 𝑚 “condition” unary predicates 𝑐𝑜𝑛𝑑1, … , 𝑐𝑜𝑛𝑑𝑚 associated with each sample that
can be either true or false - these are conditions that can be thought of as potentially leading to failure
(but our learning algorithms will identify which ones lead to failure for a given prediction). These
predicates can also be features related to a sample in the dataset. We also define unary predicates for
each class 𝑖: 𝑝𝑟𝑒𝑑𝑖, 𝑐𝑜𝑟 𝑟𝑖, and 𝑒𝑟 𝑟𝑜𝑟 defined below.

• 𝑝𝑟𝑒𝑑𝑖: True if and only if the model predicts class 𝑖 i.e., 𝑝𝑟𝑒𝑑𝑖(𝜔) is true iff 𝑓𝜃(𝜔) = 𝑖.
• 𝑐𝑜𝑟 𝑟𝑖: This predicate is true if and only if the correct movement class for 𝜔 is 𝑖, i.e., 𝑐𝑜𝑟 𝑟𝑖(𝜔) is true
iff 𝑔𝑡(𝜔) = 𝑖.

• 𝑒𝑟 𝑟𝑜𝑟: This predicate is true if and only if an EDCR rule concludes there is an error in the model’s
prediction.

Rules. The set of rules Π will consist of two rules for each class: one “error detecting” and one “error
correcting.” Error detecting rules which will determine if a prediction by 𝑓𝜃 is not valid. In essence,
we can think of such a rule as changing the movement class assigned by 𝑓𝜃 to some sample 𝜔 from 𝑖
to “unknown.” For a given class 𝑖, we will have an associated set of detection conditions 𝐷𝐶𝑖 that is a
subset of conditions, the disjunction of which is used to determine if 𝑓𝜃 gave an incorrect classification.

𝑒𝑟 𝑟𝑜𝑟(𝜔) ← 𝑝𝑟𝑒𝑑𝑖(𝜔) ∧ ⋁
𝑗∈𝐷𝐶𝑖

𝑐𝑜𝑛𝑑𝑗(𝜔) (1)

After the application of the error detection rules for each class, we may consider re-assigning the
samples to another class using a second type of rule called the “corrective rule.” Such rules are formed
based on a subset of conditions-class pairs 𝐶𝐶𝑖 ⊆ 𝐶 × 𝒞. The disjunction of such condition-class pairs
are used to correct the class of a given sample.

𝑐𝑜𝑟 𝑟𝑖(𝜔) ← ⋁
𝑞,𝑟∈𝐶𝐶𝑖

(𝑐𝑜𝑛𝑑𝑞(𝜔) ∧ 𝑝𝑟𝑒𝑑𝑟(𝜔)) (2)

Associated with the rules of both types are the following values - both are defined as zero if there are
no conditions.
Support (𝑠): fraction of samples in 𝒪 where the body is true.
Support w.r.t. class 𝑖 (𝑠𝑖): given the subset of samples where the model predicts class 𝑖, the fraction of
those samples where the body is true (note the denominator is 𝑁𝑖).



Confidence (𝑐): the number of times the body and head are true together divided by the number of times
the body is true.

Nowwe present some analytical results that inform our learning algorithms. Our strategy for learning
involves first learning detection rules (which establish conditions for which a given classification decision
by 𝑓𝜃 is deemed incorrect) and then learning correction rules (which then correct the detected errors by
assigning a new movement class to the sample). We formalize these two tasks as follows.
Improvement by error detecting rule. For a given class 𝑖, find a set of conditions 𝐷𝐶𝑖 such that precision
is maximized and recall decreases by, at most 𝜖.
Improvement by error correcting rule. For a given class 𝑖, find a subset 𝐶𝐶𝑖 of 𝐶 × 𝒞 such that both
precision and recall are maximized.
Properties of Detection Rules. First, we examine the effect on precision and recall when an error
detecting rule is used. Our first result shows a bound on precision improvement. If class support (𝑠𝑖)
is less than 1 − 𝑃𝑖, which we would expect (as the rule would be designed to detect the 1 − 𝑃𝑖 portion
of results that failed), then we can also show that the quantity 𝑐 ⋅ 𝑠𝑖 gives us an upper bound on the
improvement in precision.2

Theorem 1. Consider an error detecting rule with support 𝑠𝑖 and confidence 𝑐, initial precision 𝑃𝑖 of model
𝑓𝜃 for class 𝑖, then under the condition 𝑠𝑖 ≤ 1 − 𝑃𝑖, the precision of model 𝑓𝜃 for class 𝑖, after applying the
error detecting rule increases by a function of both 𝑠𝑖 and 𝑐. The increase is no greater than 𝑐 ⋅ 𝑠𝑖 and this
quantity is a normalized polymatroid submodular function with respect to the set of conditions in the rule
𝐷𝐶𝑖.

The error detecting rules can cause the recall to stay the same or decrease. Our next result tells us
precisely how much recall will decrease.

Theorem 2. After applying the rule to detect errors, the recall will decrease by (1− 𝑐)𝑠𝑖
𝑅𝑖
𝑃𝑖
and this quantity

is a normalized polymatroid submodular function with respect to the set of conditions in the rule 𝐷𝐶𝑖.

