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Abstract

The explosive growth of user-generated videos has driven the demand for automated video understanding in
applications such as retrieval, surveillance, and human-computer interaction. Temporal Action Localization (TAL),
a critical task in this domain, aims to identify temporal boundaries and categories of actions in untrimmed videos.
However, existing methods struggle with challenges including large variations in action duration, ambiguous
boundaries, and strong background noise. This paper proposes LoGo, an end-to-end framework that unifies
Local-Global Context Modeling and a Cross-Level Feature Fusion Regression Head (CLFF-Head) to significantly
improve localization accuracy. The key innovations include: 1) The LoGo Block, which integrates depthwise
separable convolutions for local structural modeling with channel attention mechanisms for global semantic
awareness, achieving balanced local-global dependency learning through residual fusion; 2) The CLFF-Head,
which enhances boundary regression stability and accuracy via adaptive multi-scale feature fusion. Extensive
experiments on THUMOS14 and ActivityNet1.3 demonstrate that LoGo outperforms state-of-the-art methods,
achieving new SOTA performance on THUMOS14 and competitive results on ActivityNet1.3, validating its
effectiveness and generalizability.
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1. Introduction

In recent years, the explosive growth of user-generated videos on internet platforms has fueled the
demand for automatic video understanding in applications such as retrieval, surveillance, and human-
computer interaction. Temporal Action Localization (TAL), a crucial task in this domain, aims to identify
the temporal boundaries and categories of actions in untrimmed videos. Despite recent advances, TAL
remains challenging due to large variations in action duration, ambiguous boundaries, and strong
background noise.

To tackle these challenges, many methods have been proposed using convolutional [1, 2], recurrent [3],
or graph-based networks[4, 5, 6] to model temporal dependencies. However, the uneven distribution of
action durations—ranging from brief gestures to prolonged activities—demands simultaneous modeling
of both short- and long-term dependencies. CNNs offer strong local modeling but struggle with long-
range context, while Transformers [7, 8] capture global semantics effectively but lack sensitivity to
local details, which are critical for precise boundary detection.

Accurate boundary localization remains a bottleneck. While [8] introduces an efficient regression
head, its expressiveness is limited in complex scenes. [9] improves regression with a stronger head, yet
its limited cross-level feature fusion results in suboptimal localization under challenging backgrounds.

To address these issues, we propose LoGo, an end-to-end TAL framework that unifies Local-Global
Context modeling with a Cross-Level Feature Fusion Regression Head (CLFF-Head). The LoGo Block
integrates depthwise separable convolutions for local structure modeling with channel attention for
global context, connected via a residual fusion mechanism to balance precision and long-range awareness.
Furthermore, the CLFF-Head adaptively fuses multi-scale semantic features from the feature pyramid,
significantly enhancing boundary regression stability and accuracy without compromising efficiency.

The main contributions of this paper are summarized as follows:
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+ We introduce the LoGo Block module, which combines the local modeling capability based on
depthwise separable convolutions with the global modeling capability driven by channel attention
mechanisms, achieving efficient integration through a residual structure. This module effectively
captures both local structural details and long-range contextual dependencies.

« We design the Cross-Level Feature Fusion Regression Head (CLFF-Head), which introduces a
multi-scale feature adaptive fusion mechanism, significantly improving the stability and accuracy
of boundary localization.

Section 2 outlines relevant prior work. Section 3 details the proposed methodology. Section 4 presents
and discusses the results of our experiments. Lastly, Section 5 summarizes our main conclusions.

2. Related Work

Temporal Action Localization(TAL) In Temporal Action Localization (TAL), two-stage and single-
stage methods are employed to detect actions in videos. Two-stage methods involve generating action
proposals and classifying them, which can be achieved through anchor windows[10, 11], action boundary
localization[12, 13], graph representation[4], or Transformers[7, 8]. On the other hand, single-stage
TAL performs both proposal generation and classification in a single pass, without a separate proposal
generation step. Pioneering work[14] in this field developed anchor-based single-stage TAL using
convolutional networks, inspired by single-stage object detectors[15]. Additionally, there have been
anchor-free single-stage models proposed[16], incorporating a saliency-based refinement module.

