CEUR-WS.org/Vol-4103/paperl.pdf

CEUR
E Workshop
Proceedings

published 2025-11-21

A Formal Analysis of Hierarchical Planning with
Multi-Level Abstraction

Michael Staud*?

'StaudSoft UG, D-88213 Ravensburg, Germany
?Ulm University, Institute of Artificial Intelligence, James-Franck-Ring, 89081 Ulm

Abstract

We analyze Hierarchical World State Planning (HWSP), a novel algorithm that tackles the scalability limitations
of Hierarchical Task Network (HTN) planning. By combining multi-level state abstraction with predictive task
decomposition, HWSP reduces exponential search space growth. We formalize predictive separable tasks, classify
planning domains, and derive tight bounds on search complexity. Our results show that HWSP transforms
exponential interactions into linear coordination, enabling near-linear top-level planning effort in favorable
domains. This enables efficient planning in complex domains that were previously intractable, opening up new
possibilities for real-world applications.

Keywords

Hierarchical World State Planning, HTN Planning, Multi-Level Abstraction, Predictive Task Decomposition,
Domain Classification, Search Complexity Analysis, Scalability in Al Planning, Backtracking Behavior, Separable
Abstract Tasks, Probabilistic Prediction Models

1. Introduction

Complex real-world domains, such as urban planning or logistics problems, are challenging due to their
scale and intricacy. One solution is to use a Hierarchical Task Network (HTN) planning approach to
reduce the size of the search space. However, these problems are often still too large—both in memory
and computational demands—to be handled by today’s planners. One new approach is the Hierarchical
World State Planning (HWSP) algorithm [1], which reduces the search space by abstracting the world
state. The problem is then divided into smaller, manageable subproblems.

In this paper, we provide a theoretical analysis of HWSP’s planning efficiency across varying domain
structures. We introduce a classification of domains — EX1, EX2, and EX3 - that captures how separable
tasks interact and when backtracking is necessary. This classification yields new insights into the
structural properties that affect planning complexity.

Our results establish tight upper bounds on the number of states visited during search under each
domain class. We contrast these results with classical HTN planning, showing that under certain
assumptions (e.g., sibling task independence), HWSP transforms the exponential interaction between
sibling tasks into linear coordination, while preserving the necessary exponential search within each sep-
arable task’s local scope. Furthermore, we incorporate a probabilistic analysis of binary decomposition
predictors, showing how predictor quality impacts search effort in EX2 domains.

By grounding HWSP in a rigorous formal framework and connecting it to classical HTN planning
theory, we provide a new foundation for understanding the complexity of hierarchical planning. Our
findings demonstrate that HWSP can offer substantial improvements in planning efficiency by exploiting
structural domain properties and leveraging prediction mechanisms.

We organize the paper as follows: After reviewing related work in Section 2, Section 3 introduces
the formal framework of Hierarchical World State Planning (HWSP), including its planning model,
semantics, and interface definitions. We also present a city planning domain that is used to illustrate the
key concepts. In Section 4, we define three domain classes (EX1 — EX3) that constrain how separable

CAIPI25: ECAI Workshop on Al-based Planning for Complex Real-World Applications, October 25-26, 2025, Bologna, Italy
EMAIL: michael.staud@uni-ulm.de (M. Staud)
URL: https://www.staudsoft.com (M. Staud)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

mailto:michael.staud@uni-ulm.de
https://www.staudsoft.com
https://creativecommons.org/licenses/by/4.0/deed.en

abstract tasks behave, particularly with respect to decomposition and backtracking. Section 5 analyzes
the backtracking behavior of HWSP under these domain classes. Section 6 presents the theoretical
results comparing HWSP and classical HTN planning.

2. Related Work

Early work by Korf [2] demonstrated that decomposing a planning problem into subproblems can
yield significant improvements in search efficiency. This idea was further developed by Knoblock [3],
who introduced algorithms for automatically creating abstraction hierarchies and proved that solving
problems on multiple levels of abstraction can be exponentially more efficient than flat planning. The
concept of factored planning, introduced by Brafman and Domshlak [4], also shows that problem
factorization can lead to exponential reductions in effort.

Macro-operators have also been recognized as a powerful tool for improving HTN planning efficiency.
Korf’s seminal paper [5] on macro-operators showed that learning effective macro-operators can
reduce the effective solution depth and transform planning processes with exponential complexity into
polynomial ones. More recent work by Botea et al. [6] demonstrated the effectiveness of automatically
learned macro-operators in improving planning performance.

Hierarchical reinforcement learning (HRL) has also been explored as a means of improving planning
performance. Dietterich’s foundational paper from 2000 introduced the MAXQ framework [7], which
formalizes how a Markov Decision Process (MDP) can be decomposed into a temporal hierarchy of
subtasks. More recent work by Kulkarni et al. [8] established that HRL can achieve state-of-the-art
performance on complex game environments.

Backtracking and planning dynamics in HTNs have also been extensively studied. Nau et al.’s
work [9] examined the impact of task ordering on HTN search, while Olz and Bercher [10] introduced
a look-ahead technique for reducing backtracking in HTN plan search. Commitment strategies in
HTN planning have also been explored by Tsuneto et al. [11], who compared different strategies for
variable and method commitment. Theoretical analyses by Alford et al. [12] and Geier and Bercher [13]
have provided valuable insights into the complexity of HTN planning and the effects of task ordering
on search efficiency. McCluskey [14] introduced EMS, which uses object transition sequences and
sort-based independence to enable local reasoning about how dynamic objects change state during
hierarchical planning.

