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Abstract

Geospatial inference is a critical component in many domains. Conventional methodologies such as Kriging
and Geographically Weighted Regression (GWR) exhibit inherent limitations in inference capabilities, while
contemporary machine learning approaches demonstrate superior predictive accuracy but significantly lack
interpretability within spatial contexts. To bridge this gap, this work introduces HexaClus, a novel interpretable
supervised spatial clustering framework based on mergers over a hexagonal grid that effectively resolves the
tension between predictive performance and interpretability in geospatial analysis. HexaClus partitions a
study area into hexagonal cells, assigns geospatial features to each cell, and iteratively merges adjacent regions
based on predictive consistency to form spatially coherent clusters. A key innovation of HexaClus lies in its
architecture-agnostic design, enabling seamless integration with any machine learning model. Through an
empirical evaluation, we demonstrate that HexaClus substantially outperforms traditional geospatial models and
black-box machine learning techniques across dual dimensions of inference capability and interpretability. The
complete implementation of HexaClus is publicly accessible for reproducibility and further development'.
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1. Introduction

Geospatial inference plays a crucial role in addressing both environmental and socio-economic issues [1,
2, 3], increasing the demand for accurate yet interpretable geospatial models. Such models enable
decision makers to analyze spatial trends, allocate resources efficiently, and mitigate potential risks.
However, balancing predictive accuracy and interpretability remains a significant challenge, particularly
in the presence of spatial dependencies and heterogeneous environments.

Traditional geospatial inference methodologies, such as kriging [4, 5] and Geographically Weighted
Regression (GWR)[6], have been widely used to model spatial relationships by assigning different
weights to nearby observations. Although these methods provide solid mathematical and statistical
foundations, they face several limitations in inference capability, interpretability, and generalization.
For example, both Kriging and GWR assume stationarity, making them less effective in complex terrains
and urban environments where spatial relationships vary significantly [7, 8]. Moreover, they are
highly sensitive to parameter choices, such as the selection of the bandwidth in GWR [9] and the
variogram parameters in Kriging [10], which can significantly affect the performance of constructed
models. Another major drawback is their limited ability to incorporate external geospatial features,
such as Points of Interest (POIs), which are essential for modeling human activities and land use
patterns. Furthermore, their predictive capabilities remain constrained, as they are primarily designed
for interpolation rather than robust inference in the presence of varying spatial relationships.

Stronger machine learning (ML) techniques have emerged as a powerful alternative to geospatial
prediction due to their robustness and high predictive accuracy. These models can handle large-scale

!See: https://github.com/ArmonGo/HexaClus

STRL’25: Fourth International Workshop on Spatio-Temporal Reasoning and Learning, 16 August 2025, Montreal, Canada
*Corresponding author.

"These authors contributed equally.

& yameng.guo@ugent.be (Y. Guo); seppe.vandenbroucke@ugent.be (S. vanden Broucke)

® 0000-0003-2719-1356 (Y. Guo); 0000-0002-8781-3906 (S. vanden Broucke)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5


https://github.com/ArmonGo/HexaClus
mailto:yameng.guo@ugent.be
mailto:seppe.vandenbroucke@ugent.be
https://orcid.org/0000-0003-2719-1356
https://orcid.org/0000-0002-8781-3906
https://creativecommons.org/licenses/by/4.0/deed.en

datasets and complex feature interactions, making them well-suited for geospatial tasks. However,
this increase in predictive power typically comes at a cost of hampering interpretability, limiting their
utility in many practical geospatial inference settings. Ensemble models are often considered to act as
“black boxes”, making it difficult to understand why certain regions exhibit higher or lower predicted
values. Although interpretation techniques such as SHAP (Shapley Additive Explanations) [11] can be
used in this context, they generally lack a geospatial-specific perspective, failing to fully capture spatial
dependencies and relationships between adjacent areas in an appealing manner.

To address these challenges, we propose HexaClus, a novel hexagonal supervised spatial clustering
method that balances interpretability and predictive precision. Our approach starts with dividing the
study area into hexagonal cells, and then aggregates geospatial features within each cell. Next, local
supervised models are constructed per cell and are used to iteratively merge adjacent hexes until a
validation set-based convergence criterion is met. By developing this algorithm, we aim to:

« Improve interpretability of geospatial models by structuring spatial clusters, providing an intuitive
visualization of geospatial distributions and predictions.