Object detection Object detection is closely related to Temporal Action Localization (TAL), with
both tasks sharing similar challenges. General Focal Loss [17] enhances bounding box regression
by transforming it from learning a Dirac delta distribution to a more general distribution function.
Several methods [18, 19, 20] leverage Depthwise Convolution to model network structures, while certain
branched designs [21, 22] have demonstrated strong generalization capabilities. These approaches offer
valuable insights for designing the architecture of TAL systems.

3. Methodology

Temporal Action Localization Given an input video X, we make the assumption that X can be
represented by a collection of feature vectors X = {x, xy, ..., x7} defined at discrete time steps t =
{1,2,..., T}, where the total duration T varies across different videos. For instance, xr could represent
the feature vector of a video clip extracted from a 3D convolutional network at time ¢. The objective of
temporal action localization (TAL) is to predict the action label Y = {y;, y», ..., yn} based on the input
video sequence X. Here, Y comprises N action instances y;, and the number of instances N can vary
across videos. Each instance y; = (s;, ¢, @;) is characterized by its starting time s; (onset), ending time ¢;
(offset), and the corresponding action label ;. The starting time s; lies in the range of [1, T], the ending
time ¢; lies in the range of [1,T], and the action label g; belongs to the set of pre-defined categories
1,..,C, where C represents the total number of categories. Additionally, it is required that s; is less than
¢; for each instance. Therefore, the task of TAL presents a challenging problem of predicting structured
outputs.

3.1. Method Overview

The overall architecture of LoGo is shown in Fig. 1. Our model consists of three parts: a video feature
extractor, a Multi-scale LoGo Encoder, and two sub-task heads. Concretely, for a given video clip, we
extract video features using a pre-trained 3D-CNN model. Then, the extracted features are passed
through the Multi-scale LoGo Encoder, which performs downsampling operations to better represent
features at different temporal scales. Finally, the pyramid features produced by the Multi-scale LoGo



Encoder are processed by two task-specific heads to generate the final predictions. In the following, we
will describe the details of our model.

i

| ; e
LoGo Block > -
WP downsample g ?
70 e (e |
Group Norm [ LoGo Block ]——V (:'? @

-3 2.

T downsample é 8

= %

'21 T downsample ) Y

g || &

£ LoGo Block ]——>
S o \_»‘
Layer Norm K Multi-scale LoGo Encoder j """"""""

A

Project using Convolutions

I S S

#Pretrained 3D CNN

Figure 1: lllustration of LoGo framework. We build the pyramid features with LoGo Block. The
corresponding features in each level are fed into a lightweight classification head and a CLFF-Head to
obtain the result.

3.2. Multi-scale LoGo Encoder

The input feature X is first encoded into multi-scale temporal feature pyramid Z = {Z', Z?, ..., Z} using
Multi-scale LoGo Encoder e. The encoder e simply contains two 1D convolutional neural network layers
as feature projection layers, followed by L — 1 Local-Global Context Modeling (LoGo) blocks to produce
feature pyramid Z.

First, the input features Z'=1 from the previous layer of the pyramid are passed through a Layer
Normalization (LN) operation to stabilize the feature distribution. These normalized features are then
fed into the LoGo block, which jointly captures local and global temporal information. Through a
residual connection, the output of the LoGo block is added to the original input features, resulting in
the new feature representation Z-1,

Next, the feature Z/~! is processed through a Group Normalization (GN) operation to further enhance
the training stability of the model. Then, a Multi-Layer Perceptron (MLP) is applied to perform nonlinear
transformation, yielding the feature Z"~!. Again, through a residual connection, the output of the MLP
is added to Z71, producing the updated feature representation.

Finally, the processed feature Z'~! undergoes a downsampling operation. Downsampling is imple-
mented via a 1D max-pooling operation with a window size of 3 and a stride of 2, reducing the temporal
dimension of the features and passing them to the next layer of the pyramid.