Beyond classical HTN planning, several foundational and conceptually related approaches have
addressed hierarchical abstraction. Sacerdoti’s ABSTRIPS system [15] and Knoblock’s work on automatic
abstraction hierarchy construction [16] pioneered world-state abstraction in planning, demonstrating
that solving abstract problems first can drastically reduce search. Angelic hierarchical planning [17]
further introduced optimistic high-level actions with abstract effect summaries, similar to separable
abstract tasks but emphasizing cost bounds for optimization rather than multi-level abstraction for
scalability. Recent work has also explored compiling HTNs to SAT for optimal search [18], defining
standard hierarchical languages like HDDL [19], and integrating HTN planning into competitive
evaluations via the IPC track.

3. Framework Definitions

This Section describes the Hierarchical World State Planning (HWSP) algorithm, which extends the
traditional planning paradigm by introducing a multi-level world state [20, 1]. The HWSP algorithm is
based on the concept of separable abstract tasks, which enable more efficient planning by partitioning
the planning process into smaller sub-processes across multiple levels of abstraction. The following
version of the HWSP algorithm is a more formal one compared to the original paper [21, 22]. In this
framework, we assume a progressive planning strategy in which decomposition proceeds front-to-back:
tasks are handled in their plan order, and the world state is updated strictly forward from the initial
state.

Let C, V, P and A denote the set of all constants, variables, predicates and atoms, respectively. A
literal is an atom or its negation, while an atom is a predicate applied to a tuple of terms. Here, a term
may be a constant or a variable. Every predicate p belongs to the set P.

3.1. Example: City Planning

We introduce a running example to help illustrate the concepts of this paper. This domain models a
hierarchical city planning problem with three levels of detail (abstraction): City, Quarter, and Building.
Streets are not explicitly modeled. Each level consists of a 2D grid of square cells. A quarter consists of a
4x4 block of building cells, and a city consists of a 4x4 block of quarters — forming a non-overlapping,
nested hierarchy (see Figure 1).

Some cells may be blocked, preventing construction; this is represented by the predicate blocked(z),
which holds in the initial state for blocked cells. Each level contains objects that can be constructed via
tasks:

« City Level: small-city, big-city
+ Quarter Level: industrial-quarter, residential-quarter, park
« Building Level: living-house, playground, football-field, powerplant, factory

To demonstrate the algorithm’s ability to handle different domain classes, we can modify this base
domain in three key ways. First, we can introduce blocked cells, which may cause tasks to fail and
lead to different planning outcomes. Second, we can enable electricity constraints, where a single
powerplant — placed in any quarter — can power the entire city. Third, power propagation is expressed
explicitly through the world state: a quarter is considered powered if its city contains a powerplant,
captured by a specific atom in the world state.

3.2. Planning Domain

A planning domain is denoted as D = (Tg, Ty, M, L, Lq, Dger, ®) where Tj, is the set of all abstract
tasks (including both standard and separable tasks), T's C 7T}, denotes the set of separable abstract tasks,
T), is the set of primitive tasks, M is the set of methods, and L € N the number of detail levels (i.e.,
abstraction levels) present in the domain. The detail level function Ly : P UT, UT},, — N assigns each
predicate or task a detail level £. The derived predicates are defined in Dy, with their corresponding
logical formulas specified in ®.

Both abstract and primitive tasks are tuples in the form ¢(7) = (prec,(7), eff ,(7)), where each task
t(1) € T, U T}, has a precondition prec;(7) and an effect eff ;(7). For separable abstract tasks ¢ € T,
we write eff,(7) = meff,(7) U peff,(7) where meff, are mandatory effects and peff, are predicted
(non-guaranteed) effects. In the planning process, these are predicted by the prediction function. A
plan step is a uniquely labeled task [: ¢(7).

Example The task residential-quarter has mandatory effects meff, such as “provides housing capacity”
(which must be achieved for the quarter to be valid). It could have predicted effects peff, such as
“increases local property values”.

A method is a tuple m = (t,(Ty,), P), where t,(7T,) is the abstract task it can decompose, and P,
is a series of plan steps (total-ordered), with 7, as the parameters of the method.

A state s is an element of P(A), where P(A) denotes the power set of A. We require that a
separable abstract task tg at detail level ¢ decomposes only into tasks at detail level ¢ + 1, while
other tasks decompose at the same level ¢. Hence, separable tasks must occur at levels ¢ < L. Let
s} £ ={a € s|L4(a) = £} denote the projection of the state s to the detail level /.

Example In our domain, we have L = 3 detail levels which includes city (level 1), quarter (level 2),
and building (level 3). Separable abstract tasks T include small-city, big-city at level 1, and residential-
quarter, industrial-quarter, park at level 2. The restrictions on the methods regarding levels means that
a city task can only create quarters not buildings directly.

Block of
City Quarter Buildings
(Level 1) (Level 2) (Level 3)
O
E B o
B:gg D E
Bﬂ O
Available Tasks: Available Tasks: Available Tasks:
- Create Big City - Create Industrial - Create Living
- Create Small City Quarter House
- Create Residential - Create
Quarter Powerplant

- Create Factory

Figure 1: The example domain used to illustrate the HWSP algorithm.

Let Dy C P be the set of derived predicates [23], which includes all predicates that are not on the
most concrete (non-abstract) detail level. For each derived predicate Pye; € Dyer at detail level /, there
exists a logical formula ¢p, € ® involving only predicates from the next detail level (¢ + 1). Formally:

Pier(21, .y 2n) = Op,, (De+1(21), oy Pe1(2n))

where:

« Dyyq represents a predicate at detail level £ + 1,

. X1,..., Xy are variables representing objects or entities in the domain,

+ ¢p,, is afirst-order logic formula that combines the predicates from detail level £ + 1 using logical
operators (e.g., A\, V, 7).