+ Develop a flexible framework that dynamically integrates local geospatial information. Unlike
fixed-radius aggregation approaches around given target instances, our method enables the
localized incorporation of spatial embeddings on a smaller scale over the hexagonal grid, ensuring
a more accurate representation of local geospatial features.

» Remain compatible with various advanced machine learning models whilst maintaining an
interpretable clustering structure.

« Provide an interpretable and adaptive approach to geospatial inference by leveraging hexagonal
spatial partitioning and supervised clustering.

An implementation of our work is made publicly available'.

2. Related Works

2.1. Geospatial Inference Techniques

Geospatial modeling relies on capturing spatial dependencies to improve inference accuracy. Existing
approaches can be broadly categorized into three main groups: statistical models, machine learning-
based methods, and deep learning-based methods.

Traditional statistical approaches such as Kriging [4, 5] and Geographically Weighted Regression
(GWR) [6] are widely used in geospatial modeling. These methods leverage spatial dependencies by
assigning weights to nearby observations. Kriging, a geostatistical interpolation technique, predicts
unknown values based on the spatial correlation of known data points. However, its effectiveness is
generally limited in heterogeneous landscapes due to the assumption of stationarity [7, 8].

Similarly, GWR extends traditional regression modeling by allowing coefficients to vary spatially,
offering insights into how relationships change across different regions. Though GWR improves spatial
interpretability, it is sensitive to bandwidth selection [9] and struggles with high-dimensional feature
spaces. Furthermore, both Kriging and GWR have limited predictive capabilities, as they are primarily
designed for interpolation rather than robust inference.

In practical applications, both methods also impose strict mathematical conditions, leading to complex
nonlinear computations that are often computationally expensive [12], causing these models to also be
less suitable for large-scale datasets.

Next, machine learning (ML) techniques, particularly tree-based ensemble methods like Random
Forest [13] and Gradient Boosting [14, 15, 16], have gained popularity in geospatial inference due to
their robustness and predictive accuracy. These models efficiently handle non-linear relationships
and large datasets while also offering flexibility in terms of being able to incorporate local Points of

'See: https://github.com/ArmonGo/HexaClus


https://github.com/ArmonGo/HexaClus

Merge Step 0 Merge Step 9

Merge Step 111

Figure 1: Hexagonal cell clustering and merging process

The area under study is initially divided into hexagonal cells based on a specified resolution.
Then, pairs of touching polygons that yield the greatest reduction in training MSE are
identified and merged into a single polygon. This process is repeated iteratively until a
convergence condition is met.

Interest (POIs). However, integrating POIs often requires extensive feature engineering [17] to query
the surrounding area around targets of interest and then appropriately aggregate POI counts. Typically,
a predefined fixed-radius approach is used to define a restricted area (in the shape of a box or circle) to
incorporate spatial context, but this may fail to capture dynamic spatial interactions effectively.

A promising direction is the combination of machine learning and spatial correlation modeling.
Some hybrid approaches [18, 19] integrate both spatial statistic models and machine learning models to
improve geospatial generalization. Yet, the lack of explicit spatial structure often results in reduced
interpretability compared to traditional geostatistical models.

Deep learning, in particular Graph Neural Networks (GNNs), has emerged as a promising approach
for geospatial modeling [20, 21]. GNNs represent spatial structures as graphs, enabling models to learn
complex spatial relationships. However, despite their theoretical advantages, GNN-based geospatial
inference faces significant practical challenges related to graph construction and training. First, there
is currently no standard well-accepted method for defining an appropriate spatial graph, as most
approaches rely on arbitrary distance thresholds. Second, empirical studies have shown that GNNs
can struggle to outperform classical machine learning methods in geospatial inference while requiring
significantly higher computational resources and tuning efforts [22].

2.2. Interpretability and Visualization

Compared to other inference tasks, geospatial inference places greater emphasis on interpretability
due to its involvement with complex spatial relationships, heterogeneous data sources, and real-world
decision-making processes, all of which require a high level of trust and transparency.