Here are the mathematical formulas corresponding to these steps:

7171 = LoGo(LN(ZI"1)) + 7z, (1)
ZI7t = MLP(GN(ZI7Y)) + ZI72, (2)
Zl= downsample(Zl_l) (3)



where [ € [1,L], LN is the LayerNorm operation, GN is the GroupNorm operation, downsample is
implemented by a 1D max-pooling with a window size of 3 and stride of 2.

Finally, the encoded feature pyramid is constructed by combining the features of all the LoGo blocks
as Z ={z',7%,.., 721

LoGo Block To simultaneously capture local structural details and global semantics in action in-
stances, this study proposes the LoGo Block module, which integrates depthwise separable convolution
(for local modeling) and channel attention mechanisms (for global modeling) to achieve efficient fusion
of multi-scale temporal features. Specifically, the LoGo Block first applies LayerNorm normalization to
stabilize the feature distribution and improve training effectiveness. It then employs depthwise separable
convolution to model local patterns, effectively capturing short-term dependencies and fine-grained
variations in temporal sequences.

Global modeling is implemented through two pathways: Pathway 1 generates channel attention
weights (global modulation factor) via global average pooling followed by a fully connected layer, while
Pathway 2 extracts salient features through max pooling and multiplies them with linearly transformed
features for dynamic channel weighting. These pathways respectively focus on global context and
salient features to enhance multi-scale action characteristics.

The final output combines three components: local features multiplied by the global modulation
factor, dynamically weighted salient features, and the original input through residual connections. This
design strengthens feature representation capabilities while facilitating stable gradient propagation.
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Figure 2: lllustration of LoGo. LoGo integrates local convolutional features, global modulation factors, and
dynamically weighted features through residual connections to stabilize training.

Overall, the LoGo Block adopts a lightweight structure to enable multi-level modeling of temporal
action information, significantly improving the model’s ability to recognize action boundaries and
understand semantics in complex backgrounds.

Mathematically, the LoGo can be written as:

JLoGo = Com’(x)favg + fmaxFC(x) + x (4)

where FC and Conv denotes fully-connected layer and the 1-D depth-wise convolution layer over
temporal dimension. fa, and fpgy are given as:

favg = ReLU(FC(AvgPool(x))), (5)
fmax = ReLU(FC(MaxPool(x))), (6)
where AvgPool(x) is the average pooling for all features over the temporal dimension and Max Pool(x)
is the max pooling for all features over the temporal dimension.
3.3. Temporal Action Localization Decoder

Next, our model uses a decoder to decode the feature pyramid Z = {Z vz Zl} extracted by the
multi-path temporal feature encoder into sequence labels Y = {3y, J», ..., 31} . The decoder of this model



consists of a classification head and a cross-level feature fusion regression head, both of which are
lightweight convolutional networks.

Classification Head Based on the feature pyramid Z, the task of the classification head is to predict
the action category probabilities p(a;) for each moment t at different levels of the pyramid. The
classification head in this chapter adopts a simple and efficient 1D convolutional network, with shared
parameters across different levels to reduce model complexity. Specifically, the network consists of three
1D convolutional layers, with a kernel size of 3. ReLU activation and LayerNorm normalization are
applied in the first two layers to enhance training stability. Finally, after a Sigmoid function mapping,
the output is the probability distribution for each action category.

Cross-Level Feature Fusion Regression Head Inspired by the Trident-head structure in TriDet, the
regression head in this paper emphasizes the role of relative boundary feature information at different
levels of the feature pyramid in action localization. However, Trident-head relies solely on a single
feature layer for boundary estimation, which may limit its performance in boundary localization. To
address this, we propose a Cross-Level Feature Fusion Regression Head (CLFFHead). This method
not only utilizes the features of the current pyramid layer when predicting boundary offsets but also
incorporates the feature information from the previous layer, thus enhancing the complementarity of
features at different scales and improving the stability and accuracy of boundary regression.
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Figure 3: Illustration of cross-level feature fusion progress. Cross-level feature fusion with learnable weights w;
and w, dynamically adjusts fusion ratios.

