CEUR-WS.org/Vol-4103/paper6.pdf

CEUR
E Workshop
Proceedings

published 2025-11-21

Learning Sound and Complete Preconditions in Complex
Real-World Domains

René Heesch®®*, Bjorn Ludwig’?, Jonas Ehrhardt®?, Alexander Diedrich®* and
Oliver Niggemann®?

THSU-AI Institute for Artificial Intelligence, Helmut-Schmidt-University, Hamburg, Germany

?Institute of Automation, Helmut-Schmidt-University, Hamburg, Germany

Abstract

In this paper, we address the problem of learning sound and complete action preconditions in complex real-world
planning domains, the remaining bottleneck in the N3PCP pipeline. Such planning domains involve hybrid
state spaces including discrete and numerical variables. We propose a dependency-aware learning approach
that captures interdependencies between discrete and numerical variables by constructing distinct convex hulls
over the numerical subspace for each discrete state configuration. This poses a more accurate representation of
hybrid preconditions in real-world domains than existing approaches for learning preconditions. We empirically
compare our method against two other approaches: an exact baseline method that ensures soundness but lacks
completeness, and a generalized variant of N-SAM, that achieves completeness but compromises soundness. We
evaluate our approach across multiple planning problems and domains which are based on a real-world industrial
system, demonstrating the practical benefits of our approach. An additional theoretical analysis confirms that,
under standard convexity assumptions and sufficient coverage of discrete configurations within the training data,
our proposed dependency-aware method guarantees both completeness and soundness.

Keywords
Planning, N3PCP, SMT, Neural Networks, Action Model Learning

1. Introduction

Automated planning is a key capability for the autonomy of intelligent systems [1]. Planning enables
system to generate plans, which are action-sequences that transition a system from an initial state to
a goal state [1]. In many real-world domains, this involves reasoning over hybrid state spaces that
combine symbolic (discrete) and continuous (numerical) components, e.g., in robotics, autonomous
systems, and industrial manufacturing [2, 3, 4]. In such settings, the complexity of planning lies not
exclusively in the branching factor of the search space, but also in the need to determine valid control
parameters for actions and the difficulty of modeling system behavior mathematically [5].

Traditional planning approaches depend on manually specified domain models, which define action
preconditions, effects, and causal relations. However, constructing such models in complex, dynamic,
and heterogeneous domains is time-consuming and error-prone [6]. This modeling bottleneck signifi-
cantly limits the scalability and adaptability of planning systems in complex real-world domains.

To address this bottleneck, Neural Network—enriched Numerical Planning with Control Parameters
(N3PCP) was recently introduced as a hybrid planning framework that leverages neural networks
to approximate the effects of actions based on empirical data [7, 2]. By learning effect models from
observations or simulations, N3PCP eliminates the need for explicit, hand-crafted transition models.
While early approaches employed eager and exact evaluation strategies [7], later work adopted lazy
evaluation methods that trade off completeness for generality and computational efficiency [4]. However,
both existing methods still rely on manually defined action preconditions, limiting their generality and
automation.

In this paper, we address this remaining bottleneck in the N3PCP pipeline by proposing an approach
for learning action preconditions from data. We focus on domains where only observational data are

CAIPI’25: ECAI Workshop on Al Planning in Complex Real-World Applications, October, 2025, Bologna, Italy
*Corresponding author.

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

https://creativecommons.org/licenses/by/4.0/deed.en

available, i.e., states to which actions have been successfully applied, without access to examples of
invalid plans. This leads to our first research question:

RQ1: Is it possible to learn action preconditions in real-world domains exclusively from observations
of the states in which an action was applied?

To motivate this question, we consider a concrete and challenging application: production planning
in modular manufacturing systems (cf. Figure 1). In particular, we focus on a modular real-world system
that refines automotive glass components via polyurethane foaming. Modular manufacturing systems
require the coordinated execution of production steps, each guided by machine-level control parameters,
to reliably transform raw materials into finished products [8, 7]. The hybrid nature of the task, by
combining symbolic reasoning and numerical parameter identification, makes it a typical real-world use
case for automated planning frameworks like N3PCP [7]. Moreover, rapid reconfiguration is essential
to cope with increasing product variability and reduced batch sizes [9, 10].

In such hybrid domains, two properties are essential: soundness, which ensures that any generated
plan is executable, and completeness, which ensures that all valid plans can be found [11]. These
properties depend not only on the planner but also on the quality of the domain model, i.e., the learned
action preconditions. This raises our second research question:

RQ2: How does precondition learning affect the soundness and completeness of planning algorithms
in N3PCP domains?

To address these questions, we propose a novel approach to learn dependency-aware preconditions
from observational data. We compare this approach with two other approaches to precondition learning.
An exact, memorization baseline, assuring soundness and a variation of the N-SAM [12], aiming for
completeness. We assess the methods two-fold: Empirically, using data from an industrial production
system, and theoretically, via formal analysis of their soundness and completeness.

2. Related Work

Automated planning relies on formal domain descriptions. These description include action models,
which specify the conditions that must be satisfied in a state to make an action applicable to this state,
i.e., the preconditions, and how this action is transforming the state, i.e., the effects. As manually
creating such descriptions is tedious and error-prone [6], multiple approaches proposed learning action
models based on observations from plan executions [13, 12, 14, 15, 16, 6]. Yet, most existing approaches
are restricted to propositional representations and only limited work focus on learning action models
in numerical domains.

PlanMiner [16, 15] infers action models with numeric preconditions and effects from noisy or partial
plan traces by employing a combination of preprocessing, regression, and classification techniques
to learn logical and arithmetic relations among state variables. However, the approach lacks formal
guarantees on soundness: a plan found using the learned model may not be valid in the real world.