Each derived predicate Py, at detail level £ can only depend on predicates that are strictly at level £ 4 1
(this is more restricted than in PDDL 2.2). Furthermore, no cycles are allowed, even across multiple
predicates.

Example Derived predicates in our examples are the predicates on the city and quarter level. On the
quarter level has_power(quarter) is in a world state if the corresponding sub-rectangle at the next detail
level (building level) contains a building classified as a power plant.

We restrict our attention to domains with a finite decomposition depth. The decomposition depth
represents the longest chain of tasks achievable through method application. The maximum decom-
position depth in any domain D, denoted Dy,ax (D), is assumed to be less than or equal to A. Every
domain considered in this paper satisfies Dpax(D) < A for a fixed but arbitrary natural number A. A
planning problem is defined as a pair II = (s, tg), where sy € P(A) is the initial world state, and
to € Ty is the initial abstract task to be decomposed.

To enable efficient decomposition, HWSP incorporates predictor functions [1] that estimate separable
abstract task outcomes.

Definition 1 (Predictor functions). HWSP can use learned estimators that operate on separable abstract
tasks. Given the current detail level ¢ state s |, ¢ and a separable tasktg € T's the predictor function returns

(s, ts) = (e(s,ts),0(s,ts)) € P(A) x {true, false},

where

« £:P(A) x Tg — P(A) is an effect predictor that proposes a set of non-mandatory effects (an
estimate for peff,), and

« 0 : P(A) x Ts — {true, false} is the decomposition predictor whose output is to decide in a
planning process if a separable abstract task can be decomposed or not.

The predictor can be fixed-effect rules, Conv2D, ResNet or any other approximation function. Predictor
functions in HWSP were first introduced and formally described by Staud [1].

3.2.1. HTN plans with labelled occurrences
Definition 2 (HTN plan with decomposition tree). A plan (or partial plan) is a tuple
Q = <VY7E7T7)‘T7)\M7_<>

where

(V, E,r) is a finite rooted tree whose root isT € V,
« every task node v € Vi C V is labeled by \r(v) € T, UT),
« every method node v € V) C V (the remaining vertices) is labeled by a method A\p;(v) € M, and

« a strict total order < over the task nodes, which is consistent with the child order of each method
node.

Edges alternate strictly between task and method nodes: if (u,v) € E and u is a task node, then v is a
method node and \py(v) must be a method for Ap(u); conversely, all children of a method node are task
nodes that constitute the method plan steps.

Definition 3 (Separable task predicate). is_sep(Q,v) := ()\T(v) € TS).

Let state_at(Q, v) be the world state obtained by applying all effects of task nodes w < v that are
fully decomposed to the initial state sg. By Definition 7, all task nodes w such that w < v must be fully
decomposed before v is considered for decomposition. Hence, the cumulative world state state_at(Q, v)
is well-defined and includes only effects of primitive tasks. We define:

Definition 4 (Decomposability Test). Let Q) be a plan and v € Vr a task node with label Ap(v) = t(T).
Let s := state_at(Q, v). Then:
can_decompose(Q, v) := true

iff there exists a sequence of method applications starting from t(T) such that: the precondition of every
task in the resulting decomposition tree holds in the state at which it is applied, the resulting decomposition
tree contains only primitive tasks at the leaves, and all relevant depth and abstraction-level constraints are

satisfied.

Sibling-rewriting relation For two plans @), Q" and a separable abstract task occurrence s € Vp
of Q we write Q ~»; Q' iff Q' is obtained from Q) by only replacing the subtree rooted at s; all other
subtrees (including the one currently under investigation) are left unchanged.

Definition 5 (Prior-task predicate). For any two task occurrences v, w € Vr in a plan @), define
prior(Q, v, w) := (U <= w),

where < is the total order over task nodes that are part of the plan and < - - - < means that there exists a
chain of order relations. In other words, prior(Q, v, w) is true iff the execution of Q) executes v (or some
descendant of v) before w.

We now define method decomposition under the constraint that planning is progressive. So each plan
is guaranteed to have been decomposed in such a way that the current world state can be computed
from the initial world state:

Definition 6 (Fully Decomposed Task). Let Q = (V, E,r, Ar, Ayr, <) be a plan, and letv € Vp be a
task node. We say that v is fully decomposed in Q) if all leaf task nodes in its descendant subtree rooted at
v are primitive tasks, i.e.,

is_decomposed(Q),v) := Yu € descendantsg(v) N Vp, Ar(u) € T,.

Definition 7 (Progressive Method Decomposition). Let@Q = (V, E,r, Ay, Ay, <) beaplan andu € V)
a method node with parent task t(7) = A\r(parent(u)). The function decompose(Q, u) returns a new

plan Q' only if:

1. All task nodes w € Vi such thatw < t(T) (i.e., tasks prior to the parent of u) are fully decomposed,
ie.:

Yw € Vp, (prior(Q, w, (7)) — is_decomposed(Q, w)).
2. The siblings of parent(u) that appear before parent(u) in < are also fully decomposed.

This condition ensures that the planner progresses only when all previous tasks are fully resolved into
executable steps. The decomposition proceeds as follows:

1. Add fresh task nodes s1, . . ., Sy, as children of u (ordered left-to-right).

2. Update < to replace the parent task’s position with s; < --- < S, in a way that preserves the
ordering relative to parent(u)’s siblings.

3. Ifw already has children (idempotence), the plan is unchanged.

Otherwise, the decomposition is not allowed.