A common approach to interpreting model mechanisms is assessing feature importance using methods
such as SHAP (Shapley Additive Explanations)[11] and LIME (Local Interpretable Model-agnostic
Explanations)[23]. While these techniques provide an initial understanding of feature attributions—
including e.g. coordinate features—they fail to show local spatial dependencies and variations in an
appealing manner as the spatial coordinates are regarded as normal features.

Beyond feature importance, prediction results also play a crucial role in interpretability. Since output
values are often tied to specific locations, researchers commonly aggregate raw predictions and visualize
them spatially using heatmaps or region-based summaries [24, 25] within administrative boundaries.
Additionally, methods such as GWR, Kriging, and Gaussian Processes [26] enable spatially varying
coefficients or spatial uncertainty estimation, offering a deeper insight into local spatial variations and
uncertainties.

Despite the availability of various methods for interpreting geospatial predictions, they share common
challenges. For example, most spatial visualization rely on predefined administrative boundaries, which
may not align with actual spatial variations that transcend these divisions. Furthermore, existing
map-based techniques, such as hotspot maps and density-based visualizations, are often sensitive to
data point density variations, making them susceptible to data collection bias rather than reflecting



true spatial patterns. For instance, urban areas may appear as high-risk zones simply due to there being
more instances in those areas rather than there being genuine geospatial variation.

To address the previously mentioned challenges, we propose a straightforward hexagonal supervised
spatial clustering framework that provides an adaptive and interpretable solution to balance predictive
accuracy and spatial interpretability. Unlike fixed-radius approaches, our framework dynamically
integrates spatial embeddings, enabling a more context-aware representation of geospatial features.
Additionally, HexaClus supports a variety of machine learning models while preserving an interpretable
spatial structure, ensuring strong predictive performance. Most importantly, it facilitates clear geospatial
visualization and enables local variation analysis beyond administrative boundaries by structuring
spatial clusters in a hexagonal format.

3. Methodology

The HexaClus algorithm is built on hexagonal partitions and operates by iteratively clustering geospatial
regions using a supervised hierarchical merging strategy. The cell shape of a grid system is an important
consideration. We opt for hexagonal cell shapes over e.g. square or other covering partitioning strategies
due to their appealing properties. For simplicity, it should be constant-area polygon that tiles regularly,
ie. the triangle, the square, or the hexagon. Of these, triangles and squares have neighbors with
different distances. Triangles have three different distances, and squares have two different distances.
For hexagons, all neighbors are equidistant and additionally have the property of expanding rings of
neighbors approximating circles. Hexagons are also optimally space-filling. On average, a polygon
may be filled with hexagon tiles with a smaller margin of error than would be present with square tiles.
Particularly, in the context of our clustering task, the uniform structure helps reduce directional bias
and prevents potential distortions in spatial patterns when aggregating features among all neighbors.
Note that other polygonal covering strategies, such as e.g. based on Voronoi maps, could be considered
without significant effort, but are left out of scope for this work.

Algorithm 1 and Figure 1 outline the steps to construct a clustering solution solution.

Given a training and validation set (the latter used for stopping when convergence is reached), as
well as a set of initial (hexagonal) cells, the algorithm begins by removing all cells which do not contain
any train instances. To construct the set of initial hexagonal cells, we utilize Uber’s h3 library %, which
can construct hexagonal cells for each location on the globe with different sizes, using a resolution
parameter r.

Next, for each initial cell, one can optionally construct a spatial representation vector containing
point of interest (POI) information, land use data information, or terrain attributes describing the initial
cell. Whilst this is a flexible component which can be either skipped or easily extended by end users,
we by default utilize the Python library SRAI to obtain a vector containing spatial information given an
initial hexagonal cell [27], similarly to what is done in e.g. Hex2Vec [28].

Next, a prediction model base learner should be specified which is used to train over a set of spatially
located instanced to predict their target value. We assume target values to be continues so that regression
models are constructed, but our approach can be easily extended to a binary classification setting as
well. Before the merging procedure of cells can start, a local regression model is hence trained for each
of the initial cells. To avoid issues of overfitting and make the resulting local models more interpretable,
we use Ridge Regression as our default choice to construct the models, as it applies the L2 penalty on
large coefficients to prevent overfitting. The objective is defined as

min ly — X85 + \|8l3 (1)

where A\ controls regularization strength. A single regularization strength value for all constructed
models is used (which can be globally tuned if desired).