Addressing this limitation, N-SAM [12] extends the propositional SAM framework to numeric
domains by learning safe numeric action models, adopting a two-stage learning process. The safe
action models guarantee that generated plans execute as expected, with a total deviation in numeric
effects bounded by at most a threshold € € R. The algorithm first infers propositional preconditions
using techniques for classical planning problems [17]. In detail, to ensure soundness, the propositional
preconditions are conservatively defined, i.e., as the intersection of all observed applicable states, which
guarantees that no invalid plans are produced. Then it defines numeric preconditions by constructing a
convex hull over the numeric values observed in all states where the action was applied and expressing
this hull as a set of linear inequalities. The convex hull defines a conservative approximation of the
region in which the action is known to be applicable. However, learning a convex hull for an action
with d numeric parameters requires at least d + 1 independent samples. Furthermore, the algorithm
requires information about the set of numeric state variables involved in each action’s preconditions
and effects.

N-SAM? [14] enhance the N-SAM algorithm by reducing the sample requirements to one observation

of every action and the requirements of prior knowledge on the involved state variables, while still
maintaining their previous introduced safety guarantee. The authors build a linear combination of using
the Gram-Schmidt process and thereby enabling to learn preconditions from less than d + 1 samples for
an action with d numerical parameters.

Both neural networks and control parameters affect only action effects, not preconditions. Hence,
although N-SAM [12] and N-SAM”* [14] were designed for numeric planning domains, their precondition-
learning methods could, in principle, be adapted to N3PCP problems.

However, these approaches learn models expressed in the Planning Domain Definition Language
(PDDL), which has been shown to lack the expressiveness required for complex real-world applications
such as production planning [18]. Moreover, their methodology treats propositional and numerical vari-
ables independently during precondition learning. As a result, they cannot capture cross-dependencies
between these variable types, e.g., for cases where the feasible numeric state space is further constrained
by specific propositional configurations. Additionally, the conservative strategy for learning the propo-
sitional preconditions leads to a loss of completeness, potentially excluding valid behaviors that were
simply not observed in all instances.

3. Background

All planning approaches to Neural Network-enriched Numerical Planning with Control Parameters
(N3PCP) are grounded in the planning as satisfiability paradigm, specifically by using Satisfiability
Modulo Theories (SMT) as the underlying computational framework.

3.1. Logical Preliminaries

We operate within the setting of many-sorted first-order logic. Terms are either constants, individ-
ual variables, or applications of n-ary function symbols to n terms. Atoms are either propositional
variables or n-ary predicate symbols applied to n terms. Formulae are constructed from atoms using
standard Boolean connectives (-, A, v, —, <>) and quantifiers (v, 3) applied to one or more variables and
a subformula. We follow the standard semantic terminology of interpretation, model, satisfiability, and
validity [19].

In SMT, the interpretation of a given set of symbols is constrained by a given background theory, e.g.,
the theory of nonlinear arithmetic with transcendental functions (NTA). To solve N3PCP problems,
numerical constants, real-valued variables, standard function symbols +, —, x, +, comparison predicates
<, <, >, >, and transcendental functions such as tan are considered [4].

For planning, we employ a symbolic representation of infinite-state transition systems [20]. A
transition system is defined as the tuple (V,I(V), T(V, V")), where:

« Vis a set of state variables;
« I(V) is an SMT formula characterizing the set of initial states (i.e., a state s is initial if s F I);

« T(V,V’) is the transition relation, with V denoting the state before and V” denoting the state after
the transition.

A transition from state s to s” exists if the combined valuation over V u V’ that assigns V according to s
and V’ according to s’ satisfies T, i.e., (s,s’) F T. In this case, s’ is a successor of s, and s a predecessor of
s’. In a transition system I', a trace is a sequence of states sy, sq, ... such hat sy F Iand for all i, s;,; is a
successor of s;. To express properties over such traces, we use Linear Temporal Logic [21]. The model
checking problem I' F ¢ states, that all traces of I satisfy a temporal formula ¢.

Among various verification techniques, we focus on Bounded Model Checking (BMC) [22], which
reduces the reachability problem to satisfiability over a bounded horizon. BMC proceeds by unrolling
the transition relation for k steps. The following SMT formula is constructed:

I(Vo) N T(Vo, Vl) JANTAN T(Vk—l’ Vk) A G(Vk), (1)

where G(V}.) specifies the goal condition. The formula is satisfiable if there exists a trace of k transitions
from the initial state to a state satisfying G. A satisfying assignment to the variables V,, Vi, ..., Vi
represents the corresponding plan.

3.2. Real-World State Spaces

In Al planning with propositional and numeric variables, the state space factors as the Cartesian product
of a propositional valuation space and a numeric assignment space [23]. Let B be the set of propositional
variables and N the set of numeric variables. Define

Val(B) := {a|a:B—>{LT} and Q :=[]i c RN, (2)
iEN
where each I; C R is typically a closed interval. A state is a pair (a, u) with ¢ € Val(B) and u € Q, and

the state space is
S = Val(B) x Q. 3)

If the real-world state space also includes finite discrete variables D = {Dj}c ; with domains D, these
are encoded into the propositional part via a standard injective encoding, obtaining an expanded set
B’ and a bijection Hje yDj x Val(B) = Val(B’). Hence, w.l.o.g., we use Eq. (3) and refer only to the
propositional part.

Definition 1. For u,v € RN, the line segment wv isw := {(1—tu+tv |t € [0,1]}. For states
(a,u), (0, v) € S with the same propositional valuation e, the corresponding segment in Sis{ (a, w) | w € uv}.
If the propositional parts differ, no convex combination is defined in S.

Definition 2. Let S C Val(B) x RN. For a € Val(B), define the numeric fiber F(a) := {u e RN | (a,u) €
S}. We say that S is fiberwise convex if each F() is convex in RY.

In many applications, numeric variables are bounded physical quantities, i.e., u € Q = [[, [with
intervals [, = [¢;,1;]. Each [is convex, and thus Q is an axis-aligned box and convex. Accordingly, we
assume throughout that for every fixed propositional assignment ¢, the feasible numeric fiber F(«)
is convex. This guarantees that for any two feasible numeric states under the same ¢, their linear
interpolations remain feasible.