Algorithm 1 DetRuleLearn

Require: Class 𝑖, Recall reduction threshold 𝜖, Condition set 𝐶
Ensure: Subset of conditions 𝐷𝐶𝑖
𝐷𝐶𝑖 ∶= ∅
𝐷𝐶∗ ∶= {𝑐 ∈ 𝐶 s.t. 𝑁𝐸𝐺{𝑐} ≤ 𝜖 ⋅ 𝑁𝑖𝑃𝑖

𝑅𝑖
}

while 𝐷𝐶∗ ≠ ∅ do
𝑐𝑏𝑒𝑠𝑡 = argmax𝑐∈𝐷𝐶∗ 𝑃𝑂𝑆𝐷𝐶𝑖∪{𝑐}
Add 𝑐𝑏𝑒𝑠𝑡 to 𝐷𝐶𝑖
𝐷𝐶∗ ∶= {𝑐 ∈ 𝐶 ∖ 𝐷𝐶𝑖 s.t. 𝑁𝐸𝐺𝐷𝐶𝑖∪{𝑐} ≤ 𝜖 ⋅ 𝑁𝑖𝑃𝑖

𝑅𝑖
}

end while
return 𝐷𝐶𝑖

As the quantities identified Theorems 1 and 2 are submodular and monotonic, we can see that the
selection of a set of rules to maximize 𝑐 ⋅ 𝑠𝑖 subject to the constraint that (1− 𝑐)𝑠𝑖

𝑅𝑖
𝑃𝑖
≤ 𝜖 is a special case of

the “Submodular Cost Submodular Knapsack” (SCSK) problem and can be approximated with a simple
greedy algorithm [28] with approximation guarantee of polynomial run time (Theorem 4.7 of [28]).
Our algorithm DetRuleLearn is an instantiation of such an approach to creating an error detecting rule
for a given class that maximize precision while not reducing recall more than 𝜖. Here, 𝜖 is treated as a
hyperparameter. Also, 𝑃𝑂𝑆𝐷𝐶 and 𝑁𝐸𝐺𝐷𝐶 are simply the number of samples that satisfy the conditions
for some set 𝐷𝐶 and are true errors (for 𝑃𝑂𝑆𝐷𝐶) and non-errors (for 𝑁𝐸𝐺𝐷𝐶). In other words, given a
set of condition class pairs and the rule of interest, 𝐵𝑂𝐷 here is the number of examples that satisfy the

2Complete proofs for all formal results can be found at
https://arxiv.org/abs/2308.14250.
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body (class-condition pair) of the error detection rules, and 𝑃𝑂𝑆 here is the number of examples that
satisfy the body (class-condition pair) and the head of the error detection rules. 𝑃𝑖, 𝑅𝑖 are precision and
recall for class 𝑖 while 𝑁𝑖 is the number of samples that the model classifies as class 𝑖.
Properties of Corrective Rules. In what follows, we shall examine the results for corrective rules.
Here, the error correcting rule with predicate 𝑐𝑜𝑟 𝑟𝑗 in the head will have a disjunction of elements of set
𝐶𝐶𝑖 ⊆ 𝐶 × 𝒞. Also, note that here the support 𝑠 is used instead of class support (𝑠𝑖). Here we find that
both precision and recall increase with rule confidence (Theorem 3).

Theorem 3. For the application of error correcting rules, both precision and recall increase if and only if
rule confidence (𝑐) increases.

This result suggests that optimizing confidence will optimize both precision and recall. However,
this is not a monotonic function over 𝐶𝐶𝑖, so we adopt a fast, heuristic approach for non-monotonic
optimization based on [29], presented by CorrRuleLearn in this paper. Here, we will consider an initial
set of condition-class pairs 𝐶𝐶𝑎𝑙𝑙 that is a subset of 𝐶 × 𝒞. For a given class for which we create an
error correcting rule, we select 𝐶𝐶𝑖 from this larger set using our approach. Note here that 𝑃𝑂𝑆𝐶𝐶 is the
number of samples that satisfy the rule body and head (𝑐𝑜𝑟 𝑟𝑖(𝜔) in this case) given a set of condition-class
pairs 𝐶𝐶 while 𝐵𝑂𝐷𝐶𝐶 is the number of samples that satisfy the body formed with set 𝐶𝐶.

Algorithm 2 CorrRuleLearn

Require: Class 𝑖, Set of condition-class pairs 𝐶𝐶𝑎𝑙𝑙
Ensure: Subset of condition-class pairs 𝐶𝐶𝑖
𝐶𝐶𝑖 ∶= ∅
𝐶𝐶′

