
Using Gradient-based Optimization for Planning with
Deep Q-Networks in Parametrized Action Spaces
Jonas Ehrhardt1,2,∗, Johannes Schmidt1,2, René Heesch1,2 and Oliver Niggemann1,2

1HSU-AI Institute for Artificial Intelligence, Helmut-Schmidt-University, Hamburg, Germany
2Institute of Automation, Helmut-Schmidt-University, Hamburg, Germany

Abstract
Many real-world planning problems feature parametrized action spaces, where each action is augmented by
continuous parameters. Though deep Reinforcement Learning has achieved remarkable results in solving
control and planning problems, it falls short at two central challenges of real-world planning problems with
parametrized action spaces: (i) There is an infinite number of action-parameter candidates in every step of
solving a planning problem, (ii) interacting with the planning domain is typically prohibitively expensive and
available recordings from the planning domain are sparse. To counter these challenges, we introduce our novel
Goal-Conditioned Model-Augmented Deep Q-Networks algorithm (GCM-DQN). The intuition behind GCM-DQN
is to use gradient-based optimization on the surface of the Q-Function, instead of blunt estimators, to estimate
the optimal parameters of an action in a state. In combination with a goal-conditioning of the DQN, and a state
transition model, this allows us to find plans for planning problems in planning domains with parametrized
action spaces. Our algorithm outperforms state-of-the-art Reinforcement Learning algorithms for planning in
parametrized action spaces.

Keywords
Planning, Parametrized Markov Decision Processes, Offline Reinforcement Learning, Deep Q-Networks

1. Introduction

Planning, the combinatorial problem of finding a sequence of actions that transitions an initial state
into a goal state, is a fundamental problem in many real-world applications and AI [1, 2]. Conventional
planning and Reinforcement Learning methods typically feature either purely discrete action spaces
(i.e. a finite set of actions, like moving up, down, left, or right in a grid world) or purely continuous
action spaces (i.e. an infinite set of actions, like controlling the acceleration of a cart on a slope) [2, 3].
However, many real-world problems feature parametrized action spaces. In a parametrized action space,
a finite set of actions is augmented by real-valued parameters, which influence the effects of the actions
[3, 4, 5]. During planning in parametrized action spaces, a planner hence must not only select from the
finite action set, but also real-valued parameters, to reach its goal [3]. For example, consider injection
molding, where there is a finite set of actions (e.g. close mold, inject, hold, cool, eject), which are each
augmented by real-valued parameters (e.g. heating/cooling energy, velocity, pressure, etc.). Both the
combinatorial aspect of finite action selection, e.g., injecting material before closing the mold would
lead to a mess, as well as the parametrization aspect, e.g., injecting too cold material leads to poor
surface characteristics of the molded product majorly, have a major influence on the molded product.
Getting both aspects right is the task of planning in parametrized action spaces. Besides this simplified
example, many other real-world problems, from robotics to factory planning, feature parametrized
action spaces [4, 3, 6, 7, 8].
There are two central challenges in solving planning problems in real-world parametrized action

spaces: (i) Due to the continuous nature of the parameter space, there is an infinite number of action-

CAIPI’25: ECAI Workshop on AI-based Planning for Complex Real-World Applications, Bologna, Italy, 2025
∗Corresponding author.
Envelope-Open jonas.ehrhardt@hsu-hh.de (J. Ehrhardt); johannes.schmidt@hsu-hh.de (J. Schmidt); rene.heesch@hsu-hh.de (R. Heesch);
oliver.niggemann@hsu-hh.de (O. Niggemann)
Orcid 0000-0001-5023-839X (J. Ehrhardt); 0009-0005-6532-5740 (J. Schmidt); 0000-0003-1147-8205 (R. Heesch);
0000-0001-8747-3596 (O. Niggemann)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-21

mailto:jonas.ehrhardt@hsu-hh.de
mailto:johannes.schmidt@hsu-hh.de
mailto:rene.heesch@hsu-hh.de
mailto:oliver.niggemann@hsu-hh.de
https://orcid.org/0000-0001-5023-839X
https://orcid.org/0009-0005-6532-5740
https://orcid.org/0000-0003-1147-8205
https://orcid.org/0000-0001-8747-3596
https://creativecommons.org/licenses/by/4.0/deed.en

parameter tuples a planner has to choose from in every state. This infinite branching of action-parameter
tuples in every state poses a challenge for selecting the optimal action-parameter tuple [9]. Typically,
infinite branching is either countered by parameter estimators [10], which have the risk of being
imprecise, or search [11], which has the risk of being computationally expensive. (ii) Often there is
no sufficient model of the planning domain available, interaction with the domain is prohibitively
expensive or unsafe, and recorded data is scarce [12]. Hence, solving planning problems typically, either
requires a manually crafted, expensive, and error-prone planning domain model [13, 5], or requires
advanced Reinforcement Learning algorithms which can be trained offline, meaning without interaction
with the planning domain, but strongly rely on the assumption that the distribution of the recorded
data does not shift strongly from the application cases [12].

In this paper, we tackle the challenges of infinite branching and training data scarcity in real-world
parametrized action spaces. Therefore, we propose to extend the well known Deep Q-Network (DQN)
algorithm [14]. DQN uses a Neural Network to approximate the action value function, which returns the
expected cumulative return of taking an action in a state. In combination with a greedy policy, DQN can
solve even complex planning and control problems [14]. We propose to transfer DQN into a novel, offline
and model-augmented Reinforcement Learning setup, which allows us to use it for solving planning
problems in planning domains with parametrized action spaces [3] (cf. Figure 1). More precisely, we
propose three extension to the DQN algorithm: (a) To tackle infinite branching, we introduce 𝑝𝑎𝑟𝑎𝑚𝑂𝑝𝑡,
a novel gradient-based optimization algorithm, to efficiently find optimal parameters for a given action
in a given state. (b) To make our algorithm applicable to unseen planning problems, we integrate a
goal-conditioning to the DQN [15]. (c) To allow using the DQN for planning without interacting with
the environment, we propose a novel state-transition model, which is trained along the DQN and allows
for planning in deterministic and probabilistic domains. We reduce the amount of training data to fit
the models, by employing Hindsight Experience Replay [16] and Conservative Q-Learning [17].

state transition
model

goal-conditioned
DQN

greedy
policystate

goal

expected
return

param

gradient-based
optimization

action (action,
param) planinitial

state

(i)
(ii) (iii)

(iv)

goal
state

Figure 1: In this paper, we propose the Goal-Conditioned Model Augmented DQN algorithm (GCM-DQN),
an offline extension to DQN [14] that allows for planning in domains with parametrized action spaces (novel
extensions to DQN are marked in blue). For planning, GCM-DQN takes an input and goal state tuple (i) and
iteratively computes optimal action-parameter tuples, using a gradient-based optimization (ii). A greedy policy
picks the action-parameter tuple with the highest Q-value (iii). Using a state transition model, the subsequent
state is computed (iv). The planning stops, when the current state matches the goal state.

As a result, we present our Goal-Conditioned Model Augmented DQN algorithm (GCM-DQN). GCM-
DQN is can be trained on a sparse dataset of recorded plans from a planning domain. It returns a DQN
which can either be used as a policy in probabilistic scenarios, or in combination with the parallelly
trained state transition model as planner for deterministic domains. In contrast to estimator or search-
based algorithms for planning in parametrized action spaces, GCM-DQN converges quickly to optimal
parameters due to the gradient-based parameter optimization. The main contributions of our paper are:

• 𝑝𝑎𝑟𝑎𝑚𝑂𝑝𝑡 novel gradient-based optimization algorithm to efficiently counter infinite branching
in planning domains with parametrized action spaces.