4. Problem Definition

Following the formalization of [4] the Neural Network-enriched Numerical Planning with Control
Parameters (N3PCP) problem is defined as a tuple:

P=(B,N,A©,T,M,I1G), (4)

where each component contributes to describing hybrid planning tasks that involve both symbolic and
numerical reasoning under parametric control. This formalism is particularly motivated by real-world
applications such as production planning in modular manufacturing systems [8, 7], where tasks involve
discrete process steps and machine-level parameter tuning.

Let B denote the set of propositional (Boolean) state variables and N the set of numerical state
variables. Each state s; € S := Bx N,i € N is characterized by a valuation of the propositional variables
in B and real-valued (or bounded-precision) variables in N. We assume a fixed ordering of s;.

A denotes the finite set of actions, and © the set of control parameters associated with these actions.
Each action models a transition of the system from one state to another, influenced by a specific valuation
of the parameters ©. In the context of production systems, actions represent different production steps
such as cutting, assembling, or coating, while the control parameters correspond to machine-level
settings like feed rate, temperature, or pressure [7, 2].

Each action a € A is specified in one of two ways:

« A symbolic transition function T, € T, represented as an SMT formula T,(s;, ©,s;1) over the
current state s;, the control parameters ©, and the successor state s; ;.

« An executable transition function M, € M, which is a loop-free imperative program that computes
a successor state s;,; given (s;, ©). In practice, this may be implemented by a Neural Network,
trained to approximate physical or empirical system dynamics or a simulation of a particular
production step.

The symbolic representation allows for logical reasoning, constraint satisfaction, and artificial data
generation. The executable form enables forward simulation, including black-box models where
analytical descriptions are infeasible.

The control parameters © are subject to domain constraints. Let ValidCP,(©) denote the admissible
space of control parameter valuations for action a. These constraints may be, for instance, interval
bounds:

Ib<O<ub, VvOeO, (5)

encoding physical or safety limitations, e.g., torque limits and temperature ranges in the context of
production systems, where Ib describes the lower bound and ub the upper bound, b, ub € R.
Additionally, not all actions are applicable in all states. We define the applicability set of an action
ac€Aas:
S = {5 € 5| $u(s) = true} ©)

where ¢, : S — {true, false} is a precondition predicate that determines whether the action a can be
applied in state s. These predicates may be manually specified or learned from empirical execution data,
such as successful and failed application attempts of a across different states.

Moreover, we assume that the symbolic and executable transition functions T, and M, are defined
and valid only on their respective domains of applicability:

dom(T,,), dom(M,) C S;,? x ValidCP,. (7)

This ensures that logical inference and simulation are only performed under feasible conditions.

I denotes the set of initial state conditions, encoded as an SMT formula over B and N, describing
feasible system configurations at the outset of planning. The goal condition G is similarly an SMT
formula over B and N, specifying the desired properties of the final state. Unlike classical planning with
discrete goals, N3PCP problems allow goal descriptions and preconditions of actions over continuous
state variables. These are not expressed as equalities but as a set of inequalities, where the numerical
values have to lay within a certain range, reflecting the properties of real-world domains, e.g., target
dimensions, quality metrics.

5. Solution

In this section, we introduce our novel solution to learn dependency-aware preconditions solely from
observations of the planning domain. We derive our dependency-aware approach from two baseline
approaches, one emphasizing exclusively on soundness of the learned preconditions, and the other
emphasizing on completeness of the learned preconditions. While the first baseline is the most restrictive
and conservative one with the highest possible incompleteness, the second baseline is the most optimistic
approach, aiming for completeness at the cost of soundness. Our proposed dependency-aware approach
is based on reasonable assumptions both, sound and complete.

For all approaches, a set 7 of observed applicable states {s;, ..., s;} for an action a is given. Following
the vector-based state-space representation presented in Heesch et al. [7], we represent the assignments
to all variables in B and N, i.e., the states, in the form of vectors.

5.1. Soundness First: Learning Exact Preconditions

Our first baseline is sound with respect to the training data. Given the observed applicable states
= {s1,...,5;} C Sq, we define the exact precondition as a pure enumeration of those states:

J
ot =\/s ®)
i=1

This DNF exactly accepts the training examples and rejects all others. The corresponding algorithm
is given in Alg. 1.

Algorithm 1 Learn Exact Preconditions

Require: Dataset 7% = {s, s, ..., sj} of states s € S where action a was applied
Ensure: Symbolic precondition ¢g¥act
1: Initialize ¢S¥3t « @

2: for alls; € 7% do

3. Construct clause ¢ « s

4 ¢2xact - ¢§xact v ¢i

5. end for

6

. return @SXact

The algorithm first initializes an empty clause ¢£¥2°t (cf. Alg. 11. 1). Subsequently, the algorithm
iterates through the whole dataset %. For each state s; a clause ¢ is constructed (cf. Alg. 1 L. 2). The
clause ¢; is a conjunction, assigning each variable in B and N the corresponding value of s; (cf. Alg. 11.
3). This clause is then added to the clause ¢£*! via a disjunction (cf. Alg. 11. 4). At the end, the clause
$¥2¢t is returned (cf. Alg. 11. 6).

As Alg. 1 may be reasonable in propositional domains, it becomes problematic in continuous or
hybrid domains. In such domains, this method is unlikely to provide a complete representation, as it
only enumerates the observed states from the data set. It cannot cover the infinite space of possible
continuous values. As a result, ¢¢¥3t is sound, but its completeness due to possible unseen but valid

states is limited to the dataset and propositional domains.

5.2. Completeness First: Generalized Preconditions

Our second baseline approximates the preconditions by generalizing from observed data emphasizing
rather on completeness than soundness. This involves inferring broader parts of the state space from
sampled data,

e.g., intervals or convex regions, over the numerical variables N. This relaxation may come at the

expense of soundness, when the space of applicable states is not convex, e.g., some states which satisfy

general . . .
a may not allow action a in practice.