𝑖 ∶= 𝐶𝐶𝑎𝑙𝑙
Sort each (𝑐, 𝑗) ∈ 𝐶𝐶𝑎𝑙𝑙 from greatest to least by

𝑃𝑂𝑆{(𝑐,𝑗)}
𝐵𝑂𝐷{(𝑐,𝑗)}

and remove
𝑃𝑂𝑆{(𝑐,𝑗)}
𝐵𝑂𝐷{(𝑐,𝑗)}

≤ 𝑃𝑖
for (𝑐, 𝑗) ∈ 𝐶𝐶𝑎𝑙𝑙 selected in order of the sorted list do

𝑎 ∶= 𝑃𝑂𝑆𝐶𝐶𝑖∪{(𝑐,𝑗)}
𝐵𝑂𝐷𝐶𝐶𝑖∪{(𝑐,𝑗)}

− 𝑃𝑂𝑆𝐶𝐶𝑖
𝐵𝑂𝐷𝐶𝐶𝑖

𝑏 ∶=
𝑃𝑂𝑆𝐶𝐶′𝑖 ∖{(𝑐,𝑗)}
𝐵𝑂𝐷𝐶𝐶′𝑖 ∖{(𝑐,𝑗)}

−
𝑃𝑂𝑆𝐶𝐶′𝑖
𝐵𝑂𝐷𝐶𝐶′𝑖

if 𝑎 ≥ 𝑏 then
𝐶𝐶𝑖 ∶= 𝐶𝐶𝑖 ∪ {(𝑐, 𝑗)}

else
𝐶𝐶′

𝑖 ∶= 𝐶𝐶′
𝑖 ∖ {(𝑐, 𝑗)}

end if
end for

if 𝑃𝑂𝑆𝐶𝐶𝑖
𝐵𝑂𝐷𝐶𝐶𝑖

≤ 𝑃𝑖 then
𝐶𝐶𝑖 ∶= ∅

end if
return 𝐶𝐶𝑖

Learning Detection and Correction Rules Together. Error correcting rules created using CorrRule-
Learn will provide optimal improvement to precision and recall for the rule in the target class, but in
the case of multi-class problems, it will cause recall to drop for some other classes. However, we can
combine error detecting and correcting rules to overcome this difficulty. The intuition is first to create
error detecting rules for each class, which effectively re-assigns any sample into an “unknown” class.
Then, we create a set 𝐶𝐶𝑎𝑙𝑙 (used as input for CorrRuleLearn) based on the conditions selected by the
error detecting rules. In this way, we will not decrease recall beyond what occurs in the application of
error detecting rules.
Algorithmic Efficiency. We note that these algorithms are quite efficient. For example, DetRuleLearn
is quadratic in the number of conditions and linear in the number of samples. However, in practice it
actually performs better, as the outer loop iterates significantly less than the total number of condi-
tions and the number of selected conditions is reduced with each iteration. Likewise, the algorithm
CorRuleLearn is linear in the number of samples and linear in the number of condition-class pairs.



Algorithm 3 DetCorrRuleLearn

Require: Recall reduction threshold 𝜖, Condition set 𝐶
Ensure: Set of rules Π
Π ∶= ∅
𝐶𝐶𝑎𝑙𝑙 ∶= ∅
for Each class 𝑖 do

𝐷𝐶𝑖 ∶= DetRuleLearn(𝑖, 𝜖, 𝐶)
if 𝐷𝐶𝑖 ≠ ∅ then

Π ∶= Π∪
{𝑒𝑟𝑟𝑜𝑟(𝜔) ← 𝑝𝑟𝑒𝑑𝑖(𝜔) ∧ ⋁𝑗∈𝐷𝐶𝑖 𝑐𝑜𝑛𝑑𝑗(𝜔)}

end if
for 𝑐𝑜𝑛𝑑 ∈ 𝐷𝐶𝑖 do

𝐶𝐶𝑎𝑙𝑙 ∶= 𝐶𝐶𝑎𝑙𝑙 ∪ {(𝑐𝑜𝑛𝑑, 𝑖)}
end for

end for
for Each class 𝑖 do

𝐶𝐶𝑖 ∶= CorrRuleLearn(𝑖, 𝐶𝐶𝑎𝑙𝑙)
if 𝐶𝐶𝑖 ≠ ∅ then

Π ∶= Π∪
{𝑐𝑜𝑟𝑟𝑖(𝜔) ← ⋁𝑞,𝑟∈𝐶𝐶𝑖 (𝑐𝑜𝑛𝑑𝑞(𝜔) ∧ 𝑝𝑟𝑒𝑑𝑟(𝜔))}

end if
end for
return Π

Conditions for Error Detection and Correction. Practically, the source of the conditions from
which our algorithms create EDCR rules (set 𝐶) needs to be instantiated. We adopt two straightforward
approaches to this. First, we use a binary version of the classifier – for given class 𝑖, we have a binary
classifier 𝑔𝑖 which returns “true” for sample 𝜔 if 𝑔𝑖 assigns it as 𝑖 and “false” otherwise. In this way, for
each sample 𝜔 we have a 𝑔𝑖(𝜔) condition for each of the classes. The second way we create conditions
is based on outlier behavior based on the velocity of the vehicle in the sample. Here, if the velocity of a
given sample is above a threshold (based on the maximum value for ground truth in the training data)
this velocity condition is true - and it is false otherwise.