Given the feature sequence F € RT*P output from the feature pyramid, we first obtain three feature

sequences from three branches: F; € RT , F, ¢ RT and F, € RT*2x(B+1) F; and F, represent the response
values for the start and end boundaries of an action at each moment, respectively. Both F; and F, are
obtained through 1D convolutions. For F, € R (B+1) | during its derivation, we not only utilize the
features of the current layer but also incorporate the feature information from the previous pyramid
layer. This cross-level feature fusion allows the model to leverage richer contextual information,
enhancing the robustness of boundary prediction. In the feature fusion process, we introduce two
learnable parameters, w; and wy, to ensure that the fusion weights can be dynamically adjusted. This
process is illustrated in Fig. 3, where the blue blocks denote the features processed by the LoGo
Encoder. This mechanism enables the model to adaptively select the appropriate feature proportion,
optimizing boundary prediction performance under different tasks and data distributions. For more
details about Trident-head decoder, the readers can refer to [9]. All heads are modeled using a three-
layer convolutional neural network, with shared parameters across all feature pyramid layers to reduce
the number of parameters.

3.4. Loss Function

The loss function plays a crucial role in model training by providing an optimization objective that
measures the error between predictions and ground truth, thereby evaluating model performance.
A well-designed loss function not only impacts learning effectiveness but also directly influences
convergence speed. Thus, the selection and optimization of the loss function are critical aspects of
model training that cannot be overlooked.



For training, our model adopts a hybrid optimization strategy combining classification loss and
regression loss to improve classification accuracy and bounding box localization precision.

Classification Loss: We employ Focal Loss, a loss function specifically designed to address class
imbalance. By introducing a modulating factor, Focal Loss assigns higher weights to hard-to-classify
samples, enhancing the model’s focus on challenging categories during training and improving overall
classification performance.

Regression Loss: We utilize GIoU Loss (Generalized IoU). Compared to traditional IoU, GIoU not only
considers the overlapping area between predicted and ground-truth bounding boxes but also accounts
for differences in their minimum enclosing rectangles. This improvement addresses the limitations
of IoU when bounding boxes are not fully aligned, enabling more precise positional optimization and
enhancing temporal localization accuracy for action regions.

Each layer [ in the feature pyramid outputs a temporal feature F' € R2™'TxD , which is then processed
by a classification head and a cross-layer feature fusion regression head for temporal action localization.
The output of layer [ at time ¢ is denoted as oh= (&, (:iét &ét) . The overall loss function is formulated as:

1 1
Z = N_ Z ]l{ctl>0}(o—loUgcls + Zreg) + N_ ]l{ctl:()}gclw (7)
pos [t neg [

where Nj,os and Ny represent the numbers of positive and negative samples, respectively.

4. Experiments

4.1. Dataset and Experimental Setup

Datasets We conduct experiments on two datasets, including THUMOS14, and ActivityNet-1.3. These
datasets have been widely adopted as standard benchmarks in the temporal action localization task.

THUMOS14 is a large-scale video dataset, which contains a large number of open-source videos
capturing human actions from 20 classes in real environments. Among all the videos, there are 220
(3,007 action instances) and 213 (3,358 action instances) untrimmed videos with temporal annotations in
validation and test set, respectively. Following the common setting in THUMOS14, we use the validation
set for training and report results on the test set.

ActivityNet-1.3 is another popular large-scale dataset for TAL. It includes around 20,000 videos (more
than 600 hours) with 200 action categories. The dataset has three subsets:10,024 videos for training,
4,926 for validation, and 5,044 for testing. On average, each video comprises approximately 1.5 actions.
Following the common practice, we train our model on the training set and report the performance on
the validation set.

Evaluation Metric We use the mean Average Precision (mAP) at various temporal Intersection
over Unions (tloU) thresholds to evaluate the TAL performance of different methods. For THUMOS14
datasets, we report the results at IoU thresholds [0.3:0.7:0.1]. For ActivityNet-1.3 dataset, we report the
results at IoU thresholds [0.5,0.75,0.95].