• A novel integration of 𝑝𝑎𝑟𝑎𝑚𝑂𝑝𝑡, goal-conditioning, and a novel state-transition model into DQN
to allow harnessing it for planning.

• A systematic and comprehensive evaluation of our approach against state-of-the-art Reinforce-
ment Learning paradigms for parametrized action spaces.

The remaining paper is structured as follows: In Section 2 we review related research in the domains
of Reinforcement Learning for planning in parametrized action spaces. In Section 3 we introduce
the formalization of our problem. Section 4 introduces our solution, followed by its theoretical and
empirical evaluation in Section 5 and discussion in Section 6. We conclude our paper in section 7.

2. Related Work

In Deep Reinforcement Learning, there are two directions when handling parameterized action spaces:
Using Neural Networks as estimators that suggest parameters for actions, and using search or optimiza-
tion to find optimal parameters for an action. Typically, policy network approaches are grounded in
the Deep Deterministic Policy Gradient (DDPG) paradigm [10]. DDPG is an Actor-Critic approach, in
which the actor is a deep policy network that, given a state, suggests actions and the critic is a deep
Q-network that calculates the cumulative expected return of the suggested action and state. Using
backpropagation over both networks allows for adapting their weights to converge to an optimal
policy- and Q-network. To solve planning problems in parametrized action spaces, Hausknecht and
Stone [4] extendeded the DDPG paradigm by expanding the deep policy network with an additional
non-binary output for suggesting parameters values, resulting in the P-DDPG algorithm. Fan et al.
[18] propose a similar approach. They use individual separate heads for selecting an action from the
finite action set, and individual separate heads for estimating its numerical parameters [18]. However,
both approaches neglect that there is a dependency between an action and the numerical parameters
[19]. Hence, Li et al. [19] proposed to encode the finite set of actions and numerical parameters into a
joint latent representation space on which the policy operates, and from which discrete and continuous
components are decoded for interaction with the environment. While the introduced approaches can
handle parametrized action spaces, they remain restricted to online settings, which require the agent to
interact directly with the environment, and are not well suited to an offline scenario with only little
available training data.

Optimization or search-based approaches typically follow a value-based paradigm, in which a greedy
policy selects the action-parameter tuple with the highest expected return. While methods like [20] use
a divide-and-conquer approach for complex actions-parameter tuples that operates on a joint latent
representation, Xiong et al. [6] uses a separate parameter estimation network which feeds into a DQN,
forming a parametrized DQN or P-DQN. Thereby, they can select a discrete action directly using a
greedy policy and do not rely on a continuous relaxation of the discrete action components (as, e.g.,
Hausknecht and Stone [4]) [6]. Finally, Ma et al. [11] uses an evolutionary optimization algorithm
for estimating an optimal action from a continuous action space. While such approaches can also be
adapted to parametrized action spaces, they are computationally expensive due to the uninformed
optimization paradigm.

In contrast to typical Reinforcement Learning tasks, e.g., like control, the reward structure in planning
problems sparse. Typically, the reward for solving a planning problem is formalized by a single reward
signal upon reaching the goal state. This sparse reward signal hence is exclusively dependent on the goal
state, and changes for planning problems with diverging goal states. To make Reinforcement Learning
agents applicable to altering reward functions, Schaul et al. [15] introduced Universal Value Function
Approximators. Universal Value Function Approximators condition the value function approximator
on an embedding of the goal state, hence making it generalizable across altering planning problems
within the same domain [15]. Other methods for countering sparsity of reward signals, especially in
offline settings, include data augmentation, such as Hindsight Experience Replay [16], or regularization
in training by additional loss terms, such as Conservative Q-Learning [17].

3. Formalization

Reinforcement Learning follows the assumption that there is an underlying MDP within all planning
domains. As we focus on planning problems in parametrized action spaces, we consider Parametrized

Action Markov Decision Processes (PAMDP) [3].

3.1. Parametrized Action Markov Decision Processes

PAMDPs extend continuous Markov Decision Processes by introducing a hybrid, so-called, parametrized
action space. They can be formalized as a tuple

⟨𝒮 , 𝐴, Ψ, 𝒯 ,ℛ, 𝛾 ⟩, (1)

where 𝒮 ⊆ ℝ𝑛 is the continuous state space, 𝐴 = {𝑎0, ..., 𝑎𝑘, ..., 𝑎𝐾}, 𝐾 ∈ ℕ is a finite set of actions, in
which each action 𝑎𝑘 is extended by a continuous parameter space Ψ𝑘 ∈ ℝ and the union of all parameter
spaces is given as Ψ = ⋃𝐾

𝑘=1 Ψ𝑘. Together they form the parametrized action space

𝒜 = ⋃
𝑎𝑘∈𝐴

{(𝑎𝑘, 𝜓𝑘)|𝜓𝑘 ∈ Ψ𝑘}. (2)

𝒯 is the transition function 𝒯 = 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡, 𝜓𝑡) that describes the probability of transitioning into state
𝑠𝑡+1 ∈ 𝒮 given state 𝑠𝑡 ∈ 𝒮, action 𝑎𝑡 ∈ 𝐴 and a parameter 𝜓𝑡 ∈ Ψ at time 𝑡. ℛ is the reward function
ℛ ∶ 𝒮 × 𝒜 → ℝ that returns the scalar reward 𝑟 when transitioning from 𝑠𝑡 into 𝑠𝑡+1 using an action 𝑎𝑡,
and 𝛾 ∈ ℝ a discount factor. We will further refer to 𝒯 as the dynamics of the MDP.
As the transition dynamics in real-world PAMDPs can grow very complex, large models and large

datasets are needed to properly capture them. Leveraging on the parametrized action spaces, we propose
to manage the complexity of real-world dynamics by a modular factorization of the parametrized action
space. Therefore, we split 𝒯 into a finite set 𝒯𝑑 of 𝐾 transition functions 𝒯𝑎𝑘 , which each are related to
one individual action 𝑎𝑘 each:

𝒯𝑑 = {𝒯𝑎𝑘 |𝒯𝑎𝑘 = 𝑃𝑎𝑘(𝑠𝑡+1|𝑠𝑡, 𝜓𝑘), 𝜓𝑘 ∈ Ψ𝑘, 𝑘 = 1, ..., 𝐾} (3)

This allows us to model the transition dynamics for each action in one individual model 𝑓𝑎𝑘 ≈ 𝒯𝑎𝑘 ,
reducing the complexity of the modeling problem, while overall not affecting the PAMDP dynamics.
We can denote the collection of all 𝑓𝑎𝑘 as ℱ = {𝑓𝑎𝑘}

𝐾
𝑘=1. During planning, we can infer state transitions

by sampling from the transition models

𝑠𝑡+1 ∼ 𝑓𝑎𝑘(𝑠𝑡, 𝜓𝑡). (4)

In deterministic scenarios, the transition probabilities of 𝒯𝑎𝑘 collapse to a Dirac delta distribution, which
effectively turns 𝑓𝑎𝑘 into a deterministic function

𝑓𝑎𝑘(𝑠𝑡, 𝜓𝑡) = 𝑠𝑡+1. (5)

3.2. Describing Planning Problems with PAMDPs

Planning describes the task of finding a sequence 𝜏 = {(𝑎𝑡, 𝜓𝑡)}𝑇−1𝑡=0 of 𝑇 action-parameter tuples, that
transition an initial state 𝑠0 into a goal state 𝑔 ∈ 𝐺 ⊂ 𝒮. Hence, a planning problem in a PAMDP can be
denoted as

⟨𝒮 , 𝐴, Ψ,ℱ ,ℛ𝐺, 𝛾 , 𝑠0, 𝐺⟩, (6)

whereℛ𝐺 is a goal conditioned, sparse reward function

ℛ𝐺(𝑠) = {
𝑟 , if 𝑠 ∈ 𝐺
0, else

(7)

, with the numerical reward value 𝑟 ∈ ℝ.
Reinforcement Learning typically solves planning problems by iteratively applying a policy 𝜋 on the

planning problem. Hence, a plan can be seen as a trajectory-level instantiation of a policy. A policy
in a PAMDP is a mapping from the current state 𝑠𝑡 and goal state 𝑔 to an action-parameter tuple. For

deterministic planning domains, the mapping is a function 𝜋(det)(𝑠𝑡, 𝑔) = (𝑎, 𝜓), For probabilistic planning
domains, the mapping is a conditional distribution 𝜋((𝑎, 𝜓)|𝑠𝑡, 𝑔), where 𝑠𝑡 ∈ 𝒮 , 𝑔 ∈ 𝐺, 𝑎, 𝜓 ∈ 𝒜.