4. Experimental Evaluation

Experimental Setup. Previous work such as [4] is known to have data leakage based on the split
between training and test primarily due to segments of a movement sequence existing in both training
and test sets [13]. In this paper, we examine a training-test split with no overlap between the two
avoiding this error and more closely resembling our target use-case. The assessments in this paper used
GPS trajectories obtained from the GeoLife project [7] which include ground truth (note that ground
truth data for our target application was unavailable at the time of this writing). All experiments were
conducted on an NVIDIA A100 GPU using Python 3.10, with an 80/20 train–test split. Source code is
available via https://github.com/lab-v2/Error-Detection-and-Correction.

Error Detection Experiments. First we examined the ability of learned error detection rules to detect
errors in the underlying model. Here we examined three base model architectures CNN [5], LRCN [4],
and our version of LRCN with an additional attention head (LRCNa). In this experiment, error detection
rules were trained from the same training data as the model. Similar to previous work on examining
the ability to detect errors in a machine learning model [19] we evaluated precision, recall, and F1
of the ability of rules to identify errors. These can be thought of as the fraction of results where our
learned error detection rules correctly return an error (error precision), the fraction of errors identified

https://github.com/lab-v2/Error-Detection-and-Correction


Evaluated Error Precision Error Recall Error F1
Model (EDCR) (EDCR) (EDCR)
LRANa 0.999 0.941 0.969
LRCN 0.996 0.780 0.875
CNN 0.987 0.982 0.984

Table 1
EDCR Error Detection Results - this table shows EDCR’s ability to detect error for three different models.

(error recall), and the harmonic mean of the two (error F1). The results shown in Table 1 demonstrate
consistently high precision and recall for detecting errors across all model types - specifically obtaining
a 0.875 F1 for errors in the SOTA model (LRCN) and a top F1 of 0.984 (for CNN).
Test Data with Additional Classes. A key set of concerns for our use-case was the ability to deploy
movement trajectory classification in an environment where the data differs from the training data
- specifically containing previously unidentified classes. To examine this, we trained CNN, LRCN,
and LRCNa models without incorporating the walk and drive classes (Figure 2). We note here both
detection and correction are used. We initially learned the EDCR rules with the same training data in
the model - which results in no sample being corrected to a class unseen in training data and effectively
is zero-shot tuning of the base model by EDCR. However, due to detection, this still resulted in accuracy
improvements of 6.41%, 8.51%, and 7.76% for LRCNa, LRCN, and CNN respectively. We then added
few-shot samples from the unseen data (the x-axis of Figure 2) giving us few-shot tuning of the base
model. Here with only 20% of the samples with the unseen classes, we obtained an overall accuracy
of 0.65 on all three models representing a 17 − 18% improvement. We note these results are obtained
without direct access to the underlying model, which may indicate that EDCR has the potential for
adaptation of arbitrary 𝑓𝜃 models to novel scenarios - a key use case for our government customer.
Precision-Recall Trade-off. A key intuition in our algorithmic design with the ability for the
hyperparameter to 𝜖 to trade-off precision and recall. Hence, we examined the effect in varying 𝜖
on test data that resembled training data (results for LRCN are shown in Figure 3). Recall that 𝜖 is
interpreted as the maximum decrease in recall. We observed and validated the theoretical reduction
(TR) in recall empirically and the experiments show us that in all cases, recall was no lower than the
threshold specified by the hyperparameter 𝜖 though recall decreases as 𝜖 increases. In many cases, the
experimental evaluation reduced recall significantly less than expected. We also see a clear relationship
between 𝜖, precision, and recall: increasing 𝜖 leads to increased precision and decreased recall - which
also aligns with our analytical results. We also note that while DetCorrRuleLearn calls for a single 𝜖
hyperparameter, it is possible to set it differently for each class (e.g., lower values for classes where
recall is important, higher values for classes where false positives are expensive). This may be beneficial
as F1 for different classes seemed to peak for different values of 𝜖. We leave the study of heterogeneous
𝜖 settings to future work.

Evaluated No EDCR With EDCR
Model (baseline) (ours)
LRCNa 0.751 0.763 (+1.6%)
LRCN 0.747 0.760 (+1.7%)
CNN 0.755 0.755 (± 0%)

Table 2
Overall accuracy when all classes are represented with and without EDCR.

Accuracy Improvement via EDCR. We also investigated EDCR’s ability to provide overall accuracy
improvement to the base model. Here we trained each of the three models (LRCNa, LRCN, CNN) and
associated EDCR rules (on the same training data as the model) and evaluated the overall accuracy on
the test set both with and without applying rules (see Table 3). We found that that EDCR provided



Figure 2: Results for experiments with two movement classes removed from training for the LRCNa, LRCN, and
CNN models.

a noticeable improvement in both LRCN and LRCNa models - effectively establishing a new SOTA
when evaluated with no overlap between training and testing. We also examined other splits between
training and testing (not depicted) and obtained comparable results.



Figure 3: LRCN Results for application of error detection and correction rules as a function of 𝜖. TR in
Recall is the theoretical reduction in recall based on analytic results.