Implementation Details Our model is trained end-to-end with AdamW [23] optimizer. The initial
learning rate is set to 10™* for THUMOS14 and 10> for ActivityNet. We detach the gradient before
the start boundary head and end boundary head and initialize the CNN weights of these two heads
with a Gaussian distribution N(0, 0.1) to stabilize the training process. The learning rate is updated
with Cosine Annealing schedule. We train 40 and 15 epochs for THUMOS14, ActivityNet (containing
warmup 20, 10 epochs). We conduct our experiments on a single NVIDIA A100 GPU.

4.2. Main Results

THUMOS14 We adopt the commonly used I3D [33] as our backbone feature and Tab. 1 presents the
results. Our method achieves an average mAP of 69.2%, outperforming all previous methods including



Table 1
Comparison with the state-of-the-art methods on THUMOS14 dataset.

Method Backbone| 0.3 04 05 0.6 0.7 Avg.
BMN[12] TSN 56.0 47.4 38.8 29.7 20.5 38.5
TCANet[14] TSN 60.6 53.2 44.6 36.8 26.7 44.3
ContextLoc[24] 13D 68.3 63.8 54.3 41.8 26.2 50.9
AFSD[16] 13D 67.3 62.4 55.5 43.7 31.1 52.0
ReAct[25] TSN 69.2 65.0 57.1 47.8 35.6 55.0
TadTR[26] 13D 74.8 69.1 60.1 46.6 32.8 56.7
TALLFormer[7] Swin |760 - 632 - 345 59.2
ActionFormer(8] 13D 82.1 77.8 71.0 59.4 439 66.8

TemporalMaxer[27] 13D 82.8 78.9 71.8 60.5 44.7 67.7

ASL[28] 13D |83.1 79.0 71.7 59.7 45.8 67.9
K.Xia et al.[29] 13D |81.6 78.4 72.2 59.0 445 67.1
TransGMC[30] 13D |82.3 78.8 71.4 60.0 45.1 67.5

FAM[31] 13D |82.8 79.1 71.1 59.8 44.2 67.4

DualH[32] 13D |83.6 79.5 72.2 60.0 44.9 68.0

Ours 13D |83.9 80.3 72.7 62.5 46.4 69.2

Table 2
Comparison with the state-of-the-art methods on ActivityNet-1.3 dataset.

Method Backbone | 0.5 0.75 095 Avg.
BMN[12] TSN 50.1 348 83 339
AFSD[16] 13D 496 33.0 86 326
ReAct[25] TSN 496 330 86 326
TadTR[26] TSN 51.3 350 9.5 346

TALLFormer[7] Swin 541 362 79 356

ActionFormer[8] | R(2+1)D | 54.7 37.8 84 36.6
ASL[28] 13D 54.1 37.4 8.0 36.2
K.Xia et al.[29] 13D 542 351 7.3 342

TransGMC[30] | R(2+1)D | 54.8 376 85 36.7

FAM[31] 13D 546 372 83 363
DualH[32] 13D 544 371 81 363
Ours R2+1)D | 54.8 37.8 85 36.7

one-stage and two-stage methods. Notably, our method also achieves better performance than recent
Transformer-based methods [7, 8], which demonstrates that the simple design can also have impressive
results. Its performance improvement is more evident at higher IoU thresholds (e.g., 0.6 and 0.7),



highlighting the model’s strength in accurate localization. Although our regression head is inspired
by TriDet, the overall architecture of our framework differs significantly from TriDet. Therefore, a
direct comparison may not effectively demonstrate the effectiveness of CLFFHead. Instead, we choose
to validate it through ablation studies under a unified framework.

ActivityNet ActivityNet. For the ActivityNet v1.3 dataset, we adopt the TSP R(2+1)D [34] as our
backbone feature. Following previous methods [7, 8, 16], the video classification score predicted from
the UntrimmedNet is adopted to multiply with the final detection score. Tab. 2 presents the results.
our method achieves the highest scores at IoU thresholds of 0.5 and 0.75, reaching 54.8% and 37.8%
respectively—on par with TransGMC. The average mAP also reaches 36.7%, matching or slightly
outperforming the current best methods. Although the performance at the strictest IoU threshold (0.95)
is slightly lower than TadTR[26] , our method still maintains a leading overall performance, especially
under the more commonly used thresholds of 0.5 and 0.75. This suggests that our method is not only
effective for densely labeled and boundary-ambiguous videos (such as those in THUMOS14), but also
adaptable to longer videos with large action spans in more complex scenes (as in ActivityNet-1.3).