Let n;. € Nbe a continuous state variable. If the action a was applied in states sy and s; where all other
variables are equal and only x;. differs, and if a was successfully executed in both cases, we assume a is
applicable to any state s satisfying:

Xy € x,io x,i1 9)

where x;. denotes an assignment to n; in state s.

Building on this idea and inspired by Mordoch et al. [12], we separate propositional and numerical
variables when learning preconditions. For the numerical variables, we calculate the convex hull of the
numerical components of the states in the data set 7% of successful executions of a. The linear inequalities
of the hull’s supporting hyperplanes then define the numerical precondition. Unlike Mordoch et al.
[12], our method does not require prior manual identification of action-relevant numeric variables. For
propositional variables, we use a straightforward disjunctive strategy to increase completeness: we

collect the distinct propositional assignments under which a was observed, and take their disjunction
as the propositional precondition.

Algorithm 2 Learn Generalized Preconditions

Require: Dataset 7% = {s, sy, ..., 5;} of states where action a was applied; index sets .¥ P for proposi-

tional variables, ¥ @y for numerical variables

. o 1
Ensure: Symbolic precondition ¢§enera

. Initialize &g « @

2: Initialize matrix V « []
3: for all s € 7% do
4: Extract propositional subvector sg « s[.¥ Zg]|
5: if sg ¢ Og then
6

7

8

9

—_

dp « Qpu{sp}
end if
Append s[.FDy] to V
: end for

10: Construct ¢¢(1B) < Vsyea, SB
11: Compute convex hull H < ConvexHull(V)
12: Derive set of linear inequalities ng‘(;N) from hull faces
general (B) (N)
a <~ @Pa NQa

eneral
14: return ¢§

The algorithm begins by initializing two data structures: an empty set ®g to collect all unique
propositional configurations observed in the dataset 7% (cf. Alg. 2,1. 1), and an empty matrix V to store
the numerical components of the corresponding states (cf. Alg. 2, 1. 2).

For each state s € 7%, the propositional subvector sg is extracted (cf. Alg. 2, 1. 4). If this configuration
has not yet been encountered, it is added to ®g (cf. Alg. 2, 1. 5-7). Simultaneously, the numerical
subvector is appended to the matrix V for subsequent processing (cf. Alg. 2, L. 8).

Once all states have been processed, the propositional precondition d)c(lB) is constructed as a disjunction
over the elements of ®g (cf. Alg. 2, 1. 10):

= \/ s (10)

SBECI)B

ensuring that the resulting precondition evaluates to true precisely for the propositional configurations
under which the action has been previously observed. This avoids the overly conservative strategy of
assuming propositional variables must be fixed across all samples, as in [12].

Subsequently, a convex hull His computed over the matrix V containing the numerical state compo-
nents (cf. Alg. 2,1. 11). The set of defining linear inequalities for H is then extracted and used to define

the numerical precondition ¢L(1N) (cf. Alg. 2, L. 12). The final action precondition gbfeneral is returned as
the conjunction of its propositional and numerical components (cf. Alg. 2, 1. 13-14).

Using a convex hull to describe the numerical component reduces incompleteness by generalizing
over observed numeric values, while maintaining soundness under the assumption that preconditions
are independent of unobserved propositional contexts. However, this assumption introduces a potential
loss of soundness when the propositional and numerical components are not independent. Specifically,
by applying a single convex hull over all numerical data points, not accounting for the associated
propositional configurations, the approach cannot capture cross-dependencies, such as when certain

propositional conditions constrain the feasible numeric subspace. Consequently, the combined precon-

dition ¢§eneral = ¢§B) A gng) may admit states that were never observed together in the data, potentially

leading to plans with action that could not be applied.

5.3. Dependency-Aware Preconditions

To address the drawbacks our two baselines, we introduce our novel dependency-aware precondition
formulation. Instead of treating propositional and continuous constraints independently, we model the
precondition as a conditional structure. Let sg and sy denote the propositional and numeric subvectors
of the state s, respectively. Let &g C dom(sg) be the set of observed propositional configurations (from
states where action a was applied). For each sg € ®p, we fit a convex region qﬁgj)
components observed under configuration sg.

Formally, the dependency-aware precondition for action a is defined as:

gepend _ \/ (s A géV)) (11)

(b =T, N———
sp€Pp propositional pumeric

over the numeric

The numeric condition d)gv) is defined by the set of linear inequalities (i.e., halfspaces) that describe
the convex hull over all numeric vectors observed in states with the propositional configuration sg.

Algorithm 3 Dependency-Aware Preconditions

Require: Dataset 7 of states s where action a was applied; propositional indices .¥ g, numeric indices
I DN
. . d d
Ensure: Symbolic precondition ¢aepen

Initialize goP™

1: @

2: Initialize map groups : sg — List of numeric vectors
3. for all s € 7% do

4: S < S[j@B]

5: n <« S[j@N]

6: Append n to groups|sg]

7: end for

8: Initialize list clauses « []

9: for all sg € keys(groups) do
10: V< groups|sg]

11: H « ConvexHull(V)

12 gbg\]) « GetHalfspacelnequalities(H)
13 ¢§BB) SB

14: Append (¢§f) A gf)) to clauses
15: end for

16: return ¢2epend <~ \/cealausesc

The algorithm begins by partitioning the dataset 7% into groups of states that exhibit identical
propositional configurations (cf. Alg. 3, 1.2-7). For each such group, a convex hull is computed over
the continuous components of the state vectors (cf. Alg.3,1.10-11), and the corresponding set of linear
inequalities ¢s(é\]) is derived (cf. Alg.3, l. 12). These inequalities define the feasible numeric region
associated with propositional configuration sg.

The propositional part ¢s(£) is constructed as a conjunction of variable assignments that match
configuration b (cf. Alg. 3,1.13). The two components are then conjoined into a single clause that is

added, and added to 2epend as a disjunction (cf. Alg.3, 1. 14-16).