5. Conclusion

We propose a rule-based framework for the error detection and correction of supervised neural models
for classification of movement trajectories. Our framework uses the training data to learn rules to be
employed in the testing phase. Firstly, we use the detection rules to identify the movement trajectories
that are misclassified by the supervised model and then we use the correction rules to re-classify the
movement. Further, we formally prove the relation of confidence and support of the learned rules to
the changes in the classification metrics like precision and recall. To show EDCR’s emperical validation,
we first report the framework’s ability to identify errors with the F1 scores going up to 0.984. We also
show overall accuracy imporvement over the SOTA model by employing the EDCR framework. Our
framework is specifically useful in cases of encountering novel classes not seen in training data as shown
by a 8.51% improvement of unseen movement accuracy over SOTA for zero-shot tuning. Additionally,
we discuss operationalizing our trajectory classification method in our deployed system. There are
several directions for future work. First, we look to explore other methods to create the conditions, in
particular leveraging ideas from conformal prediction [30]. Another direction is to look at alternative
solutions to learn the rules allowing for more complicated rule structures. Human validation of the
rules responsible for a corrected label can be conducted for further evaluation. Finally, the use of rules
for error detection and correction of machine learning models presented here may be useful in domains
such as vision. To reliably incorporate vision models in real-world applications for tasks like object
detection, image classification, and motion tracking, etc., EDCR framework can be leveraged to improve
the overall system’s accuracy and robustness by identifying and correcting it’s misclassification.
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The total number of items that 𝑓𝜃 will attempt to classify as 𝑖 before error detection is 𝑁𝑖 = 𝑇𝑃𝑖 + 𝐹𝑃𝑖.
Out of those, 𝑠𝑖 ⋅ 𝑁𝑖 will be detected by the rule. However, a fraction of (1 − 𝑐) will be samples that would
have been true positives if not detected. Hence, the new precision can be written as follows:

𝑇𝑃𝑖 − (1 − 𝑐)𝑠𝑖 ⋅ 𝑁𝑖
𝑁𝑖 − 𝑠𝑖 ⋅ 𝑁𝑖

(4)

As 𝑃𝑖 ⋅ 𝑁𝑖 = 𝑇𝑃𝑖, we have:

𝑃𝑖 ⋅ 𝑁𝑖 − (1 − 𝑐)𝑠𝑖 ⋅ 𝑁𝑖
𝑁𝑖(1 − 𝑠𝑖)

(5)

=
𝑃𝑖 − (1 − 𝑐)𝑠𝑖

(1 − 𝑠𝑖)
(6)

Now we subtract from that quantity the initial precision.

𝑃𝑖 − (1 − 𝑐)𝑠𝑖
(1 − 𝑠𝑖)

− 𝑃𝑖 (7)

=
𝑃𝑖 − (1 − 𝑐)𝑠𝑖

(1 − 𝑠𝑖)
−
(1 − 𝑠𝑖)𝑃𝑖
1 − 𝑠𝑖

(8)

=
−𝑠𝑖 + 𝑠𝑖𝑐 + 𝑃𝑖𝑠𝑖

1 − 𝑠𝑖
(9)

=
𝑠𝑖

1 − 𝑠𝑖
(𝑐 + 𝑃𝑖 − 1) (10)

CLAIM 2: If 𝑠𝑖 ≤ 1 − 𝑃𝑖 then 𝑐 ⋅ 𝑠𝑖 is a upper bound on the improvement in precision.
BWOC, then by Claim 1 we have.

𝑠𝑖
1 − 𝑠𝑖

(𝑐 + 𝑃𝑖 − 1) > 𝑐 ⋅ 𝑠𝑖 (11)

𝑐 + 𝑃𝑖 − 1 > 𝑐(1 − 𝑠𝑖) (12)

𝑐 + 𝑃𝑖 − 1 > 𝑐 − 𝑐 ⋅ 𝑠𝑖 (13)

𝑐 ⋅ 𝑠𝑖 > 1 − 𝑃𝑖 (14)

𝑐 ⋅ 𝑠𝑖 > 𝑠𝑖 (15)

However, as 𝑐 ≤ 1 this is a contradiction.
CLAIM 3: 𝑐 ⋅ 𝑠𝑖 = 𝑃𝑂𝑆/𝑁𝑖 where 𝑃𝑂𝑆 is the number of samples where both the rule body and head are
satisfied.
Let 𝐵𝑂𝐷 be the number of samples that the body of the rule is true. This gives us 𝑐 ⋅ 𝑠𝑖 =

𝑃𝑂𝑆
𝐵𝑂𝐷

𝐵𝑂𝐷
𝑁𝑖

which
is equivalent to the statement of the claim.
CLAIM 4: The quantity 𝑐 ⋅ 𝑠𝑖 is submodular w.r.t. set 𝐷𝐶.
We show this by the submodularity of 𝑃𝑂𝑆 as 𝑁𝑖 is a constant as well as the result of Claim 3. BWOC,
𝑃𝑂𝑆 is not submodular for some set 𝐷𝐶. We use the symbol 𝑃𝑂𝑆(𝐷𝐶) to denote this and assume the
existence of two sets of conditions 𝐷𝐶1, 𝐷𝐶2. Then, the following must be true:

𝑃𝑂𝑆(𝐷𝐶1) + 𝑃𝑂𝑆(𝐷𝐶2) < (16)

𝑃𝑂𝑆(𝐷𝐶1 ∪ 𝐷𝐶2) + 𝑃𝑂𝑆(𝐷𝐶1 ∩ 𝐷𝐶2) (17)