For deterministic domains, the solution of a planning problem is a plan 𝜏, which, when executed from
𝑠0, reaches a 𝑔 ∈ 𝐺. For probabilistic domains, the solution of a planning problem is a proper policy 𝜋.
A proper policy optimizes the discounted return of the planning problem and results in a goal state
𝑔 ∈ 𝐺. The sequence of actions-parameter tuples selected by the policy during execution forms a plan 𝜏.

4. Solution

In this section, we introduce our GCM-DQN algorithm. GCM-DQN tackles the challenges of infinite
branching, prohibitively expensive domain interactions, and data scarcity in real world planning domains
with parametrized action spaces. The intuition of GCM-DQN is to leverage on the differentiability
of a DQN [14] during planning for finding the optimal parameters and actions via gradient-based
optimization, instead of using estimators or search. Therefore, we add three extensions to the DQN
algorithm [14]: (a) To tackle the problem of infinite branching, we introduce the 𝑝𝑎𝑟𝑎𝑚𝑂𝑝𝑡 algorithm,
a gradient-based optimization algorithm inspired by [21, 8], for finding an (leastwise locally) optimal
action-parameter tuple during planning (cf. Section 4.3). (b) To make GCM-DQN applicable to any
planning problemwithin the planning domain, we introduce a goal-conditioning to theDQN, as proposed
in [15]. We tackle data scarcity in training the goal-conditioned DQN, by using Hindsight Experience
Replay [16] and Conservative Q-Learning [17] (cf. Section 4.2). (c) Finally, to counter prohibitively
expensive domain interaction, we propose a novel state transition model which is parallelly trained
to the DQN on the same dataset (cf. Section 4.4), allowing to simulate state transitions without any
interaction with the planning domain.

By combining the three proposed extensions, we result in our novel GCM-DQN algorithm (cf. Section
4.1). GCM-DQN can operate in planning domains with parametrized action spaces. It can either be used
as a policy for probabilistic planning domains or, when using the state transition model, as a planner
for deterministic planning domains (cf. Figure 2).

greedy
policy plan

calculate
decision

value

transition
modelk

value function
approximator

Figure 2: We introduce the GCM-DQN algorithm. A goal-conditioned and model-augmented DQN approach for
planning in parametrized action spaces. GCM-DQN leverages on gradient-based optimization during planning
time (marked in blue) to find (leastwise locally) optimal action-parameter tuples and uses a modular state
transition model to predict state transitions.

4.1. Planning with Goal-Conditioned Model-augmented Deep Q-Networks

In this Section we provide an overview on the GCM-DQN algorithm (cf. Algorithm 1 and Figure 2).
In its essence GCM-DQN is a goal-conditioned greedy policy, which is trained in an offline setting.
Hence, the first step includes training the DQN 𝑄𝜃 and the state transition models ℱ = {𝑓𝑎𝑘 |𝑘 = 1, ..., 𝐾}
using a dataset of recorded plans 𝒟. During planning, GCM-DQN uses the 𝑝𝑎𝑟𝑎𝑚𝑂𝑝𝑡 algorithm (cf.
Algorithm 2) on 𝑄𝜃 to calculate the optimal parameter ̃𝜓 ∗𝑘 for every action. To guide the selection of
optimal action-parameter tuples, we calculate a decision value 𝛿𝑘 for each action. 𝛿𝑘 includes the 𝑄 value,

the weighted variance of the succeeding state var𝑘 (cf. Equation 18), and a potential based shaping
factor 𝜔 [22]:

𝛿𝑘 = 𝑄𝜃(𝑠𝑡, 𝑎𝑘𝑡 , ̃𝜓 ∗𝑘𝑡 , 𝑔) + 𝜆1var𝑘𝑡 + 𝜆2𝜔, 𝜆1, 𝜆2 ∈ ℝ. (8)

Using 𝛿𝑘 instead of the pure 𝑄 values counters, the selection of actions which would lead into non-
permissible states, e.g., colliding with boundaries. A greedy policy 𝜋greedy then picks the highest 𝛿𝑘 and
adds the corresponding action-parameter (𝑎𝑘, ̃𝜓𝑘) tuple to the plan. By sampling from the associated
state transition model 𝑓𝑎𝑘 the next state 𝑠𝑡+1 can be inferred and passed to the next iteration. The
iterations stop, when 𝑠𝑡+1 becomes a state within 𝐺 (or 𝐺 ± 𝜀, where 𝜀 is an error margin). In cases, in
which there is no solution to the planning problem, a stopping criterion 𝜁 can be introduced to bound
the maximum number of iterations. The complete GCM-DQN algorithm is outlined in Algorithm 1.
The following section introduce the extensions of GCM-DQN in detail.

Algorithm 1: GCM-DQN during planning

Require :𝒟 // recorded plans
𝑠0 // starting state
𝐺 // goal state(s)
𝜀, 𝜁 // tolerance, max steps

𝑄𝜃 ← trainGCMDQN(𝒟) // cf. Section 4.2
1 ℱ ← trainSTM(𝒟) // cf. Section 4.4
2 𝜏 ← ∅
3 𝑠 ← 𝑠0
4 for 𝑡 ← 0 to 𝜁 − 1 while 𝑠 ∉ 𝐺 ± 𝜀 do
5 (𝑎∗, 𝜓 ∗) ← argmax

𝑎∈𝐴
DecisionValue(𝑄𝜃(𝑠, 𝑎, ParamOpt), 𝑠) // cf. Section 4.3

6 append (𝑎∗, 𝜓 ∗) to 𝜏
7 𝑠 ← 𝑠𝑡+1 ∼ 𝑓𝑎∗(𝑠, 𝜓 ∗)

8 return 𝜏 // trajectory ((𝑎0, 𝜓0), (𝑎1, 𝜓1), …)

4.2. Goal-Conditioned DQN for Parametrized Action Spaces

In this section, we describe our adaptions to DQN to allow using it for planning in planning domains
with parametrized action spaces. We achieve this by including the goal state into the input of the
DQN, thereby conditioning it on the goal state, and handling continuous per-action parameters via
gradient-based optimization.