By explicitly associating each propositional configuration with a corresponding region in the numeric
state space, this approach avoids the need for conservative treatment of propositional variables of
other approaches [17, 12]. As a result, it mitigates the incompleteness typically introduced by requiring
propositional preconditions to hold uniformly across all observed states. Simultaneously, under the
assumption that the numeric values observed under each configuration form a convex region, the

approach preserves soundness, ensuring that plans generated using the learned model remain executable
in the real domain.

We recognize several limitations of this method. Most notably, constructing convex hulls requires a
sufficient number of observed state samples for each propositional configuration in which the action
was applied. Furthermore, the complexity of the resulting preconditions can increase the computa-
tional complexity, both during model learning and at planning time, where more detailed applicability
conditions must be evaluated.

Nonetheless, in domains where complexity arises from the of actions rather than the number of
objects, e.g., production planning [8], capturing these dependencies is critical for deriving both sound
and complete action models. Importantly, we assume that precondition learning is performed entirely
offline, prior to planning. This design choice alleviates concerns about runtime overhead, making it
feasible to deploy expressive, dependency-aware preconditions in practical planning systems without
compromising online efficiency.

6. Evaluation

Our evaluation is twofold. To address the first research question, we analyze the performance of our
proposed approache empirically. To address the second research question, we perform a theoretical
analysis of the presented methods in terms of soundness and completeness.

6.1. Empirical Evaluation

To investigate whether data-driven methods can effectively infer action preconditions based solely on
observations of states in which the action was executed (RQ1), we focus on a representative action
from an industrial production system. Thereby, we do not only focus on learning preconditions, but
also the subsequent planning task, to account for the increasing complexity of the planning problem by
learning complex precondition structures as in the generalized and the dependency-aware approach.

As evaluation metric, we chose the algorithmic runtime. Specifically, we included both, the learning
of the action preconditions and the planning with these learned preconditions in the recording of
runtime. Soundness and completeness are proven theoretically in Section 6.2.

6.1.1. Experimental Setup

We evaluated the algorithms on a real-world production system (cf. Figure 1). The production system
refines automotive glass components using polyurethane foaming. In the foaming cell, a robot positions
mechanical inserts onto a pretreated glass pane fixed in a foaming mold. This insert placement is a
critical step before the polyurethane injection and must satisfy strict constraints related to temperature
and configuration to ensure both product integrity and functional reliability.

Our evaluation centers on the robot’s action model. An expert-defined model exists for each phase
of the process, including an action for placing the inserts. Our objective is to infer the preconditions of
this specific action exclusively from 1000 observations of states where the action was applied. These
observations were generated by randomly sampling state transitions from the expert model. In the
minimal complexity level, the states are described by fifteen state variables: thirteen propositional
and two numerical variables'. To assess the scalability, we introduced up to four additional numerical
state variables, incrementally adding additional preconditions to the planning domain, resulting in five
increasingly complex planning problems and domains. Following the experimental design guidelines
for Machine Learning research by [24], we generated the data for each level of domain complexity with
eight different seeds. For avoiding random effects, we repeated each experiment ten times. The source

"We removed the control parameters and the neural network which is usually representing the actions’ effect in N3PCP
problems to reduce the complexity of the planning problems. Including these components would significantly increase
computational complexity, and thereby obscure a meaningful comparison of the approaches to learn preconditions.

Figure 1: We perform our empirical evaluation on a planning domain of an automated production system for
the refinement of automotive glass components using polyurethane foaming.

code and the action-model modeled by experts are available at https://github.com/RHeesch/Learning_
Hybrid_Preconditions.

We ran our experiments on a system with an AMD Ryzen 9 9950X 16-core processor and 96 GB RAM.
The planning problems, including the learned preconditions, were encoded in the Unified Planning
Framework (UPF)[25] and solved using the LPG planner [26]. We evaluated the resulting plans, which
were generated based on the learned preconditions, against the expert-defined domain model using the
UPF and the TAMER planner [27].

6.1.2. Results

Table 1 summarizes the runtimes for learning action preconditions. We report mean and standard
deviation of the runtime for each algorithm across the increasing domain complexities. Regarding
precondition learning (cf. Table 1), all approaches exhibited similar runtimes in the domain with two
numerical state variables. The exact method showed only modest increases as domain complexity grew,
whereas the generalized and dependency-aware variants scaled exponentially, likely due to the overhead
of constructing convex hulls and deriving the corresponding systems of linear inequalities.

Table 1
Mean runtime and standard deviation in seconds for learning action preconditions of the proposed algorithms
across increasingly complex planning domains. Format: Runtime [s] + Standard Deviation [s]

Prop. Variables ‘ Num. Variables ‘ Exact ‘ Generalized ‘ Dep-aware

13 2 0.023 £+ 0.0006 | 0.023 £+ 0.0004 | 0.023 + 0.0004
13 3 0.023 £+ 0.0003 | 0.024 £+ 0.0003 | 0.025 + 0.0003
13 4 0.024 £ 0.0002 | 0.027 £+ 0.0004 | 0.032 &+ 0.0003
13 5 0.025 £+ 0.0003 | 0.052 + 0.0012 | 0.064 + 0.0008
13 6 0.026 £+ 0.0003 | 0.257 &+ 0.0084 | 0.203 + 0.0049

Table 2 reports the mean planning times and standard deviation. All plans are valid with respect
to expert-modeled domain description. Planning runtimes increased exponentially with domain com-
plexity across all approaches. For the 15-variable domain, planning was initially much faster using
the generalized and dependency-aware preconditions compared to the exact preconditions. However,
as complexity increased, planning times for both variants soon exceeded those of the exact method,
with the generalized approach exhibiting the highest planning times in the most complex domain.
The dependency-aware variant initially performed less favorably than the generalized one, but at last
surpassed it in the two most complex domains.

https://github.com/RHeesch/Learning_Hybrid_Preconditions
https://github.com/RHeesch/Learning_Hybrid_Preconditions

Table 2

Mean runtime and standard deviation in seconds for solving planning problems using the proposed algorithms
for learning preconditions across increasingly complex planning domains. Format: Runtime [s] + Standard

Deviation [s].