The above definitions will be used in subsequent proofs.

3.3. Planning Process

The most important difference between HTN planning and HWSP is the planning process [1]. In HTN
planning, we decompose abstract tasks until only primitive tasks remain. In HWSP, decomposition
stops at separable abstract tasks, unless we are on the most detailed level. Instead of decomposing these
further, the planner uses a predictor function to estimate their effects and proceeds as if they were
primitive tasks at that level. This allows the planner to generate a top-level plan composed of separable
abstract tasks, which are expected to work under typical conditions.

For each separable abstract task, a new planning process is launched to generate a subplan that
achieves its mandatory effects meff, C Dyge,. As the effects are derived predicates, the actual goal is the
union of their logical formulas ¢,,.s,. Backtracking is only necessary if this subplan fails. To maintain
a consistent world state, planning processes emit one separable abstract task at a time. Informally, each
task emitted is treated as a final decision and is only generated after confirming that a (local) plan
exists to achieve the required effects. While separable abstract tasks are semantically equivalent to
regular abstract tasks, they are treated differently by the planner. Each planning process receives the
local world state, s | (£ + 1) (projected to the next detail level) as input, and its goal is to achieve the
mandatory effects meff; of the separable abstract task that spawned it.

Definition 8 (Planning Process Solution). A solution for planning process at level ¢ is a plan () where
every leaf node is either: (1) a primitive task (\r(v) € T,) if{ + 1 = L, or (2) a separable abstract task
(Ar(v) € Tg) if ¢ + 1 < L. All preconditions of separable abstract tasks, treated as primitive at this level,
hold during sequential execution from the initial state.

Definition 9 (Planning Process Interface). A planning process (PP) is a 5-tuple (D, I, ¢, T, F) where:

« D= (T,,T,, M, L) is the planning domain

« I € Ig is the internal state of the planning process. I is the set of all internal states and this depends
on the concrete implementation.

« L€ {1,..., L} is the current detail level

e Z:IgxP(A) = Isgx (ToUTs UT,u {null})

Given the current internal state and the world state, this function returns the updated internal state

and either the next task to be added to the plan, or null to indicate failure.

]::ISxP(A)XTgﬁfst

Handles the failure of a previously generated separable task t € Ts under the given world state.

Returns the updated internal state and the number of previously generated tasks to retract (i.e., undo).

The next call to T will generate a new alternative task.

Internally, depending on the implementation, F will trigger backtracking or replanning. After F is
called, the next call to Z will return either a new task to replace the failed one or NULL if replanning
fails entirely.

Implementation Notes. This interface can be realized through different search strategies:

» MCTS-based: Uses Monte Carlo tree search where backtracking simply means that we go back
and select a task that has a smaller visit count than the discarded one.

« HTN with repair: Rolls back the currently failed plan, discards the failed task, and then attempts
to complete a new plan by reusing parts of the previously failed one. [24].

Example In the city example, a planning process generates a plan to construct the buildings at the
highest detail level 3 when given a quarter task as input.

Relationship to classical HTN planning. If the domain provides only one level (L = 1) and contains
no separable abstract tasks, HWSP degenerates into standard HTN planning: the single PP is invoked
exactly once, no spawning occurs, and the algorithm behaves identically to a flat HTN search.

3.4. Planning Process Management

The HWSP algorithm manages planning processes through a stack-based approach. The operational
flow proceeds as follows:

1. Creation: When encountering a separable abstract task, a new planning process is created at the
next detail level, with the effects of the separable task as its goals.

2. Execution: Only the topmost process on the stack is active, producing tasks that are either added
to the main plan (if primitive) or used to spawn new processes (if separable abstract task).

3. Termination: A process terminates upon achieving its goals or failing. On success, its parent
process resumes; on failure, backtracking occurs.

The main planning algorithm initializes with the first planning process at detail level one, an empty
plan, and the initial world state. While the stack contains processes, the algorithm retrieves the next
task from the topmost process. If the process is finished, it is removed from the stack. If a process
fails to produce a task, the algorithm backtracks according to the domain class rules. For primitive
tasks, the algorithm adds them to the plan and updates the world state with their effects. For separable
abstract tasks, it creates a new planning process and pushes it onto the stack. The algorithm terminates
successfully when the goal is achieved, or with failure when the stack becomes empty without achieving
the goal.

Definition 10 (Overall Solution). A solution to the overall planning problem I1 = (s, to) is a plan Q
where: (1) every leaf node is a primitive task (Ar(v) € T)), and (2) all primitive task preconditions hold
during sequential execution from sg.

Example In the city domain, the main planning algorithm would be coordinating the planning process
so that a complete city is built.

As demonstrated in Figure 2, when a planning process encounters a failure, the backtracking behavior
is determined by the domain class.

State projection restricts each planning process to atoms at the appropriate detail level, reducing
memory usage. The behavior of HWSP is further influenced by domain-specific properties, which we
classify into EX1-EX3 in the Section 4.

4. Domain Classes

The performance of planning algorithms, such as Hierarchical Task Network (HTN) planning and
its extensions like Hierarchical World State Planning (HWSP), can be significantly influenced by the
structure of the planning domain. This observation aligns with the downward refinement property
introduced by Bacchus and Yang [25], which emphasizes how domain structure impacts the feasibility
and efficiency of hierarchical refinement. To formalize these influences in the context of separable
abstract tasks, we introduce a classification of domain classes based on task interaction and backtracking
behavior. In particular, we analyze how sibling tasks, parallel subtasks at the same abstraction level,
may or may not interfere with one another.