®See: https://h3geo.org/.
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Next, the algorithm enters an iterative merging phase, where spatially neighboring pairs of polygons
(hexagonal cells initially) are evaluated for a potential merge. For this, a neighborhood function should
be specified which can indicate whether a pair of polygons are valid neighbors. By default, we simply
consider touching polygons to be valid. For each candidate pair, with their associated local models,
a new model is trained using the combined set of train instances, and the reduction of train loss is
utilized to select the best pair to merge. The merge is finalized, and the process continues until no
further improvement is observed on the validation loss of the solution so far as a whole for a predefined
number of iterations (early stopping with patience), ensuring that the final clusters are both spatially
coherent and predictive.

Note that to obtain predictions for instances, the polygon-local model is retrieved, corresponding
with the polygon the instance falls into. Note here that by design, HexaClus does not support inference
for geospatial extrapolated points; instead, it restricts predictions to regional instances to prevent spatial
variation from affecting extrapolation performance (alternatively, a default prediction corresponding to
the mean train target value can be returned). Also remark that in the case where spatial representation
vectors where constructed for the initial hexagonal cells, the features of the given instance need to be
concatenated with the representational vector corresponding with the initial hexagonal cell the instance
falls into.

Therefore, for a new unseen data point, we identify both its original hexagonal cell (before merging)
and its corresponding merged polygon, and then concatenate the representational vector derived from
the initial cell, but use the local model fitted on the merged polygon to make the prediction.

Note that instead of using a strong internal leaner, we deliberately use Ridge Regression for a couple
of reasons. First, individual cells often contain a limited number of observations, making complex
models prone to overfitting, while Ridge Regression, with its L2 regularization, can mitigate this effect.
Additionally, Ridge is computationally efficient, allowing the merging process to scale effectively. Finally,
Ridge provides an interpretable framework, where feature coefficients can be analyzed per polygon
to explain spatial variations, addressing a major limitation of black-box machine learning methods in
geospatial inference. While Ridge Regression serves as the default model, HexaClus is flexible to this
regard and can integrate more complex supervised learning algorithms when desired.

4. Experimental Setup

In this section, we compare our proposed method in terms of predictive performance across multiple
real-world datasets with the baseline default strategy of considering a single global model.

We utilize three publicly available property valuation datasets covering London, New York, and Paris.
All datasets are sourced from the Kaggle data hub, with links being available on our GitHub repository
de quo. Each dataset is partitioned into a training set (70%), validation set (10%), and test set (20%).
Comparisons between our method and the global Ridge model use the same data partitions.

To evaluate the performance in the setup, we compare a global Ridge Regression model with HexaClus.
For the global model, we tune the regularization strength hyperparameter « over a range of 0.1 to 0.9
in increments of 0.1. For HexaClus, we tune the hexagonal resolution parameter r, varying from 5 to 9,
and do not tune the regularization strength hyperparameter «, instead simply keeping it constant to 0.1.

5. Results

Table 1 presents a comparison of RMSE (Root Mean Squared Error) between the global model and our
proposed approach across the three datasets. The results clearly demonstrate that HexaClus outperforms
the global approach on all three datasets, highlighting the effectiveness and predictive capability of our
clustering approach across different urban environments.

In addition, we provide three visualized clustering solution maps (Figure 2, 3a, and 3b) for London,
New York, and Paris, colored based on the local predictions generated by HexaClus. These maps



Algorithm 1 HexaClus: Supervised Hexagonal Spatial Clustering

Input: ’D> = {(24,vi, £, t;)}}L: train dataset with spatial coordinates (z;, y;), feature vectors f; € R™, and target values ¢;

Input: D r = {(zj,y;,1;, tj)}é-vzl. validation dataset
Input: F: regression model learner

Input: 7H: initial set of cells (e.g. hexagonal cells with r the hexagonal resolution)

Input: pmax: maximum patience threshold
Input: E: maximum number of epochs

Input: N(p: € H,p2 € 721) boolean neighborhood function indicating whether two polygons are valid neighbors
Input: R(p € H): function returning optional non-empty feature vector for an initial cell