We can re-write 𝑃𝑂𝑆(𝐷𝐶1 ∪ 𝐷𝐶1) as:

| ⋃𝑐𝑜𝑛𝑑∈𝐷𝐶1∪𝐷𝐶2{𝑥|𝑐𝑜𝑛𝑑(𝜔) ∧ 𝑝𝑟𝑒𝑑𝑥}| (18)

= |⋃𝑐𝑜𝑛𝑑∈𝐷𝐶1{𝑥|𝑐𝑜𝑛𝑑(𝜔) ∧ 𝑝𝑟𝑒𝑑𝑥} ∪ (19)

⋃𝑐𝑜𝑛𝑑∈𝐷𝐶2{𝑥|𝑐𝑜𝑛𝑑(𝜔) ∧ 𝑝𝑟𝑒𝑑𝑥}| (20)



= 𝑃𝑂𝑆(𝐷𝐶1) + 𝑃𝑂𝑆(𝐷𝐶2) − (21)

𝑃𝑂𝑆(𝐷𝐶1 ∩ 𝐷𝐶2) (22)

Substituting this back into inequality 16, we can re-write the right-hand side as:

𝑃𝑂𝑆(𝐷𝐶1) + 𝑃𝑂𝑆(𝐷𝐶2) − (23)

𝑃𝑂𝑆(𝐷𝐶1 ∩ 𝐷𝐶2) + 𝑃𝑂𝑆(𝐷𝐶1 ∩ 𝐷𝐶2) (24)

= 𝑂𝑆(𝐷𝐶1) + 𝑃𝑂𝑆(𝐷𝐶2) (25)

Which give us our contradiction.
CLAIM 5: 𝑐 ⋅ 𝑠𝑖 monotonically increases with 𝐷𝐶.
By claim 1, as the quantity equals 𝑃𝑂𝑆/𝑁𝑖 and 𝑁𝑖 is a constant, we just need to show monotonicity of
𝑃𝑂𝑆. Clearly 𝑃𝑂𝑆 increases monotonically as additional elements in 𝐷𝐶 can only make it increase.
CLAIM 6: When 𝐷𝐶 = ∅, 𝑐 ⋅ 𝑠𝑖 = 0.
Follows directly from the fact that we define 𝑠𝑖 as zero is no conditions are used.
Proof of theorem. Follows directly from claims 1-6.

A.2. Proof of Theorem 2

After applying the rule to detect errors, the recall will decrease by (1 − 𝑐)𝑠𝑖
𝑅𝑖
𝑃𝑖
and this quantity is a

normalized polymatroid submodular function with respect to the set of conditions in the rule 𝐷𝐶𝑖.

Proof. CLAIM 1: After applying the rule to detect errors, the recall will decrease by (1 − 𝑐)𝑠𝑖
𝑅𝑖
𝑃𝑖
.

The number of corrections made by the rule is 𝑠𝑖(𝑇𝑃𝑖 + 𝐹𝑃𝑖) with (1 − 𝑐) fraction of these being incorrect
(so the false negatives increases by 𝑠𝑖(𝑇𝑃𝑖 + 𝐹𝑃𝑖)1 − 𝑐)). Note that the sum 𝑇𝑃𝑖 + 𝐹𝑁𝑖 does not change
after error detection, as any true positive “detected” as being incorrect becomes a false negative, and
false negatives do not otherwise change from error detection. Therefore, the new recall is:

𝑇𝑃𝑖 − 𝑠𝑖(1 − 𝑐)(𝑇𝑃𝑖 + 𝐹𝑃𝑖)
𝑇𝑃𝑖 + 𝐹𝑁𝑖

(26)

When this quantity is subtracted from the original recall (𝑅𝑖), we obtain:

𝑅𝑖 −
𝑇𝑃𝑖 − 𝑠𝑖(1 − 𝑐)(𝑇𝑃𝑖 + 𝐹𝑃𝑖)

𝑇𝑃𝑖 + 𝐹𝑁𝑖
(27)

=
𝑇𝑃𝑖 − (𝑇𝑃𝑖 − 𝑠𝑖(1 − 𝑐)(𝑇𝑃𝑖 + 𝐹𝑃𝑖))

𝑇𝑃𝑖 + 𝐹𝑁𝑖
(28)

=
𝑠𝑖(1 − 𝑐)(𝑇𝑃𝑖 + 𝐹𝑃𝑖))

𝑇𝑃𝑖 + 𝐹𝑁𝑖
(29)

= 𝑠𝑖(1 − 𝑐) (
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
+

𝐹𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

) (30)

= 𝑠𝑖(1 − 𝑐) (𝑅𝑖 +
𝐹𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
) (31)

We note that 𝐹𝑃𝑖 =
𝑇𝑃𝑖
𝑃𝑖

− 𝑇𝑃𝑖 =
𝑇𝑃𝑖−𝑃⋅𝑇𝑃𝑖

𝑃𝑖
which gives us:

𝑠𝑖(1 − 𝑐) (𝑅𝑖 +
𝑇𝑃𝑖

𝑃(𝑇𝑃𝑖 + 𝐹𝑁𝑖)
−

𝑇𝑃𝑖 ⋅ 𝑃𝑖
𝑃𝑖(𝑇𝑃𝑖 + 𝐹𝑁𝑖)

) (32)

= 𝑠𝑖(1 − 𝑐) (𝑅𝑖 +
𝑅𝑖
𝑃𝑖

− 𝑅𝑖) (33)

= (1 − 𝑐)𝑠𝑖
𝑅𝑖
𝑃𝑖

(34)



CLAIM 2: (1 − 𝑐)𝑠𝑖
𝑅𝑖
𝑃𝑖

is a normalized polymatroid submodular function with respect to the set of
conditions in the rule 𝐷𝐶𝑖. Note that 𝐵𝑂𝐷 is the number of samples that satisfy the body, while 𝑃𝑂𝑆 is
the number of samples that satisfy the body and head, 𝑁𝐸𝐺 = 𝑃𝑂𝑆 − 𝐵𝑂𝐷.

(1 − 𝑐)𝑠𝑖
𝑅𝑖
𝑃𝑖

= (1 − 𝑃𝑂𝑆
𝐵𝑂𝐷)

𝐵𝑂𝐷
𝑁𝑖

𝑅𝑖
𝑃𝑖

(35)

= 𝑁𝐸𝐺
𝐵𝑂𝐷

𝐵𝑂𝐷
𝑁

𝑅𝑖
𝑃𝑖

(36)

= 𝑁𝐸𝐺 1
𝑁𝑖

𝑅𝑖
𝑃𝑖

(37)

As 1
𝑁𝑖

𝑅𝑖
𝑃𝑖
is a constant, we need to show the submodularity of 𝑁𝐸𝐺 which follows the same argument

for 𝑃𝑂𝑆 as per Claim 4 of Theorem 1. Likewise, 𝑁𝐸𝐺 is monotonic (mirroring the argument of Claim 5
of Theorem 1) and normalized by the definition of 𝑠𝑖 in the case where there are no conditions. The
statement of the theorem follows.

A.3. Proof of Theorem 3

For the application of error correcting rules, both precision and recall increase if and only if rule
confidence (𝑐) increases.

Proof. CLAIM 1: Precision increases by 𝑐𝑠−𝑃𝑖𝑠
𝒫𝑖+𝑠

.
The new precision is equal to the following:

𝑇𝑃𝑖 + 𝑐𝑠𝑁
𝑀𝑖 + 𝑠𝑁

(38)

The improvement of the precision can be derived as follows.

𝑇𝑃𝑖 + 𝑐𝑠𝑁
𝑀𝑖 + 𝑠𝑁

− 𝑃𝑖 = (39)

= 𝑇𝑃𝑖+𝑐𝑠𝑁−𝑃𝑖𝑀𝑖−𝑃𝑖𝑠𝑁
𝑀𝑖+𝑠𝑁

(40)

= 𝑇𝑃𝑖+𝑐𝑠𝑁−𝑇𝑃𝑖−𝑃𝑖𝑠𝑁
𝑀𝑖+𝑠𝑁

(41)

= 𝑐𝑠𝑁−𝑃𝑖𝑠𝑁
𝑀𝑖+𝑠𝑁

(42)

= 𝑐𝑠−𝑃𝑖𝑠
𝒫𝑖+𝑠

(43)

CLAIM 2: If count of samples satisfying both rule body and head (the numerator of confidence)
increases, then precision increases.

Suppose BWOC the claim is not true. Then for some value of 𝑃𝑂𝑆 for which the improvement in
precision is greater than 𝑃𝑂𝑆′ = 𝑃𝑂𝑆 + 1. Note that, in this case, the number of samples satisfying the
body also increases by 1. First, we know that we can re-write the result of claim 1 as follows.

𝑃𝑂𝑆 − 𝑃𝑖𝐵𝑂𝐷
𝑀𝑖 + 𝐵𝑂𝐷

(44)

Therefore, using the result from Claim 1, the following relationship must hold.

𝑃𝑂𝑆 − 𝑃𝑖𝐵𝑂𝐷
𝑀𝑖 + 𝐵𝑂𝐷

>
𝑃𝑂𝑆 + 1 − 𝑃𝑖𝐵𝑂𝐷 − 𝑃𝑖

𝑀𝑖 + 𝐵𝑂𝐷 + 1
(45)

𝑃𝑂𝑆 − 𝑃𝑖𝐵𝑂𝐷 > 𝑀𝑖(1 − 𝑃𝑖) + 𝐵𝑂𝐷(1 − 𝑃𝑖) (46)

𝑃𝑂𝑆 > 𝑀(1 − 𝑃𝑖) + 𝐵𝑂𝐷 (47)



This gives us a contradiction, as 𝑀(1 − 𝑃𝑖) ≥ 0 and 𝑃𝑂𝑆 ≤ 𝐵𝑂𝐷 by definition.

CLAIM 3: If the difference in precision increases, the number of samples satisfying both rule body and
head must increase.
By definition, the only way for this to occur is if 𝐵𝑂𝐷 increases and 𝑃𝑂𝑆 does not - as they can both
increase or only 𝐵𝑂𝐷 increase. If neither there is no change, and it is not possible for 𝑃𝑂𝑆 to increase
without 𝐵𝑂𝐷. Therefore the following must be true.