The original DQN uses a Neural Network to approximate the action value function 𝑄(𝑠, 𝑎) of a domain
[14], which describes the expected discounted return for taking action 𝑎 in state 𝑠, and satisfies the
Bellman equation in the optimal case

𝑄(𝑠𝑡, 𝑎𝑡) = 𝔼
𝑠𝑡+1∼𝑃(⋅|𝑠𝑡,𝑎𝑡)

[ℛ(𝑠𝑡) + 𝛾max
𝑎𝑡+1∈𝐴

𝑄(𝑠𝑡+1, 𝑎𝑡+1)]. (9)

For our application, we expand the classical Q-function’s input with the goal state of the planning
problem [15] and the parametrized actions, so that

𝑄(𝑠, 𝑎) ⇝ 𝑄(𝑠, 𝑎𝑘, 𝜓𝑘, 𝑔), (10)

where 𝑎𝑘 ∈ 𝐴 is an action from the finite action set, 𝜓𝑘 is an associated continuous parameter, and 𝑔 is
the goal state of the planning problem. For our updated Q-function, the Bellman equation becomes

𝑄(𝑠𝑡, 𝑎𝑘𝑡 , 𝜓𝑘𝑡 , 𝑔) = 𝔼
𝑠𝑡+1∼𝑃(⋅|𝑠𝑡,𝑎𝑘𝑡 ,𝜓𝑘𝑡)

[ℛ𝑔(𝑠𝑡) + 𝛾 max
𝑘𝑡+1∈𝐾

argmax
𝜓𝑘𝑡+1∈Ψ𝑘

𝑄(𝑠𝑡+1, 𝑎𝑘𝑡+1 , 𝜓𝑘𝑡+1 , 𝑔)]. (11)

As the inner maximization over 𝜓𝑘𝑡+1 is non-convex when 𝑄 is approximated by a Neural Network,
solving it is intractable. Hence, we propose to leverage on global optimization algorithms for finding
leastwise local optima for 𝜓 and solve Equation 11 in two steps. In the first step, we find optimal
action-parameter tuples for each action in the current state,

𝜓 ∗𝑘 = argmax
𝜓𝑘∈Ψ𝑘

𝑄(𝑠, 𝑎𝑘, 𝜓𝑘, 𝑔) ∀ 𝑘 ∈ 𝐾, (12)

using projected gradient ascent (cf. Section 4.3). As we cannot guarantee a global optimum, we denote
the resulting parameters with ̃𝜓 ∗𝑘𝑡+1 . This first step allows us to reformulate Equation 11 as

𝑄(𝑠𝑡, 𝑎𝑘𝑡 , 𝜓𝑘𝑡 , 𝑔) = 𝔼
𝑠𝑡+1∼𝑃(⋅|𝑠𝑡,𝑎𝑘𝑡 ,𝜓𝑘𝑡)

[ℛ𝑔(𝑠𝑡) + 𝛾 max
𝑘𝑡+1∈𝐾

𝑄(𝑠𝑡+1, 𝑎𝑘𝑡+1 , ̃𝜓 ∗𝑘𝑡+1 , 𝑔)], (13)

which resembles the Bellman equation with a goal conditioning and an approximate inner maximization.
We train our goal-conditioned DQN 𝑄𝜃, with parameters 𝜃 ∈ ℝ, for parametrized action spaces in an

offline Reinforcement Learning setup, to cater the restrictions on of prohibitively expensive domain
interactions in real-world planning domains. Therefore, we assume a training dataset of recorded plans
𝒟 = {𝜏𝑗}

𝐽
𝑗=0. A major problem in offline Reinforcement Learning is the distributional shift between

training data and the application domain [12]. We counter this problem by augmenting𝒟with Hindsight
Experience Replay [16], and Conservative Action Sampling [23] (cf. Figure 3). Hindsight Experience
Replay augments the available dataset by sampling sub-traces from the recorded plans, relabeling the
final state as the goal state [16]. Conservative Action Sampling also samples sub-trances from the
recorded plans, however, labeling their final state as miss, therefore artificially creating negative samples
for the dataset [23]. Using both augmentation techniques, results in the datasets ̃𝒟 [16] and ̄̃𝒟 [23].

sample and
re-lable

sub-sequences
with new goals

g

g

g

gg

g

g

conservative Q-
learning of

g

g
g

g

sample and
re-lable

sub-sequences
with random

negative goals

Figure 3: For training the DQN on little data, we use Hindsight Experience Replay [16] and Conservative Action
Sampling [23] for augmenting our training dataset.

Following [14] we use an off-policy training setup, using an online network 𝑄𝜃 and a target network
𝑄𝜃− . During training, only the weights of 𝑄𝜃 are updated via gradient descent, whereas the weights of
𝑄𝜃− are copied from 𝑄𝜃 every 𝜂 steps. We use a composite loss function

ℒ𝐶𝑄𝐿 = ℒ𝑄 +ℒ𝑃 (14)

consisting of the squared TD-loss ℒ𝑄 [14] and a conservative penalty term ℒ𝑃 [17]. The conservative
penalty termℒ𝑃 helps to regularize 𝑄𝜃 to overestimate Q-values of unseen or underrepresented actions
[17]. We denote the squared TD-loss as

ℒ𝑄 = 𝔼
(𝑠𝑡,𝑎𝑘𝑡 ,𝜓𝑘𝑡 ,𝑟𝑡,𝑠𝑡+1)∼

̄̃𝒟
[𝑟𝑡 + 𝛾(1 − 𝑑𝑡)max

𝑘𝑡+1∈𝐾
𝑄𝜃−(𝑠𝑡+1, 𝑎𝑘𝑡+1 , ̃𝜓 ∗𝑘𝑡+1 , 𝑔) − 𝑄𝜃(𝑠𝑡, 𝑎𝑘𝑡 , 𝜓𝑘𝑡 , 𝑔)]

2, (15)

where 𝑑𝑡 ∈ {0, 1} indicates whether the plan at time 𝑡, so that 𝑑𝑡 = 1, if 𝑠𝑡+1 ∈ 𝐺. Following [17], we
formulate the conservative penalty term as

ℒ𝑃 = 𝛼[log(∑
𝑘∈𝐾

1
𝑀

𝑀
∑
𝑚=1

exp(𝑄𝜃(𝑠𝑡, 𝑎𝑘𝑡 , 𝜓
(𝑚)
𝑘𝑡 , 𝑔))) − 𝑄𝜃(𝑠𝑡, 𝑎𝑘𝑡 , ̃𝜓 ∗𝑘𝑡 , 𝑔)]. (16)

where 𝛼 is the trade-off factor between Bellman-fit and conservatism, 𝐾 = |𝐴| is the number of discrete
actions, and 𝑀 is the number of parameter samples per action used in the log-sum-exp penalty. For our
offline training, we draw 𝑀 samples 𝜓 (𝑚)𝑘𝑡 uniformly from the empirical pool of parameters for action 𝑎𝑘
to approximate ∫𝜓 𝑒

𝑄𝜃(𝑠𝑡,𝑎𝑘𝑡 ,𝜓𝑘𝑡 ,𝑔)𝑑𝜓.
Regarding 𝒟, three edge cases must be considered: (i) 𝒟 including no data, (ii) 𝒟 including little

data, and (iii) 𝒟 including infinite data. In case (i), where no data is available, 𝑄𝜃 cannot be trained.
Hence, data must be collected by random exploration or through sampling state transitions from the
domain. Case (ii) describes the normal operation of GCM-DQN. We note that the higher the variance
in the dataset, the better the approximation of 𝑄𝜃 to the real 𝑄. Case (iii) describes a special case, where
all data are available. Given a large enough 𝜃, this allows 𝑄𝜃 to fit 𝑄 exactly.

4.3. Gradient-based Parameter Estimation

For finding the optimal parameters for an action in a given state, we propose to leverage on the
differentiability of the DQN and use gradient ascent in a nested optimization loop for finding optimal
parameters for a given action (cf. Equation 12). Therefore, we introduce the 𝑝𝑎𝑟𝑎𝑚𝑂𝑝𝑡 algorithm, which
draws inspiration from [24] and its applications in [9, 8].