Output: ETAr optimized hexagonal partitions
Output: M polygon-local models

function ConcaTFEATS(D, H)
D=0
for H,, € H do
for (z;,y;,fi,...) € contains(Hy, D) do
D'+ D U{(f| R(Hyn),...)}
end for
end for
return D’
end function

function MseLoss(D, H, j’)
for H,, F,, € "H,j:do
for (xzi,y;,fi, t;) € contains(Hyp, D) do
L L+ (Fn(zi,yi,Ti) — ti)?
end for
end for
return L/|D]|
end function

Ipitialization
H <+ {Hp|Hp € H:3D; € D),contains(Hn,Dz—)}

M « {F,, « F(ConcatFeats(contains(Hn, D), H))|Hn € H}

Iterative Merging
p<+ 0
fore =1to £ do
LY« MseLoss(DE, H, F)

val

for H; € #,H;~; € H: N(H;, H;) do
H* <~ H; UH;
D* + contazns(Hl, D) U contains(Hj, D)
F* «+ F(ConcatFeats(D*,H))
AL = MseLoss(D*, H*, F*)
7MseLoss(contazns(H“ D),

C+—CU{(H;,Hj, H*\F*, AL}
end for

H;,H;, H*, F*, AL = arg max
(Hi,Hj ,H* ,F* AL)EC

Update partitions: H o H\ {H;, H;}yU{H*}
Update models: M M \ {F;, F;}U{F*}
LY+ MseLoss(D= H, F)

1f ,C"EW < L then

val

if p > pmax then
break for
end if
end for

{H:}, {F:}
—MseLoss(contains(Hj;, D), {H;}, {F;}

> Concatenate spatial features to instance features

> Initialize patience

> Initial validation loss
> Initialize candidate merge set

> Merged polygons

> Merged instances
> Construct model over merged instances

> Calculate train loss reduction

> New validation loss
> Save the best solution so far




Dataset  Global Ridge Reg. HexaClus

London 0.0823 0.0706
New York 0.0909 0.0743
Paris 0.0213 0.0205

Table 1
Performance comparison between RMSE of the global Ridge Regression model and Hexaclus across datasets.

British Museum

> Tower of London

Buckingham Palace

Figure 2: London property prices clustering solution visualized with landmarks

Fifth Avenue

Luxembourg Gardens
Notre-Dame Cathedral
Eiffel Tower

Brooklyn Bridge Louvre seum

Centre Pompidou

(a) New York property prices clustering solution (b) Paris property prices clustering solution visualized
visualized with landmarks with landmarks

Figure 3: Property prices clustering solutions visualized with landmarks for New York and Paris.

represent property prices on top of the clustered cells, where blue indicates comparatively lower prices
and red represents higher prices.

Notably, the figures reveal irregular boundaries of high-price areas that do not strictly conform to
administrative regions. By adopting a hexagonal cell-based interpretation paradigm, local variations in
target values become more apparent. For instance, in London, distinct high-price areas emerge, which
might otherwise be obscured by over-smoothed summary maps.



6. Conclusions

In this work, we proposed HexaClus, a novel interpretable hexagonal supervised spatial clustering
method that effectively balances predictive performance and interpretability in geospatial inference. By
leveraging a hexagonal grid structure, our approach dynamically merges adjacent regions based on
prediction consistency, ensuring that the final clusters reflect meaningful spatial patterns, but meanwhile
provide reliable predictions. Unlike traditional geospatial methods which rely on strong stationarity
assumptions, HexaClus provides a flexible framework to incorporate local geospatial features while
maintaining spatial interpretability. Furthermore, in contrast to black-box machine learning models,
HexaClus offers a transparent and explainable clustering process, making it particularly useful for
geospatial decision making applications.

Several areas for future improvement exist. First, optimizing the computational efficiency of the
merging process remains an important direction, particularly for large-scale datasets. Second, while we
employ Ridge Regression as a simple and interpretable local model, future iterations can incorporate
more complex models, such as tree-based methods, to improve predictive performance. Third, consider-
ing different initialization strategies other than the hexagonal approach considered in this work can be
an interesting avenue for future work as well. Finally, extensive evaluation across diverse geographic
areas will be necessary to assess the generalizability of HexaClus across different spatial contexts.
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