4.3. Ablation Study

In this section, we mainly conduct the ablation studies on the THUMOS14 dataset.

The effectiveness of LoGo block To assess the contribution of the LoGo block, we conduct a set
of ablation studies by replacing or simplifying its components. Specifically, we begin with a baseline
temporal feature pyramid adopted from [8, 16], which consists of two 1D convolutional layers and a
shortcut connection. We then progressively enhance this baseline by introducing ActionFormer (SA),
the LoGo block, and the CLFF-Head.

As shown in Tab. 3, replacing the standard convolutional block with self-attention improves the
average mAP from 62.1% to 66.8%. Further adding the LoGo block yields a notable gain to 68.0%, and
finally, the full model with LoGo and CLFF-Head achieves the best performance with an average mAP
of 69.2% on THUMOS14.

Table 3
Analysis of the Effectiveness of three main components on THUMOS14.
Method |SA LoGo CLFFHead| 0.3 0.5 0.7 Avg.
1 77.3 65.2 40.0 62.1
2 X 82.1 71.0 43.9 66.8
4 X 83.5 72.3 45.1 68.0
3 X X 83.9 72.7 46.4 69.2

The effectiveness of regression head To verify the effectiveness of the proposed Cross-Level
Feature Fusion Regression Head, we conduct ablation studies on three types of regression heads: (1) a
lightweight regression head adopted from [8], (2) the regression head used in [9], and (3) our proposed
Cross-Level Feature Fusion Regression Head. All other hyperparameters (e.g., the number of pyramid
layers) are kept identical to those used in our framework. Tab. 4 presents the results. While the
regression head from TriDet performs slightly better at high IoU (0.7), our proposed head shows more
stable performance across thresholds and achieves the highest overall mAP (69.2%). This demonstrates
the benefits of integrating multi-level features to enhance regression robustness and precision.



Table 4
Analysis of the Effectiveness of Regression Head on THUMOS14.

Method | 03 05 0.7 Avg.

1 83.0 729 452 68.0
2 835 725 46.8 68.8
3 83.9 727 464 69.2

The effectiveness of feature pyramid level To investigate the impact of the number of feature
pyramid layers on model performance, we conducted experiments with different pyramid depths and
evaluated their performance under multiple IoU thresholds. Tab. 5 presents the results. As the number
of layers increases from 3 to 6, performance steadily improves, peaking at 69.2% mAP with 6 layers.
However, further increasing to 7 layers slightly degrades performance, suggesting that while deeper
pyramids can better capture multi-scale action information, excessive depth may introduce redundancy
or training difficulties.

Table 5
Analysis of the number of feature pyramid layers.

Levels | 0.3 05 0.7 Avg.

3 794 654 377 618
4 821 705 439 66.1
5 829 70.8 455 67.8
6 839 727 464 69.2

7 835 721 459 68.8

5. Conclusions

This paper addresses the critical challenge of jointly optimizing local detail capture and global semantic
modeling in temporal action localization (TAL) by proposing the LoGo framework based on local-global
context modeling. The designed LoGo Block integrates the local structural modeling capability of
depthwise separable convolutions with the global semantic awareness of channel attention mechanisms,
achieving efficient fusion of multi-scale temporal features. Furthermore, the proposed Cross-Level
Feature Fusion Regression Head (CLFF-Head) significantly enhances boundary localization stability
and accuracy through adaptive fusion of multi-level semantic information from the feature pyramid.
Experiments on THUMOS14 and ActivityNet1.3 demonstrate that the LoGo framework excels in complex
backgrounds and multi-scale action scenarios, outperforming existing methods. These results validate
the effectiveness of the local-global collaborative modeling strategy and cross-layer feature fusion
mechanism.
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