Prop. Variables | Num. Variables Exact Generalized Dep-aware
13 2 0.29 + 0.0380 0.03 + 0.0014 0.04 + 0.0019
13 3 0.55 + 0.3705 0.07 + 0.0044 0.28 +0.1768
13 4 0.81 £ 1.0654 0.97 + 1.2460 2.33 £ 1.5783
13 5 0.96 + 1.2912 19.06 + 3.0970 12.30 + 3.1482
13 6 1.74 £ 5.0838 | 535.38 + 44.7695 | 48.19 + 7.0255

6.2. Theoretical Evaluation

For evaluating the soundness and completeness of the different approaches, we consider a hybrid state
space S = B x N, where B denotes the propositional component and N the continuous (numeric) compo-
nent. For any action g, we define its true applicability region as S, = {s € S | a is truly applicable in s}.
We assume access to a finite training set 7% = {s, ..., sj} C S, representing observed states where action
a was applicable.

The learned preconditions are sound, if the planning algorithm can find a plan that is executable in
the real world, based on learned preconditions. The learned preconditions are complete, if the planning
algorithm can find every single plan, that is an executable plan in the real world, based on the learned
preconditions [11].

Exact Preconditions:
Theorem 1. The exact preconditions are sound, i.e., for all s € S, with ¢t holds s € S,,.

Proof 1. Let S, be the complete set of applicable states for action a. For the training set t* C S, holds and
Vs € ¢S¥at : s € 19, Thus, Vs € ¢St : s€ S,.

Since the exact preconditions only allow the action to be applied to states to which the action was
previously applied, the learned exact preconditions are sound by construction.

Theorem 2. The exact preconditions are complete with respect to the training set t%.

Proof 2. Proof by contradiction: We assume s* € t@ exists with a is applicable for s*, where s* ¢ $&¥3°t,
but by definition it holds Vs € % : s € $EXa°t,

Exact preconditions are complete only if the training set 7¢ fully enumerates S,. However, in general,
when S, is continuous or infinite, this condition is not met, making exact preconditions incomplete in
practical scenarios.

Generalized Preconditions:

general

Theorem 3. In general, the generalized preconditions are not sound, i.e., 3s* € ¢g sT ¢S,

Proof 3. Proof by contradiction: Let S, := {s;,s,} with s; = [true, false, 10],s, = [true, true, 15]. We

assume ¢ = {s{, sp}. Creating ¢§eneral from % gives the set ¢§enera1 = {[true, b, z] | b € {true, false},z €
[10,15]}. Let s3 = [true, false, 15], then s3 € ¢general’ buts; ¢ S,. So3s™ € ¢§eneral 15" ¢S,

The generalized preconditions are not, in general, sound. In particular, generalization within the numer-
ical space across all propositional configurations may introduce additional states into the precondition
set that do not lie within the true applicability region of the action.

. L. . 1
Theorem 4. In general, the generalized preconditions are not complete, i.e, 3s* €S, : s* ¢ ¢§enera .

Proof 4. Proof by contradiction: Let S, := {s1, sy, 3} with s; = [true, false|,s, = [true, true] and s3 =

. 1 . al
[false, true]. We assume t* = {s{,s,}. Creating ¢§enera from ¢ gives the set ¢§ener = {s1,s2}. Then

general

1
$3 € fu Jbuts; €S, Sods€S, :sEPE

The generalized preconditions are not generally complete, as propositional configurations that fall
within the true applicability region may be absent from the training data and, consequently, excluded
from the learned preconditions.

Theorem 5. If there is only one single propositional configuration s(B) within S, and the numerical state
space represented in T%(N) C S;(N) and S,(N) is convex, then the generalized preconditions are sound.

Proof 5. LetVs™ € S, : s"(B) = s(B), then ¥s* € % : s*(B) = s(B) and therefore Vs* € ¢§eneral : s°(B) =
s(B). By assumption, S,(N) is convex and ¥s(N) € 7%(N) : s(N) € S;(N), so H(N) := Conv(r%(N)) C

general

S,(N). ThenVs;(N) € H(N) : s;(N) € S(N). Therefore, Vs € ¢ i SES,

Theorem 6. If there is only one single propositional configuration s(B) within S, and the numerical state
space represented in T%(N) is the convex hull of S,(N), then the generalized preconditions are complete.

Proof 6. LetVs* € S, : s"(B) = s(B), thenVs* € t* : s*(B) = s(B) and therefore Vs* € ¢§eneral : s°(B) =
s(B). By assumption, S,(N) is convex and represented by t*(N), so H(N) := Conv(z*(N)) = S,(N). Then
Vs*(N) € S,(N) : s*(N) € Conv(t%(N)). Therefore,¥s€ S, : s € ¢§eneral.

This generalization admits all convex combinations of observed numeric values. Assuming that the
true numeric applicability region is globally convex, the generalized preconditions are both sound and
complete. However, in non-convex domains, particularly where different propositional configurations
admit distinct convex regions, soundness may be violated.

Dependency-Aware Preconditions:

Theorem 7. The dependency-aware preconditions are also sound for non-globally convex hulls, where
different propositional configurations s(B) € Con f(B) allow for different convex hulls Hy g, when Vs(B) €
@+ Conv(z,gp)) C Sus(B)-

Proof 7. By definition Vs(B) € t* : Conv(r, yp)) C Sqsp). Therefore, for each fixed s(B) € 7 it holds
Theorem 5.

Theorem 8. The dependency-aware preconditions are complete for non-globally convex hulls, where
different propositional configurations s(B) € Conf(B) allow for different convex hulls Hyg), when the
dataset t* represents these hulls.

Proof 8. For each fixed s(B) € t* by assumption, S, g)(N) is convex and ¥s(B) € % : Conv(z, 45)(N)) =
Sa,s(B)(N). Therefore, for each fixed s(B) € t* it holds Theorem 6.