The idea of 𝑝𝑎𝑟𝑎𝑚𝑂𝑝𝑡 is to use the same algorithm, which is used to adapt the weights of 𝑄𝜃 during
training, for finding the optimal action-parameter tuples during execution. However, instead of op-
timizing the weights of the 𝑄𝜃, we optimize the parameter component 𝜓 of its input. Therefore, we
initialize the parameter component 𝜓 with a guess ̂𝜓, e.g., random numbers, zeros, or values from 𝒟.
After calculating 𝑄𝜃(𝑠, 𝑎, ̂𝜓 , 𝑔), we use backpropagation to derive the gradient with respect to ̂𝜓, allowing
us to use gradient ascent with a learning rate 𝛽 to update ̂𝜓 in a direction which increases the Q-value.
The optimization stops after the updates of the Q-value, Δ𝑄, fall below a threshold 𝜉, returning the last
update of ̂𝜓 as ̃𝜓 ∗. Algorithm 2 summarizes our parameter estimation loop through input optimization.

Algorithm 2: paramOpt Gradient‐Based Parameter Optimization

Require : 𝑠, 𝑎, 𝑔 // state, action, goal
𝑄𝜃 // goal‐conditioned DQN
𝛽 // learning rate
𝜉 // stopping threshold

̂𝜓 ← init() // initial guess
1 Δ𝑄 ← +∞
2 𝑄(prev) ← −∞
3 while Δ𝑄 > 𝜉 do
4 𝑔𝜓 ← ∇𝜓𝑄𝜃(𝑠, 𝑎, ̂𝜓 , 𝑔) // backprop wrt. parameters

5 ̂𝜓 ← clip[𝜓min,𝜓max](
̂𝜓 + 𝛽 𝑔𝜓) // projected gradient ascent

6 𝑄(val) ← 𝑄𝜃(𝑠, 𝑎, ̂𝜓 , 𝑔) // caclulate action value

7 Δ𝑄 ← 𝑄(val) − 𝑄(prev)

8 𝑄(prev) ← 𝑄(val)

9 return ̃𝜓 ∗ ← ̂𝜓 // optimized parameter

As we are using gradient ascent as optimization algorithm over the DQN, we cannot guarantee
to find the true global optimum 𝜓 ∗. This is due to the non-convex shape of 𝑄𝜃. The result of the

optimization hence can be strongly dependent on the initialization of ̂𝜓 and the learning rate 𝛽. As there
are different options for initialization, e.g., zeros, ones, or random numbers, we suggest incorporating
prior knowledge from the dataset, in the form of estimators like the mean over observed parameter
settings as starting guesses.
Additionally, parameters are typically bound to value ranges, e.g., a temperature cannot fall below

0 Kelvin. To incorporate this, we use projected gradient ascent [25] during optimization, effectively
clipping values that exceed the bounds. As one naïve solution for retrieving the bounds, we suggest
iterating through the dataset 𝒟 and collecting minima and maxima of each parameter.

4.4. Learning State Transition Dynamics

In real-world planning problems, directly interacting with the planning domain to predict action
effects is rarely possible or prohibitively expensive [12]. Hence, planning requires a model of the
state transition dynamics [1] which maps a current state 𝑠𝑡 and parameters 𝜓𝑡 to a successor state.
In deterministic domains this is a function 𝑓 (𝑠𝑡, 𝜓𝑡) = 𝑠𝑡+1 (cf. Eq. 5); in probabilistic domains it is a
conditional distribution 𝑝(𝑠𝑡+1 ∣ 𝑠𝑡, 𝜓𝑡) from which 𝑠𝑡+1 is sampled (cf. Eq. 4).
Following the modular per–action factorization of PAMDP dynamics (cf. Eq. 3), we learn one

transition model action, ℱ = {𝑓𝑎𝑘}
𝐾
𝑘=1, each predicting the next state for action 𝑎𝑘 given (𝑠𝑡, 𝜓𝑡). Thereby,

we use the same dataset 𝒟, which is also used for training the DQN.
We propose to capture the stochasticity of probabilistic planning domains with a novel conditional

latent-variable state transition model, inspired by [26]. Thereby, each per-action model comprises an
encoder 𝑒𝑘 and a decoder 𝑑𝑘 part.

During training , the encoder processes the input 𝑠𝑡, 𝜓𝑡, and 𝑠𝑡+1 into the parameters 𝜇 and 𝜎 of a latent
posterior 𝑞𝑒(𝑧|𝑠𝑡, 𝑠𝑡+1, 𝜓𝑡). Using the reparametrization trick, it samples 𝑧 = 𝜇 + 𝜎 ⊙ 𝜖, 𝜖 ∼ 𝒩 (0, 𝐼).
The decoder 𝑑𝑘 reconstructs 𝑠𝑡+1 from 𝑠𝑡, 𝜓𝑡, and 𝑧 under a standard normal prior 𝑝𝑑(𝑧) = 𝒩 (0, 𝐼). As
training criterion, we minimize the negative Evidence Lower Bound,

ℒ = − 𝔼
𝑞𝑒(𝑧|𝑠𝑡,𝑠𝑡+1,𝜓𝑡)

[log 𝑝𝑑(𝑠𝑡+1|𝑠𝑡, 𝜓𝑡, 𝑧)] + 𝐷KL(𝑞𝑒(𝑧|𝑠𝑡, 𝑠𝑡+1, 𝜓𝑡)| 𝑝𝑑(𝑧)), (17)

where 𝐷KL denotes the Kullback–Leibler divergence.

During planning , the encoder is discarded and only 𝑑𝑘 is further used. Given the current state 𝑠𝑡 and
parameters ̃𝜓 ∗𝑡 (estimated with 𝑝𝑎𝑟𝑎𝑚𝑂𝑝𝑡), we draw 𝑧 ∼ 𝒩 (0, 𝐼) and decode samples ̂𝑠𝑡+1 = 𝑑𝑘(𝑠𝑡, ̃𝜓 ∗𝑡 , 𝑧).
Boundaries and non-permissible states can be detected by analyzing the scalar variance var of ̂𝑠(𝑛)𝑡+1
when sampling the 𝑧 vector 𝑛 times:

var = 1
𝑛 − 1

𝑛
∑
𝑖=1

|| ̂𝑠(𝑖)𝑡+1 − ̄𝑠𝑡+1||2, ̄𝑠𝑡+1 =
1
𝑛

𝑛
∑
𝑖=1

̂𝑠(𝑖)𝑡+1, (18)

A high variance indicates a high predictive uncertainty in ̂𝑠𝑡+1, which indicates boundaries or non-
permissible states, like obstacles.
For deterministic domains, the stochastic latent 𝑧 can be omitted and 𝑑𝑘 reduces to a standard

Multilayer Perceptron.

5. Evaluation

We evaluate our GCM-DQN algorithm empirically against offline versions of state-of-the-art baselines
for planning in parametrized action spaces [4, 6]. As performance metrics, we use the rate of successfully
solved planning problems from a set of unseen planning problems. Therefore, we used domains with
navigation problems and domains from the international planning competition’s (IPC) reinforcement
learning track [27] (cf. Figure 4). We hypothesize that (𝐻1) GCM-DQN shows a higher performance

than the baselines, when trained on the same limited dataset of plans 𝒟, and (𝐻2) GCM-DQN longer
maintains a higher performance than the baselines, when systematically reducing the number of samples
in 𝒟.