Let’s consider our urban planning example again, where a city manager needs to plan the construction
of new buildings in different quarters of the city. To demonstrate the algorithm’s ability to handle
diverse domain scenarios, we modify this base domain in three key ways:

« First, we introduce blocked cells, which may cause tasks to fail and lead to different planning
outcomes.

« Second, we enable electricity constraints, where a single powerplant—placed in any quarter—can
power the entire city.

« Third, power propagation can be expressed using derived predicates Dyge,: a quarter is considered
powered if its city contains a powerplant, captured by has_power(quarter).

These modifications highlight distinct domain classes, such as spatial constraints, resource allocation,
and hierarchical dependencies. We propose several domain classes, which we will describe using
illustrative examples related to placing buildings in a quarter:

1. EX1: Execution Guaranteed
Intuitive Definition: Execution (decomposition of the separable abstract task) is guaranteed
once preconditions are fulfilled.
Example: In our urban planning scenario, if a quarter plan fits (i.e., the preconditions of the
separable abstract task are fulfilled), its construction is guaranteed without any unforeseen
interference from other quarters or tasks.

Definition 11 (Domain class EX1). A domain D is in EX1 iff for every plan) and every separable
task occurrencev € Vr of Q, ifis_sep(Q, v) A preconditions of Ay (v) are satisfied instate_at(Q, v),
then can_decompose(Q, v) = true.

2. EX2: Execution Can Fail but Won’t Benefit from Backtracking into Siblings

Intuitive Definition: Execution can fail, but a different solution from another planning process
on the same detail level won’t help.

Example: In a more realistic urban planning scenario, parts of the land within a quarter might
not be buildable due to unforeseen reasons (e.g., hidden environmental hazards). As a result,
the construction of a specific building — and possibly the entire quarter — may fail, even if
all preconditions appeared to be satisfied. However, changing the plan for a different quarter
(i.e., a sibling task) will not influence the outcome. If such a failure occurs, the planner must
backtrack to the parent task (e.g., the city-level plan) and select a new decomposition that avoids

the problematic quarter altogether. The key EX2 property is that the decomposability of one
separable abstract task (e.g., a quarter) is independent of the concrete plans chosen for earlier or
parallel sibling tasks.

Definition 12 (Domain class EX2). D isin EX2 iff for all plans Q), separable occurrencesv € Vi and
for all sibling abstract task occurrences s with the same parent asv in the plan’s strict total order < over
task nodes with Ly(s) = Lg(v), is_sep(Q, s) Ais_sep(Q, v) AQ ~s Q' => can_decompose(Q, v)
= can_decompose(Q’, v).

In words, replacing the internal subtree of an earlier separable sibling s does not affect the
decomposability of a later separable task at the same detail level.

3. EX3: Execution Can Fail and May Benefit from Backtracking
Intuitive Definition: Execution can fail, and another solution from a prior planning process
might help.
Example: In a complex urban planning scenario, the placement of a building in one quarter could
influence the feasibility of constructing buildings in adjacent quarters due to shared resources or
spatial constraints. If the construction of a building fails because there is no power, creating an
industrial quarter with a power plant prior will help.

Definition 13 (Domain class EX3). The class EX3 includes all planning domains.

It represents the general case where no specific assumptions about separable task independence
are made. Note that introducing derived predicates such as has_power(quarter) can explicitly
model task dependencies, allowing EX3 domains to be reclassified as EX2 if sibling tasks become
independent under these conditions.

Separable abstract tasks isolate planning to local islands of the world state. How strongly such islands
interact determines how much global backtracking remains necessary. We capture this idea by three
domain classes, EX1 — EX3, that impose increasingly weak independence assumptions on separable
tasks.

Proposition 1 (Independence chain). EX1 C EX2 C EX3.

Proof. Immediate from the definitions: EX1 implies the EX2 invariance because the antecedent of
Def. 12 is stronger; conversely any counter-example to EX2 is by definition a witness for EX3. O

5. Backtracking

In Hierarchical World State Planning (HWSP), backtracking plays a pivotal role due to its unique
approach to task decomposition and execution. While HWSP shares similarities with traditional
Hierarchical Task Network (HTN) planning, its backtracking mechanism in the main planning system
is distinct.

In HWSP, backtracking occurs when a planning process fails to find a viable solution. At this point,
the algorithm must reconsider its previous decisions and explore alternative paths. This is where the
domain classes (EX1, EX2, and EX3) come into play, as they significantly influence the backtracking
behavior.

« EX1: In domains where execution is guaranteed once preconditions of a separable abstract task
are met, backtracking is relatively straightforward. Since each task’s success is assured, the main
planner never needs to backtrack.

« EX2: In EX2 domains, the failure of a separable abstract task requires specific backtracking
behavior. Let us analyze why EX2 leads to this behavior through a logical proof.

Proposition 2 (EX2 Backtracking Behavior). In an EX2 domain, if a separable abstract task v fails
during decomposition, the planner must backtrack to the parent planning process without considering
siblings of v.

Planning Processes
___________ Backtrack to big-city without
| & T replanning park (EX2 property)

~

Layer 1 | small-city | big-city

Layer 2 | industrial. | residential. |

/\\\ \ .
Layer 3 ’powenlfactory‘ ’ living | living ‘ playg. kootbal!