By exploiting the structure of propositional configurations to construct independent convex approx-
imations of applicability regions, the dependency-aware preconditions also achieve soundness and
completeness under only localized convexity assumptions.

7. Discussion

The empirical and theoretical evaluations offer complementary insights for answering our two posed
research questions.

The experimental results show that it is possible to learn action preconditions in a real-world domain
exclusively from observational data in which the action has previously been successfully applied.
All methods supported both learning and subsequent planning based on the learned preconditions,
confirming the efficiency of data-driven precondition learning in hybrid domains without expert input
(cf. RQ1). Nevertheless, there were clear differences between the three approaches in terms of runtime
performance and scalability (cf. Table 1).

Interestingly, for smaller domains, the generalized approach exhibited slower runtime growth than
the dependency-aware variant. Yet, in the most complex domain, the dependency-aware method out-
performed the generalized one in terms of runtime. This suggests that the overhead introduced by
dependency modeling may become advantageous in higher-complexity settings.

The results regarding the planning runtimes (cf. Table 2) reflect a core limitation of convex hull-based
representations: as numerical preconditions are encoded via systems of linear inequalities derived from
hulls, computational demands grow with state space complexity. This can be mitigated by incorporating
domain knowledge, e.g., by constraining the set of considered variables during learning, as proposed by
[12]. In addition, preconditions can be represented more efficiently by bounded intervals in areas with
axis- or box-shaped spaces, as it is often the case in most real-world applications.

It is also notable that planning runtimes exhibited high standard deviation, indicating sensitivity to
the random seed. This variation is likely due to differences in the distribution of numerical variables,
which can influences the structure of the state space.

Two key requirements must be considered when learning action models from data for planning in
complex real-world domains: soundness and completeness. To learn preconditions fulfilling both of
these requirements, especially in continuous or high-dimensional numerical domains, where it is not
possible for training data to completely cover all valid states, is challenging.

The exact approach guarantees soundness by declaring an action applicable only in states that were
explicitly observed during training. However, the approach does not account for the mentioned problem
of missing data for every single state within the numerical state space and is therefore not complete.

By contrast, the generalized approach is complete under the assumptions that (i) the dataset includes
all valid propositional configurations, (ii) the numerical state space can be approximated by a convex
hull, and (iii) boundary states are represented in the dataset. Nonetheless, this method risks overgener-
alization in both the propositional and numerical dimensions. In the propositional space, the method
does not restrict preconditions to propositions true in all observed states, compromising soundness.
In the numerical space, even if the outer shape is convex, the internal structure may contain holes or
disallowed subregions, e.g., if certain configurations of the propositional state space only allow for
a certain subspace of the numerical state space. Consequently, the generalized approach does not
guarantee soundness in either component, which is confirmed by experimental observations where
plans were generated that are invalid with respect to the expert-modeled domain.

Our novel dependency-aware approach maintains the completeness of the generalized approach
under the same assumptions but addresses its key shortcomings by modeling dependencies among
propositional variables and possibly resulting constraints in the numerical space. It also guarantees
soundness under the reasonable assumption that, for each propositional configuration, the corresponding
set of applicable numerical states forms a convex region.

Accordingly, the dependency-aware method ensures both soundness and completeness of planning in
N3PCP domains, provided that the conditions (i)-(iii) are satisfied (cf. RQ2).

8. Conclusion

In this paper, we addressed the challenge of learning action preconditions in complex real-world domains
characterized by hybrid, i.e., discrete and continuous, state spaces, using only observational data from
states in which the actions were executed. We introduced a novel dependency-aware approach that
constructs separate convex hulls in the numerical subspace for each discrete state configuration, thereby
explicitly modeling the dependencies between discrete and continuous components of the state space. In
contrast to methods determining the discrete preconditions based on conservative learning paradigms
to ensure soundness, the proposed approach guarantees completeness with respect to the discrete state
configurations within the training data. Moreover, by capturing structural dependencies between the
discrete and continuous components, the approach also guarantees soundness, under the assumption
that the valid numerical states associated with each discrete configuration form a convex region.

Future work will focus on addressing the computational challenges introduced by the convex-hull
representations, which significantly impact planner performance in large-scale domains. We also plan
to conduct a broader empirical evaluation across diverse real-world domains and integrate the learned
models into planning systems capable of handling N3PCP problems.

Acknowledgments

This research as part of the projects EKI and Laila is funded by dtec.bw — Digitalization and Technology
Research Center of the Bundeswehr, which we gratefully acknowledge. dtec.bw is funded by the
European Union - NextGenerationEU.

Declaration on Generative Al

During the preparation of this work, the authors used ChatGPT in order to: Grammar and spelling
check, Paraphrase and reword. After using this tool/service, the author reviewed and edited the content
as needed and take full responsibility for the publication’s content.

References

[1] M. Ghallab, D. Nau, P. Traverso, Automated Planning and Acting, Cambridge University Press,
2016.

(2] J. Ehrhardt, R. Heesch, O. Niggemann, Learning process steps as dynamical systems for a sub-
symbolic approach of process planning in cyber-physical production systems, in: Artificial
Intelligence. ECAI 2023 International Workshops, Springer Nature Switzerland, Cham, 2024, pp.
332-345.

[3] M. Hausknecht, P. Stone, Deep reinforcement learning in parameterized action space, 2016. doi:10.
48550/ARXIV.1511.04143.

[4] R.Heesch, A. Cimatti, J. Ehrhardt, A. Diedrich, O. Niggemann, A lazy approach to neural numerical
planning with control parameters, in: Frontiers in Artificial Intelligence and Applications, volume
Volume 392: ECAI 2024, 2024. doi:10.3233/FATA241000.

[5] E. Savas, M. Fox, D. Long, D. Magazzeni, Planning using actions with control parameters, in:
Proceedings of the Twenty-second European Conference on Artificial Intelligence, 2016, pp.
1185-1193.