5.1. Experimental Setup

For setting up our experiments, we follow the experimental design guidelines for empirical Machine
Learning research by Vranješ et al. [28]. We generate samples for the datasets 𝒟 by running either
an 𝐴∗ search or JaxPlan [29] for randomly initialized planning problems of the chosen planning
domains. We used Optuna [30] for hyperparameter optimization of GCM-DQN and the baselines
to allow for a fair comparison. We repeated all experiments on eight different seeds to rule out
lucky initializations. All code and datasets for replicating the experiments can be found under https:
//github.com/j-ehrhardt/gcmdqn. We used the following planning domains for evaluation:
Navigation Domains The navigation domains feature two-dimensional path finding problems in a
continuous space with obstacles. The goal is to find a sequence of actions that lead from the start state
to the goal state. There is a set of four actions - up, down, left, right - in which each action can be
augmented with a plus minus ten-degree tilt. The step-width is fixed and collisions with the obstacles
are forbidden. The planning problems are non-trivial, as the reward function is sparse and planners
need to deal with linear and non-linear obstacles.
IPC Domains The IPC domains feature domains from the International Planning Competition’s
Probabilistic and Reinforcement Learning Track from 2023 [27]. We picked the reservoir, powergen
and HVAC domains.

Figure 4: Evaluation domains from left to right Navigation Domains: Circle-domain, cross-domain, bars-
domain, squeeze-domain (Exemplary start states are green and exemplary goal states are red). IPC Domains:
HVAC-domain, PowerGen-domain, Reservoir-domain.

While the navigation domains have a stronger focus on the combinatorial aspect of finding a correct
action to solve the planning problems, the IPC domains emphasize stronger on finding the correct
parameters. As it is highly unrealistic that a learning algorithm on a scarce dataset 𝒟 could match the
classical evaluation metrics like optimality, soundness, efficiency, and completeness1, we chose the
planning success rate 𝜌, describing the number of successfully solved planning problems from a set of
unseen test planning problems.

As baselines we used P-DQN [6] and P-DDPG [4] from literature, as, to our knowledge, there are no
offline Reinforcement Learning algorithms for solving planning problems in PAMDPs. While P-DDPG
is a policy based approach which is trained in an actor-critic setup [4], P-DQN is closer related to our
approach using a DQN for evaluating different action-parameter tuples. However, instead of finding
optimal parameter values via gradient-based search, it uses a Neural Network as heuristic for suggesting
parameter values [6]. We transferred both baselines in an offline setting, using Conservative Q-learning,
Hindsight Experience Replay, and potential-based shaping as for our algorithm.

1As our algorithm is grounded in the Bellman Equation, its solutions will converge to optimal, sound, and complete results
with an infinitely large dataset𝒟. However, this is not its operational scenario. We hence do not consider very large datasets
for evaluation.

https://github.com/j-ehrhardt/gcmdqn
https://github.com/j-ehrhardt/gcmdqn

Table 1
The table shows the mean success rate 𝜌± standard deviation across eight seeds for our GCM-DQN algorithm
and the baselines over different navigation and IPC planning domains.

domain name P-DQN [6] P-DDPG [4] GCM-DQN (ours)

navigation – bars 0.7852 ± 0.2063 0.1952 ± 0.0049 0.7922 ± 0.1141
navigation – circle 0.8466 ± 0.1579 0.0653 ± 0.0053 0.9375 ± 0.0250
navigation – squeeze 0.5351 ± 0.1624 0.1326 ± 0.1429 0.9405 ± 0.0308
navigation – cross 0.7405 ± 0.1203 0.0680 ± 0.0165 0.8497 ± 0.1171
IPC – HVAC – instance0 0.1484 ± 0.2209 0.6045 ± 0.2212 0.6669 ± 0.1687
IPC – HVAC – instance1 0.5029 ± 0.0058 0.5410 ± 0.0354 0.5273 ± 0.0239
IPC – HVAC – instance2 0.4472 ± 0.0055 0.4492 ± 0.0072 0.4492 ± 0.0055
IPC – HVAC – instance3 0.1171 ± 0.0011 0.1221 ± 0.0058 0.1299 ± 0.0102
IPC – PowerGen – instance1 0.0000 ± 0.0000 0.3691 ± 0.1268 0.2910 ± 0.0147
IPC – PowerGen – instance2 0.0000 ± 0.0000 0.0000 ± 0.0000 0.1171 ± 0.0263
IPC – Reservoir – instance1 0.0009 ± 0.0027 0.5918 ± 0.1398 0.6796 ± 0.1048

5.2. Evaluating the Planning Performance of GCM-DQN

For evaluating the performance of GCM-DQN in comparison to the baselines, we created a training
dataset 𝒟 of 128 solved planning problems and a test dataset of 100 solved problems per domain. We
ran a hyperparameter search with 64 trials for each algorithm and domain and subsequently tested each
algorithm with the best hyperparameter setup on eight different seeds, to rule out lucky initialization.
The results are reported in Table 1.

We hypothesized that GCM-DQN shows a higher performance than the baselines, when trained on the
same limited dataset𝒟. For the navigation domains, our results indicate that GCM-DQN shows a higher
mean planning success rate over the eight different seeds than the baselines, when trained on a limited
dataset of 128 plans. For the IPC domains, either P-DDPG or GCM-DQN show the highest performance,
with only narrow differences. As the IPC domains have a stronger emphasis on the parametrization
than on the combinatorial action selection it is expectable that the Actor-Critic approach performs well
in the IPC domains, while underperforming in the navigation domains. Overall, all algorithms show
declining performance with increasing complexity of the planning domains. Yet, our GCM-DQN shows
the most stable results, in comparison to the baselines.

5.3. Evaluating the Planning Performance of GCM-DQN on Succeedingly Scarce
Data

The application scenario for GCM-DQN is planning under circumstances where only little data is
available and interactions with the environment are not possible. For evaluating the behavior of GCM-
DQN on scarce data, we trained the GCM-DQN and the baselines on succeedingly less samples in 𝒟.
Therefore, we created subsets of 𝒟 containing {64, 32, 16, 8, 4, 2} samples and trained GCM-DQN and
the baselines on the hyperparameter settings from above. For each algorithm and dataset, we repeated
the procedure on eight different seeds. Figure 5 shows the results for the navigation and IPC domains.

We hypothesized that GCM-DQNmaintains a higher performance under progressive sample reduction
compared to the baseline methods. For the navigation domains, we mostly could confirm this. GCM-
DQN shows an increase in planning success rates, when increasing the number of plans in the training
dataset. In the navigation domains, GCM-DQN gets overtaken by P-DQN in the lower sample area of
the circle domains and the very closely in the higher sample area of the bars domain. Yet, it shows
in general lower variance across the seeds, suggesting a more stable outcome. In the IPC domains,
GCM-DQN and P-DDPG are consistently strong and stable, with an exception for GCM-DQN in the
reservoir domain, while P-DQN performs low. Overall, GCM-DQN tends to improve, sometimes sharply
in the higher sample area, while P-DDPG is competitive but more variable. P-DQN underperforms
across the IPC domains.

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

1.0

success rate
bars domain

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

1.0

success rate
cross domain

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

1.0

success rate
circle domain

2 4 8 16 32 64 128
n training plans

0.2

0.4

0.6

0.8

1.0

success rate
squeeze domain

gcmdqn
pdqn
pddpg

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

1.0

success rate
HVAC domain - instance0

2 4 8 16 32 64 128
n training plans

0.0

0.1

0.2

0.3

0.4

0.5

success rate
PowerGen domain - instance1

2 4 8 16 32 64 128
n training plans

0.0

0.2

0.4

0.6

0.8

success rate
Reservoir domain - instance1

gcmdqn
pdqn
pddpg

Figure 5: The figure shows the planning success rate for the navigation and IPC domains, when altering the
number of plans in the training dataset. We repeated the experiments on eight different seeds. The shaded areas
show the variance of the differently seeded runs.