Main Plan

~
Y

‘.
S,

playg. | living

/

|power.|factory| living | living |p|ayg. |footba|1 playg.| living | ! failure because
preconditions

for living-house
| are not fullfilled

Progressive World State

| <Set of atoms>

Figure 2: When decomposing the second city (big-city), the first quarter (park) succeeds, but the second quarter
(residential-quarter) fails. Since EX2 guarantees that earlier siblings (like park) cannot influence the feasibility
of later tasks, the planner does not attempt to replan the park. Instead, it backtracks to the parent (big-city)
and selects a new decomposition — this time choosing its first child to be an industrial-quarter (which will
provide electricity) instead of a park. This demonstrates that backtracking in EX2 must go up to the parent
level, not across to siblings. We use the following abbreviations: industrial. = industrial-quarter, residential =
residential-quarter, playg. = playground, power. = powerplant, football = football field.

Proof. By Definition 12, for any plan () and separable task v, modifying any sibling s
(with s < v) does not affect the decomposability of v. Formally: can_decompose(Q,v) =
can_decompose(Q)’, v) where Q ~~; Q.

If v fails (can_decompose((, v) = FALSE), altering any prior sibling s through backtracking
cannot make can_decompose(Q)’, v) = TRUE. Thus, the only recourse is to inform the parent
process of v’s failure. The parent must then generate a new separable abstract task to replace v or
one of its siblings. If the parent exhausts all alternatives and fails, the failure propagates upward
recursively. This eliminates the need to explore siblings of v, as their modifications cannot resolve
v’s failure under EX2’s independence. The algorithm remains sound and complete [20]. O

« EX3: In these domains, where execution can fail and backtracking may help, we must perform
backtracking as in the original HWSP algorithm [1].

6. Results

This section establishes formal upper bounds on the search effort of Hierarchical World-State Planning
(HWSP) when executed on the three domain classes EX1 C EX2 C EX3 and contrasts those bounds with
classical HTN planning. All logarithms are base 2; plan-existence complexities follow the taxonomy of
Erol et al. [22].

6.1. Complexity model

Consider a fixed detail level £. Let ny denote the number of sibling separable task occurrences emitted
at that level, and let each sibling have at most k;, decomposable methods. The refinement of one sibling
induces a local search tree of branching factor by, and depth hy; we abbreviate By = bgl_ﬁl.

Let IV denote the total input size (i.e., the size of the domain and the initial task network). We assume
that ny = O(N); that is, the number of sibling tasks at each level grows at most linearly with the input.
The analysis that follows is worst-case and tight: for every bound, we can construct an infinite family
of instances whose planners visit exactly the stated number of states.

We analyze the number of states visited during search, denoted as:

+ SuTN: states visited by classical HTN planning
« SEx1, SEX2, SEX3: states visited by HWSP in the respective domain classes

6.2. State-space bounds
Theorem 3 (EX3 versus HTN). For any level ¢

n n SHTN fﬂ !
B+1

Sutn = B, b, Sexs = ek, Bpyy, —— =0
1 3 Ehe 2 " SEx3 ngk‘g”

Proof. Classical HTN planning inlines the local search of each sibling.! Consequently the global search
tree contains By possibilities for the first sibling, By for the second, and so on, for a total of Bﬁfl
states.

In EX3, the parent process still explores every combination of high-level alternatives, hence k,"
parent choices. However, once such a combination has been chosen, each sibling is solved independently
by its own local search; the parent never needs to interleave those searches. The resulting state count is
therefore ny k," By1. Taking the quotient of the two expressions yields the claimed factor. O

Theorem 4 (EX2 versus EX3). For any level ¢

SEX3 ket
Sex2 = ng ke By, e = S}
EX2 g

Proof. Definition 12 states that substituting an earlier sibling by an alternative decomposition never
changes the decomposability of a later sibling. Hence, when a sibling fails, the planner backtracks
exactly one level up, replaces only that sibling, and leaves all others untouched. Worst case it will test
every one of the k; methods before a success (or final failure) is found. Since there are n, siblings, at
most ny kg parent alternatives are generated, each of which spawns one local search of size By . The
product yields Sgxe. Dividing by Sgxs establishes the gap.]

The bounds given in Theorems 3 and 4 are tight in the following sense: for each setting of ny, k¢, and
By, 1, there exists a family of domains and initial task networks for which the number of visited states
matches the bound asymptotically, i.e., S = O(-).O(5) states.

HTN Tightness Example. Let the initial task be a sequence of ny abstract tasks, each with k; methods,
where each method expands to a local plan space of size Byy; (e.g., a binary tree of depth logy By 1). If
no heuristic guidance is used, the planner must exhaustively search all BZZJ combinations.

EX3 Tightness Example. Consider a domain with n, sibling tasks (e.g., city quarters). Each has
k¢ decomposition methods, exactly one of which builds a power plant. Suppose that every quarter
requires electricity to decompose, and power flows only from left to right: quarter ¢; can be decomposed
only if some earlier sibling g; with 7 < j contains a power plant. This induces a causal dependency
chain across siblings: choosing non-power plant methods early may prevent later decompositions,
forcing backtracking and revision of earlier choices. In the worst case, it explores all k;* global method
assignments; for each one, it performs ny independent subsearches of size By 1. The total number
of visited states is therefore n, k}” By 1, which matches the upper bound for EX3. The cross-sibling
dependency violates the EX2 invariance condition (Definition 12), so this domain lies strictly in EX3.

Thus, the upper bound for Sgxs is tight, and the factor of ny is necessary in all general EX3 domains
where sibling tasks do not share causal links.

"We assume classical HTN planning operates under the same restrictions as HWSP: acyclic networks, progressive decomposi-
tion, and bounded depth, ensuring a fair comparison.