[6] M. Grand, D. Pellier, H. Fiorino, TempAMLSI: Temporal action model learning based on STRIPS
translation, Proceedings of the International Conference on Automated Planning and Scheduling
32 (2022) 597-605.

[7] R.Heesch, J. Ehrhardt, O. Niggemann, Integrating machine learning into an SMT-based planning
approach for production planning inc yber-physical production systems, in: Artificial Intelligence.
ECALI 2023 International Workshops, Springer Nature Switzerland, Cham, 2024, pp. 318-331.

http://dx.doi.org/10.48550/ARXIV.1511.04143
http://dx.doi.org/10.48550/ARXIV.1511.04143
http://dx.doi.org/10.3233/FAIA241000

(8]

(9]

[10]

[11]

[12]

[13]

[14]

A. Kocher, R. Heesch, N. Widulle, A. Nordhausen, J. Putzke, A. Windmann, O. Niggemann,
A research agenda for ai planning in the field of flexible production systems, 2022 IEEE 5th
International Conference on Industrial Cyber-Physical Systems (ICPS) (2022) 1-8.

E. Jarvenpaa, N. Siltala, M. Lanz, Formal resource and capability descriptions supporting rapid
reconfiguration of assembly systems, in: 2016 IEEE International Symposium on Assembly and
Manufacturing (ISAM), IEEE, 2016. doi:10.1109/isam.2016.7750724.

H. Kagermann, J. Helbig, A. Hellinger, W. Wahlster, Recommendations for implementing the
strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final
report of the Industrie 4.0 Working Group, Forschungsunion, 2013.

S.J. Russell, P. Norvig, Artificial intelligence: a modern approach, Pearson, 2016.

A. Mordoch, B. Juba, R. Stern, Learning safe numeric action models, in: Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, 2023, pp. 12079-12086.

D. Aineto, E. Scala, Action Model Learning with Guarantees, in: Proceedings of the 21st Interna-
tional Conference on Principles of Knowledge Representation and Reasoning, 2024, pp. 801-811.
doi:10.24963/kr.2024/75.

A. Mordoch, E. Scala, R. Stern, B. Juba, Safe learning of pddl domains with conditional effects, in:
Proceedings of the International Conference on Automated Planning and Scheduling, volume 34,
2024, pp. 387-395.

[15] J. A. Segura-Muros, R. Pérez, J. Fernandez-Olivares, Discovering relational and numerical expres-

sions from plan traces for learning action models, Applied Intelligence 51 (2021) 7973-7989.

[16] J. A. Segura-Muros, J. Fernandez-Olivares, R. Pérez, Learning numerical action models from noisy

[17]

[18]

[25]

input data, arXiv preprint arXiv:2111.04997 (2021).

B. Juba, H. S. Le, R. Stern, Safe learning of lifted action models, in: Proceedings of the International
Conference on Principles of Knowledge Representation and Reasoning, volume 18, 2021, pp.
379-389.

A. Bunte, P. Wunderlich, N. Moriz, P. Li, A. Mankowski, A. Rogalla, O. Niggemann, Why symbolic
ai is a key technology for self-adaption in the context of cpps, in: 2019 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, 2019, pp. 1701-1704.
D. van Dalen, Logic and structure (3. ed.), Universitext, Springer, 1994.

A. Cimatti, A. Griggio, S. Mover, M. Roveri, S. Tonetta, Verification modulo theories, Formal
Methods Syst. Des. 60 (2022) 452-481.

Z. Manna, A. Pnueli, The modal logic of programs, in: ICALP, volume 71 of Lecture Notes in
Computer Science, Springer, 1979, pp. 385-4009.

A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, Bounded model checking, Adv. Comput.
58 (2003) 117-148.

M. Helmert, Decidability and undecidability results for planning with numerical state variables.,
in: AIPS, 2002, pp. 44-53.

D. Vranjes,]. Ehrhardt, R. Heesch, L. Moddemann, H. S. Steude, O. Niggemann, Design principles for
falsifiable, replicable and reproducible empirical machine learning research, in: 35th International
Conference on Principles of Diagnosis and Resilient Systems (DX 2024), Schloss Dagstuhl-Leibniz-
Zentrum fur Informatik, 2024, pp. 7-1.

A. Micheli, A. Bit-Monnot, G. Roger, E. Scala, A. Valentini, L. Framba, A. Rovetta, A. Trapasso,
L. Bonassi, A. E. Gerevini, L. Iocchi, F. Ingrand, U. Kéckemann, F. Patrizi, A. Saetti, I. Serina,
S. Stock, Unified planning: Modeling, manipulating and solving ai planning problems in python,
SoftwareX 29 (2025) 102012. doi:https://doi.org/10.1016/j.softx.2024.102012.

A. Gerevini, A. Saetti, I. Serina, An empirical analysis of some heuristic features for planning
through local search and action graphs, Fundam. Inform. 107 (2011) 167-197. doi:10.3233/
FI-2011-399.

A. Valentini, A. Micheli, A. Cimatti, Temporal planning with intermediate conditions and effects,
in: Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, 2020, pp. 9975-9982.

http://dx.doi.org/10.1109/isam.2016.7750724
http://dx.doi.org/10.24963/kr.2024/75
http://dx.doi.org/https://doi.org/10.1016/j.softx.2024.102012
http://dx.doi.org/10.3233/FI-2011-399
http://dx.doi.org/10.3233/FI-2011-399

	1 Introduction
	2 Related Work
	3 Background
	3.1 Logical Preliminaries
	3.2 Real-World State Spaces

	4 Problem Definition
	5 Solution
	5.1 Soundness First: Learning Exact Preconditions
	5.2 Completeness First: Generalized Preconditions
	5.3 Dependency-Aware Preconditions

	6 Evaluation
	6.1 Empirical Evaluation
	6.1.1 Experimental Setup
	6.1.2 Results

	6.2 Theoretical Evaluation

	7 Discussion
	8 Conclusion