𝑃𝑂𝑆 − 𝑃𝑖𝐵𝑂𝐷
𝑀𝑖 + 𝐵𝑂𝐷

<
𝑃𝑂𝑆 − 𝑃𝑖𝐵𝑂𝐷 − 𝑃𝑖
𝑀𝑖 + 𝐵𝑂𝐷 + 1

(48)

However, this is clearly a contradiction the expression on the right is clearly smaller (the numerator is
smaller as 𝑃𝑖 is positive, and the denominator is larger).
CLAIM 4: Precision increases if and only if 𝑐 increases.
Follows directly from claims 1-3.

CLAIM 5: When adding more samples that satisfy the body of the rule, confidence increases if and only
if 𝑃𝑂𝑆 increases.
Note that confidence is defined as 𝑃𝑂𝑆/𝐵𝑂𝐷. Clearly, there confidence decreases if 𝐵𝑂𝐷 increases

but not 𝑃𝑂𝑆 and it is not possible for 𝑃𝑂𝑆 to increase alone. Therefore, BWOC, the following must hold
true.

𝑃𝑂𝑆 + 𝑘
𝐵𝑂𝐷 + 𝑘

< 𝑃𝑂𝑆
𝐵𝑂𝐷

(49)

𝐵𝑂𝐷𝑘 < 𝑃𝑂𝑆𝑘 (50)

𝐵𝑂𝐷 < 𝑃𝑂𝑆 (51)

This is a contradiction as 𝐵𝑂𝐷 ≥ 𝑃𝑂𝑆.
Going other way, suppose BWOC confidence increases but POS does not. We get:

𝑐2 > 𝑐1 (52)
𝑃𝑂𝑆
𝐵𝑂𝐷2

> 𝑃𝑂𝑆
𝐵𝑂𝐷1

(53)

𝐵𝑂𝐷1 > 𝐵𝑂𝐷2 (54)

However, by the statement, as we add more samples that satisfy the body of the rule, we must have
𝐵𝑂𝐷1 ≤ 𝐵𝑂𝐷2. Hence a cotnradiction.
CLAIM 6: Recall increases if and only if 𝑃𝑂𝑆 increases.
As we can write the new recall in this case simply as the following, the claim immediately follows.

𝑇𝑃𝑖 + 𝑃𝑂𝑆
𝑇𝑃𝑖 + 𝐹𝑁𝑖

(55)

CLAIM 7: Recall increases if and only if 𝑐 increases.
Follows directly from claims 5-6.

Proof of theorem.
Follows directly from claims 4 and 7.

A.4. Overall Accuracy Results for Other Data Splits

Previous work such as [4] is known to have data leakage based on the split between training and test
primarily due to segments of a movement sequence existing in both training and test sets resulting
from ransom assignment to each. To address this data leakage issue, we examine our algorithms under
various conditions based on ordering and overlap. For ordering, we examine random (which can allow
previous behavior of the same agent in the training set, as in previous work) and sequential (which



No Overlap Segment Overlap Data point Overlap
Random Sequential Random Sequential Random Sequential

(least leakage) (known leakage,
prev. studies)

LRCNa (ours) 0.747 0.751 0.971 0.758 0.921 0.760
LRCNa+EDCR (ours) 0.759 (+1.6%) 0.763 (+1.6%) 0.971 (± 0%) 0.769 (+1.5%) 0.921 (± 0%) 0.780 (+2.6%)
LRCN (prev. SOTA) 0.749 0.747 0.952 0.767 0.887 0.774
LRCN+EDCR (ours) 0.761 (+1.6%) 0.760 (+1.7%) 0.952 (± 0%) 0.768 (+0.1%) 0.889 (+0.2%) 0.783 (+1.1%)
CNN 0.742 0.755 0.851 0.763 0.853 0.779
CNN+EDCR (ours) 0.743 (+0.1%) 0.755 (± 0%) 0.866 (+1.8%) 0.763 (± 0%) 0.862 (+1.0%) 0.779 (± 0%)

Table 3
Accuracy when all classes are represented in training and test sets under various data leakage cases. EDCR
means “error detecting and correcting rules” were used on the model output and numbers in parens show the
percent change in accuracy from EDCR over the base model. Bold numbers are the best in each case.

orders the agents to avoid this issue). For overlap, we examine no overlap between the training and test
sets, segment overlap that allows training and test samples to overlap each other(as in previous work),
and data point overlap (that allows for data points of a trajectory to span both training and test). In
Table 3 we examine the accuracy of each model, both with and without EDCR. Models enabled with
EDCR performed the same or better with improvement most noticeable when samples are sequential
(which has less data leakage between training and test). In terms of overall performance, LRCNa with
EDCR performed the best in five of six cases with LRCN with EDCR performing the best in the sixth.
Of particular importance, in the “no overlap - sequential” case - the least likely to exhibit data leakage -
EDCR improves the performance of both LRCNa and LRCN, 1.6% and 1.7% respectively.
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