EX2 Tightness Example. Construct a domain with n, separable sibling tasks (e.g., one per city
quarter), each having k, distinct task alternatives. For each sibling, only one of its k; alternatives is
decomposable, while the others are designed to fail due to local, hidden constraints (e.g., unobservable
predicates or infeasible layouts). These constraints are specific to each sibling and cannot be inferred
or affected by the other siblings’ choices. When a sibling task fails, the parent planning process must
replace it with another alternative, up to k, times in the worst case. Each attempted task triggers a local
planning process that explores a subsearch space of size By, 1. Since all sibling tasks operate over disjoint
parts of the world state and have no shared predicates, changing one sibling’s decomposition does not
influence the decomposability of another—satisfying the EX2 invariance condition (Definition 12). The
total number of visited states in this construction is ny - k¢ - By, matching the upper bound for EX2
domains and proving its tightness.

On EX1. EX1 guarantees downward refinement for the root plan: once the preconditions of a separable
task are satisfied, its decomposition cannot fail. Inside the local planning process spawned for that task,
however, non-monotonic search (e.g. local backtracking) is still permitted. Therefore EX1 improves the
constant factors of Theorem 4 but does not change its asymptotic form. More precisely, the number of
search states in EX1 is Sgx1 = n¢ Byy1, as each of the ny separable tasks is successfully decomposed
on the first attempt, requiring a single local search of size By, per task.

Corollary 5 (Strict inclusion chain). It holds Sgx1 < Sgx2 < Sgxs < SuTn as each “<” removes one
exponential factor in the input size N, assuming ny = O(N).

6.3. Connection to classical complexity theory

Bacchus and Yang’s Downward Refinement Property (DRP) [25] formalizes a key structural criterion
for efficient hierarchical planning: once a high-level plan is found, it can be refined monotonically
without modifying earlier decisions. Our EX1 domain class satisfies DRP by construction, as successful
decomposition is guaranteed once preconditions are met.

EX2 domains do not satisfy DRP in the strict sense, since the planner may backtrack and replace
earlier siblings. However, they enforce a weaker property we term internal decomposition invariance:
the feasibility of decomposing a task is invariant under changes to the internal decomposition of prior
siblings at the same abstraction level. This allows EX2 domains to retain many of the practical benefits
of DRP, such as reduced backtracking and localized refinement, but without full top-down monotonicity.

Korf’s macro-operator theorem [5] predicts an exponential-to-linear collapse in ideal DRP-compatible
settings, which applies fully to EX1 and partially to EX2. Erol et al. [22] showed that plan existence is
semi-decidable for unrestricted HTNs but becomes PSPACE-complete under acyclic, non-interleaved
constraints—the same assumptions that characterize our EX3 class. Structural restrictions like those in
EX2 further reduce the search space, pushing the complexity down to NP-complete or even as low as P
in well-structured domains.

Here, N is the combined size of the initial task network and domain description; p and c are fixed
polynomials.

6.4. Effect of a (fallible) binary predictor

In HWSP every separable task ts comes with a binary decomposition predictor o : P(A) x Ts —
{TRUE, FALSE}. Intuitively, o (s, tg) = TRUE says that local planning ought to succeed.” Mis-predictions
are the only reason why an EX2 planner ever needs to backtrack.

Error model. For the sake of analysis we assume that, conditioned on the current state, the predictor
returns the correct answer with probability p (accuracy) and the wrong answer with probability p = 1—p.

*We treat o as a black box: it may be a learned classifier, a logical test or a mix thereof.

Theorem 6 (Expected search effort with a fallible predictor). Let Sgxy = n¢Byy1 be the number of
search states when the predictor is perfect. Assume that, each time a separable task is encountered, the
predictor is correct with probability p and wrong with probability p = 1 — p (independently of previous
calls). If the predictor errs, the parent process tries a different alternative; at most ky — 1 further alternatives
exist.

Then the expected number of visited states is bounded by E[Sgx2(p)] < Sfxs (14D (ke —1)).

Proof. Let ny be the number of separable task occurrences at level ¢, and let each task require a local
search of size By, once a valid decomposition is selected. Under a perfect predictor, each task is
decomposed successfully on the first try, so the total number of visited states is: Sgyy = 1¢- Byy1.. Now
consider a fallible predictor with accuracy p, and let p = 1 — p denote the probability of an incorrect
prediction. If the predictor fails (e.g., produces a false positive), the planner must backtrack and try a
different decomposition. Since each task has at most &, possible alternatives, the number of additional
alternatives to try after a misprediction is at most ky — 1.

Thus, the expected number of task attempts for each separable task is at most: 1 - p + (1 + f) -
p, with 8 < kg — 1. Substituting, we obtain the upper bound: Expected attempts per task < 1 +
p-p < 1+p- (ke —1). Multiplying this overhead by the base cost Sfy, yields: E [Sgxa2(p)] <
Stxo - (1 +p- (kg — 1)), which proves the claim. O

A perfect predictor collapses EX2 to EX1. Setting p = 1 makes the overhead term (1 + p 3) equal
to 1, so every separable task is decomposed successfully on the very first try. This eliminates all global
backtracking and re-establishes the Downward-Refinement Property for the top-level plan — precisely
the hallmark of the EX1 class (Def. 11). Formally, the planner’s behavior becomes observationally
equivalent to running HWSP on an EX1 domain. (]

Interpretation. Theorem 6 shows that the predictor’s accuracy enters the search complexity as a
linear scalar factor. Even modest accuracies (say p = 0.9) leave the O (k,* 71) gap of Theorem 4 largely
intact, because p < 0.1. Only adversarially bad predictors (p — 0) would degrade EX2 back to EX3
behaviour.

7. Conclusion

We analyzed Hierarchical World State Planning (HWSP), a planning framework that extends classical
HTN planning through multi-level state abstraction and separable abstract tasks. While HWSP was
introduced in prior work, its theoretical properties and complexity characteristics had not been formally
studied.