6. Discussion

In the following, we discuss the findings from our Evaluation Section 5. We place special emphasis
on discussing architectural limitations of GCM-DQN, the distributional shift of 𝒟 to the application
scenarios, and the implications of aleatoric uncertainty from latent factors in the planning domains.

Architectural Limitations of GCM-DQN Given the architecture we chose for our GCM-DQN
algorithm, there are inherent limitations. Our gradient-based 𝑝𝑎𝑟𝑎𝑚𝑂𝑝𝑡 function for estimating the
parameters for actions can converge to local optima in theQ-function. Especially in complex, non-convex
Q-functions, this poses a serious problem. Mitigation strategies could include ensemble approaches with
differently seeded optimizers, multi-start optimization with different initial guesses, or a combination of
both. Additionally, in essence, our GCM-DQN algorithm is one-step greedy (though implicitly operating
on the expected returns of the DQN). Especially for domains in which long plans are necessary to
reach a goal, the sparse reward signal of training data might lead to wrong results. Using the transition
model for look-ahead methods, like Monte Carlo Tree Search, might result in better performance of the
planner. Alternatively, a hierarchical perspective where GCM-DQN plans between intermediate goals
might lead to increased performance with longer plans. As some hyperparameters, e.g., the 𝛼 weight
of Conservative Q-Learning or the number of Conservative Actions Samples, have a strong impact
on the performance and stability of the planner, including them as parameters in the training loop to
dynamically adapt the conservatism or data augmentation level of the model during training, might be
a future improvement.

Data Quantity and Diversity The quantity and diversity of the training data in the training dataset
𝒟 had a significant impact on the performance of the tested algorithms. Our results support the intuition
that more and diverse data improves the approximation of the true Q-function and true transition
dynamics. The planning success rate of our GCM-DQN algorithm continuously improved as the number
of plans in 𝒟 increased. All methods struggled in scenarios where only few samples in the training
dataset were available. We deliberately focused on scarce data scenarios in our evaluation, as they
reflect the real-world application of planners, where collecting more data and an interaction with the
environment is prohivitively expensive. In this context, including Conservative Q-Learning an and
Hindsight Experience Replay as mitigations for scarce data was important. Even though Hindsight
Experience replay did not raise the mean planning success rates, it reduced the outcome variability
and thus improved the reliability of GCM-DQN on small data. This implies that when working with

scarce data and the performance is insufficient, adding additional data to 𝒟 may be more effective than
tweaking the algorithms in isolation.

Distributional Shift in Offline Reinforcement Learning One of the core challenges in Offline
Reinforcement Learning is the distributional shift between the training data and application scenarios
[12]. Especially in the context of planning, the planner is likely to encounter state, action, parameter
combinations that lie outside the support of the training data, which can lead to extrapolation errors. We
mitigated this risk, using three mechanisms from the Offline Reinforcement Learning literature: Using
Hindsight Experience Replay [16], Conservative Action Sampling [23], and Conservative Q-Learning
[17]. Our results indicate that all measures improved training stability and planning performance.

Aleatoric Uncertainty from Latent Factors in the Planning Domain Real-world application
scenarios for planners, e.g., industrial processes often show hidden factors and randomness that offline
training cannot fully predict. I.e., in a manufacturing domain, tool wear out can alter a system’s
dynamics, introducing aleatoric uncertainty. Though our GCM-DQN approach attempts to accommodate
stochasticity in its state transition models, systematic latent factor shifts over time will lead to mis-
predictions of future transitions as the underlying transition dynamics changed. This limitation,
however, is not unique to our approach but shared by all offline learning methods. Mitigating it could
involve a periodic re-training with ”fresh” data or designing the model to model these factors explicitly
or in latent variables.

Evaluation Fairness ofOffline Baselines Finally, we discuss the evaluation fairness of the employed
baselines. The employed baselines P-DDPG [4] and P-DQN [6] were originally designed for online
Reinforcement learning, where extensive interactions with the environment shapes the policy and
DQNs. Conversely, we evaluated them in an offline setting. However, to ensure a fair evaluation with
our GCM-DQN algorithm, we adapted both baselines to the offline setup, by incorporating the same
techniques that we used in GCM-DQN to improve the training performance of the models. Namely, we
used the same state transition models, Conservative Q-Learning, Hindsight Experience Replay, and
Conservative Action sampling, creating a common and fair ground for evaluation.

7. Conclusion & Outlook

In this paper, we introduced the Goal-conditioned Model-augmented DQN algorithm (GCM-DQN), a
model-augmented Offline Reinforcement Learning algorithm for planning in parametrized action spaces,
where no model of the planning domain and only a limited dataset of recorded plans are available.
GCM-DQN tackles three central challenges of planning with Reinforcement Learning in parametrized
action spaces: (i) infinite branching of action-parameter tuples, (ii) goal-dependent reward functions,
and (iii) substituting domain interactions with a model during planning time. To address the challenges,
we introduce 𝑝𝑎𝑟𝑎𝑚𝑂𝑝𝑡, a novel gradient-based optimization algorithm over the DQN for finding the
optimal parameters for an action in a state, a goal-conditioning of the DQN that allows for planning
with changing and sparse reward functions, and a novel state transition model that allows to capture the
inherent uncertainty in stochastic of probabilistic planning domains. We evaluate GCM-DQN against
offline versions of two closely related algorithms. GCM-DQN shows significantly higher performance
than the baselines, especially in data scarce scenarios. Future work will include the refinement of
GCM-DQNs architecture and its application on real-world industrial planning scenarios.

Acknowledgement

This research as part of the project LaiLa and EKI is funded by dtec.bw – Digitalization and Technology
Research Center of the Bundeswehr, which we gratefully acknowledge. dtec.bw is funded by the
European Union – NextGenerationEU.

Declaration on Generative AI

Any use of generative AI in this manuscript adheres to ethical guidelines of IEEE for use and acknowl-
edgement of generative AI. Each author has made a substantial contribution to the work, using LLMs
exclusively for language refinement, formatting purposes, and for non-substantial coding, e.g., for
creating plots.

References

[1] M. Ghallab, D. Nau, P. Traverso, Automated Planning and Acting, Cambridge University Press,
2016.

[2] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, MIT press, 2018.
[3] W. Masson, P. Ranchod, G. Konidaris, Reinforcement learning with parameterized actions, Proceed-

ings of the AAAI Conference on Artificial Intelligence 30 (2016). doi:10.1609/aaai.v30i1.10226.
[4] M. Hausknecht, P. Stone, Deep reinforcement learning in parameterized action space, 2016. doi:10.

48550/ARXIV.1511.04143.
[5] R. Heesch, J. Ehrhardt, O. Niggemann, Integrating machine learning into an smt-based planning

approach for production planning in cyber-physical production systems, in: Artificial Intelligence.
ECAI 2023 International Workshops, Springer Nature Switzerland, Cham, 2024, pp. 318–331.

[6] J. Xiong, Q. Wang, Z. Yang, P. Sun, L. Han, Y. Zheng, H. Fu, T. Zhang, J. Liu, H. Liu, Parametrized
deep q-networks learning: Reinforcement learning with discrete-continuous hybrid action space,
2018. doi:10.48550/ARXIV.1810.06394.

[7] J. Ehrhardt, R. Heesch, O. Niggemann, Learning process steps as dynamical systems for a sub-
symbolic approach of process planning in cyber-physical production systems, in: Artificial
Intelligence. ECAI 2023 International Workshops, Springer Nature Switzerland, Cham, 2024, pp.
332–345.