Our main contribution is a comprehensive theoretical analysis of HWSP’s planning dynamics. We
introduced a novel classification of planning domains, EX1, EX2, and EX3, based on structural constraints
on separable abstract tasks and their backtracking behavior. This classification enables a deeper
understanding of when HWSP achieves substantial reductions in search complexity compared to
classical HTN planning.

Declaration on Generative Al

During the preparation of this work, the author(s) used ChatGPT and LLaMA 3.3 70B in order to:
grammar and spelling check. After using these tools, the author(s) reviewed and edited the content as
needed and take full responsibility for the publication’s content.

References

[1] M. Staud, Integrating Deep Learning Techniques into Hierarchical Task Planning for Effect and
Heuristic Predictions in 2D Domains, in: HPLAN Workshop, 2023.

[2] R. E. Korf, Planning as Search: A Quantitative Approach, AI 87 33 (1987) 65-88.

[3] C. A. Knoblock, Learning Abstraction Hierarchies for Problem Solving, in: AAAIL 1990, pp.
923-928.

[4] R. L Brafman, C. Domshlak, Factored Planning: How, when, and When Not, in: AAAI, volume 6,
2006, pp. 809-814.

[5] R.E.Korf, Macro-Operators: A Weak Method for Learning, Artificial Intelligence 26 (1985) 35-77.

[6] A.Botea, M. Enzenberger, M. Miiller, J. Schaeffer, Macro-FF: Improving Al Planning with Auto-
matically Learned Macro-Operators, Journal of Artificial Intelligence Research 24 (2005) 581-621.

[7] T. G. Dietterich, Hierarchical Reinforcement Learning with the MAXQ Value Function Decompo-
sition, Journal of Artificial Intelligence Research 13 (2000) 227-303.

[8] T.D.Kulkarni, K. Narasimhan, A. Saeedi, J. Tenenbaum, Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motivation, Advances in Neural Information
Processing Systems 29 (2016).

[9] D.Nau, H. Munoz-Avila, Y. Cao, A. Lotem, S. Mitchell, Total-Order Planning with Partially Ordered
Subtasks, in: IJCAIL volume 1, 2001, pp. 425-430.

[10] C. Olz, P. Bercher, A Look-Ahead Technique for Search-Based HTN Planning: Reducing the
Branching Factor by Identifying Inevitable Task Refinements, in: Proceedings of the International
Symposium on Combinatorial Search, volume 16, 2023, pp. 65-73.

[11] R. Tsuneto, K. Erol, J. Hendler, D. Nau, Commitment strategies in hierarchical task network
planning, in: Proceedings of the National Conference on Artificial Intelligence (AAAI), 1996, pp.
536-542.

[12] R. Alford, P. Bercher, D. Aha, Tight Bounds for HTN Planning, in: Proceedings of the International
Conference on Automated Planning and Scheduling, volume 25, 2015, pp. 7-15.

[13] T. Geier, P. Bercher, On the Decidability of HTN Planning with Task Insertion, in: IJCAI, 2011, pp.
1955-1961.

[14] T. L. McCluskey, Object Transition Sequences: A New Form of Abstraction for HTN Planners, in:
AIPS, 2000, pp. 216-225.

[15] E. D. Sacerdoti, Planning in a Hierarchy of Abstraction Spaces, Artificial intelligence 5 (1974)
115-135.

[16] C. A. Knoblock, Automatically Generating Abstractions for Planning, Artificial Intelligence 68
(1994) 243-302.

[17] B. Marthi, S. Russell, J. A. Wolfe, Angelic Hierarchical Planning: Optimal and Online Algorithms,
in: ICAPS, 2008, pp. 222-231.

[18] G. Behnke, D. Héller, S. Biundo, Finding optimal solutions in htn planning-a sat-based approach.,,
in: IJCAI 2019, pp. 5500-5508.

[19] D. Holler, G. Behnke, P. Bercher, S. Biundo, H. Fiorino, D. Pellier, R. Alford, HDDL: An Extension
to PDDL for Expressing Hierarchical Planning Problems, in: Proc. of the AAAI Conference on Al,
volume 34, 2020, pp. 9883-9891.

[20] M. Staud, Urban Modeling via Hierarchical Task Network Planning, in: HPLAN Workshop, 2022.

[21] M. Ghallab, D. Nau, P. Traverso, Automated Planning: Theory and Practice, Elsevier, 2004.

[22] K. Erol, J. Hendler, D. S. Nau, Complexity Results for HTN Planning, Annals of Mathematics and
Artificial Intelligence 18 (1996) 69-93.

[23] S.Edelkamp,J. Hoffmann, PDDL 2.2: The Language for the Classical Part of IPC-4, in: International
Planning Competition, 2004.

[24] D. Holler, P. Bercher, G. Behnke, S. Biundo, HTN Plan Repair Using Unmodified Planning Systems,
in: HPLAN (ICAPS), 2018, pp. 26-30.

[25] F.Bacchus, Q. Yang, The Downward Refinement Property, in: IJJCAI, 1991, pp. 286-293.

	1 Introduction
	2 Related Work
	3 Framework Definitions
	3.1 Example: City Planning
	3.2 Planning Domain
	3.2.1 HTN plans with labelled occurrences

	3.3 Planning Process
	3.4 Planning Process Management

	4 Domain Classes
	5 Backtracking
	6 Results
	6.1 Complexity model
	6.2 State-space bounds
	6.3 Connection to classical complexity theory
	6.4 Effect of a (fallible) binary predictor

	7 Conclusion