[8] R. Heesch, A. Cimatti, J. Ehrhardt, A. Diedrich, O. Niggemann, A lazy approach to neural numerical
planning with control parameters, in: European Conference on Artificial Intelligence (ECAI), 2024.

[9] G. Wu, B. Say, S. Sanner, Scalable planning with deep neural network learned transition models,
Journal of Artificial Intelligence Research 68 (2020) 571–606. doi:10.1613/jair.1.11829.

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous
control with deep reinforcement learning, 2016. doi:10.48550/ARXIV.1509.02971.

[11] Y. Ma, T. Liu, B. Wei, Y. Liu, K. Xu, W. Li, Evolutionary Action Selection for Gradient-Based Policy
Learning, Springer International Publishing, 2023, p. 579–590. doi:10.1007/978-3-031-30111-7_
49.

[12] S. Levine, A. Kumar, G. Tucker, J. Fu, Offline reinforcement learning: Tutorial, review, and
perspectives on open problems, 2020. doi:10.48550/ARXIV.2005.01643.

[13] M. Grand, D. Pellier, H. Fiorino, TempAMLSI: Temporal action model learning based on STRIPS
translation, Proceedings of the International Conference on Automated Planning and Scheduling
32 (2022) 597–605. doi:10.1609/icaps.v32i1.19847.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, D. Hassabis, Human-level control through deep reinforcement learning,
Nature 518 (2015) 529–533. doi:10.1038/nature14236.

[15] T. Schaul, D. Horgan, K. Gregor, D. Silver, Universal value function approximators, in: Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, PMLR, Lille, France, 2015, pp. 1312–1320.

[16] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, W. Zaremba, Hindsight experience replay, in: I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information
Processing Systems, volume 30, Curran Associates, Inc., 2017.

http://dx.doi.org/10.1609/aaai.v30i1.10226
http://dx.doi.org/10.48550/ARXIV.1511.04143
http://dx.doi.org/10.48550/ARXIV.1511.04143
http://dx.doi.org/10.48550/ARXIV.1810.06394
http://dx.doi.org/10.1613/jair.1.11829
http://dx.doi.org/10.48550/ARXIV.1509.02971
http://dx.doi.org/10.1007/978-3-031-30111-7_49
http://dx.doi.org/10.1007/978-3-031-30111-7_49
http://dx.doi.org/10.48550/ARXIV.2005.01643
http://dx.doi.org/10.1609/icaps.v32i1.19847
http://dx.doi.org/10.1038/nature14236

[17] A. Kumar, A. Zhou, G. Tucker, S. Levine, Conservative q-learning for offline reinforcement learning,
in: H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin (Eds.), Advances in Neural Information
Processing Systems, volume 33, Curran Associates, Inc., 2020, pp. 1179–1191.

[18] Z. Fan, R. Su, W. Zhang, Y. Yu, Hybrid actor-critic reinforcement learning in parameterized
action space, in: Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, International Joint Conferences on Artificial Intelligence Organization, 2019,
pp. 2279–2285. doi:10.24963/ijcai.2019/316.

[19] B. Li, H. Tang, Y. Zheng, J. Hao, P. Li, Z. Wang, Z. Meng, L. Wang, Hyar: Addressing discrete-
continuous action reinforcement learning via hybrid action representation, 2021. doi:10.48550/
ARXIV.2109.05490.

[20] A. Tavakoli, F. Pardo, P. Kormushev, Action branching architectures for deep reinforcement
learning, Proceedings of the AAAI Conference on Artificial Intelligence 32 (2018). doi:10.1609/
aaai.v32i1.11798.

[21] G. Wu, B. Say, S. Sanner, Scalable planning with tensorflow for hybrid nonlinear domains, in:
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.),
Advances in Neural Information Processing Systems, volume 30, Curran Associates, Inc., 2017.

[22] A. Y. Ng, D. Harada, S. J. Russell, Policy invariance under reward transformations: Theory and
application to reward shaping, in: Proceedings of the Sixteenth International Conference on
Machine Learning, ICML ’99, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999, p.
278–287.

[23] Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley, A. Irpan, B. Eysenbach, R. C.
Julian, C. Finn, S. Levine, Actionable models: Unsupervised offline reinforcement learning of
robotic skills, in: Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, PMLR, 2021, pp. 1518–1528.

[24] D. P. Kingma, S. Mohamed, D. J. Rezende, M. Welling, Semi-supervised learning with deep
generative models, in: Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K. Weinberger (Eds.),
Advances in Neural Information Processing Systems, volume 27, Curran Associates, Inc., 2014.

[25] P. H. Calamai, J. J. Moré, Projected gradient methods for linearly constrained problems, Mathe-
matical Programming 39 (1987) 93–116. doi:10.1007/bf02592073.

[26] K. Sohn, H. Lee, X. Yan, Learning structured output representation using deep conditional
generative models, in: C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, R. Garnett (Eds.), Advances
in Neural Information Processing Systems, volume 28, Curran Associates, Inc., 2015.

[27] A. Taitler, R. Alford, J. Espasa, G. Behnke, D. Fišer, M. Gimelfarb, F. Pommerening, S. Sanner,
E. Scala, D. Schreiber, J. Segovia‐Aguas, J. Seipp, The 2023 international planning competition, AI
Magazine 45 (2024) 280–296. doi:10.1002/aaai.12169.

[28] D. Vranješ, J. Ehrhardt, R. Heesch, L. Moddemann, H. S. Steude, O. Niggemann, Design Principles
for Falsifiable, Replicable and Reproducible Empirical Machine Learning Research, in: 35th
International Conference on Principles of Diagnosis and Resilient Systems (DX 2024), volume
125, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2024. doi:10.4230/
OASIcs.DX.2024.7.

[29] M. Gimelfarb, A. Taitler, S. Sanner, Jaxplan and gurobiplan: Optimization baselines for replanning
in discrete and mixed discrete-continuous probabilistic domains, Proceedings of the International
Conference on Automated Planning and Scheduling 34 (2024) 230–238. doi:10.1609/icaps.v34i1.
31480.

[30] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A next-generation hyperparameter
optimization framework, in: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2019.

http://dx.doi.org/10.24963/ijcai.2019/316
http://dx.doi.org/10.48550/ARXIV.2109.05490
http://dx.doi.org/10.48550/ARXIV.2109.05490
http://dx.doi.org/10.1609/aaai.v32i1.11798
http://dx.doi.org/10.1609/aaai.v32i1.11798
http://dx.doi.org/10.1007/bf02592073
http://dx.doi.org/10.1002/aaai.12169
http://dx.doi.org/10.4230/OASIcs.DX.2024.7
http://dx.doi.org/10.4230/OASIcs.DX.2024.7
http://dx.doi.org/10.1609/icaps.v34i1.31480
http://dx.doi.org/10.1609/icaps.v34i1.31480

	1 Introduction
	2 Related Work
	3 Formalization
	3.1 Parametrized Action Markov Decision Processes
	3.2 Describing Planning Problems with PAMDPs

	4 Solution
	4.1 Planning with Goal-Conditioned Model-augmented Deep Q-Networks
	4.2 Goal-Conditioned DQN for Parametrized Action Spaces
	4.3 Gradient-based Parameter Estimation
	4.4 Learning State Transition Dynamics

	5 Evaluation
	5.1 Experimental Setup
	5.2 Evaluating the Planning Performance of GCM-DQN
	5.3 Evaluating the Planning Performance of GCM-DQN on Succeedingly Scarce Data

	6 Discussion
	7 Conclusion & Outlook

