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Abstract
Sustainable manufacturing requires energy-efficient scheduling, especially in metalworking, where machines like
bandsaws consume significant power. Based on a real-world use case from an Austrian steel-cutting company,
we extend the Energy-Aware Double-Flexible Job-Shop Scheduling Problem (E-DFJSP)—which already comprises
machine and worker flexibility—with machine modes, as well as setup and transport operations. To tackle this
problem, we propose a Constraint Programming (CP) model, implemented using the state-of-the-art IBM CP
Optimizer (CPO), to minimize job tardiness, energy consumption, and makespan.

We evaluate our approach on two datasets representing present and future production scenarios, each with
up to 500 jobs. While CPO fails to find feasible solutions for several large instances in the less flexible scenario,
it successfully solves all instances in the more flexible one, indicating that higher resource flexibility improves
search performance. In terms of solution quality, CPO demonstrates stronger scalability in makespan than in
tardiness minimization, with the addition of machines and workers further reducing the optimal makespan and
easing problem-solving. Finally, we identified a bug in CPO affecting staticLex (fixed-priority multi-objective
minimization) when combined with tolerance-based early stopping; to avoid it, we optimized each goal separately.
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1. Introduction

With growing global awareness of sustainability and environmental concerns, energy minimization has
emerged as a critical objective across various sectors [1]. Metalworking operations, including sawing,
grinding, and milling, are known for their significant energy consumption [2]. For example, a typical
sawing machine requires 8.4 MWh per year, and a large metalworking facility may house 2500 machines,
which, combined, would consume around 21 GWh per year, a value in the same order as 4,750 average
Austrian households per year. In this work, we consider bandsaws, whose operations are determined
by two key parameters—machine mode: feed rate 𝑉𝑓 and blade speed 𝑉𝑐. Both parameters influence
operation time, energy use, tool wear, and product quality. Selecting optimal parameters is complex,
and most industries still use fixed values from lookup tables based on materials and dimensions [3, 4].
This leaves significant optimization potential, as the choice of a machine mode can affect the solution
quality: slower modes may cause delays, while faster modes may increase energy cost and tool wear.

To address this trade-off, we formulate and solve a scheduling problem, based on a real-world scenario
emerging from the Austrian metal-cutting industry, with the goals of minimizing job tardiness, energy
consumption, and overall makespan. We assume that, for each operation, multiple machines may
be eligible, and for each machine, various alternative machine modes are available, each having a
corresponding duration and consumed energy. In addition, since metal pieces must be manually loaded
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(unloaded) by workers on (from) the machines, we account for the availability of the workers as well.
This is a challenging task since the Job-Shop Scheduling Problem (JSP) is per se an NP-hard problem
[5], on top of which we incorporate the choice of the machine, of the machine mode, and of the worker
in order to minimize the mentioned objectives. As detailed in Sec. 2, and to the best of the authors’
knowledge, no work has yet undertaken the Energy-Aware Double-Flexible Job-Shop Scheduling
Problem (E-DFJSP) [6] when extended with either machine modes, setup operations, or transport
operations. Hence, this work is a first step towards closing a gap in the research literature concerning
the integrated consideration of time and resource efficiency in a flexible production scheduling context.

The common methods used to tackle scheduling problems are Mixed Integer Programming (MIP),
Answer Set Programming (ASP), and Constraint Programming (CP). Recent studies, e.g., [7], have
shown that the MIP approach faces scalability issues when applied to scheduling problems. Other
works, such as [8, 9], relied on clingo-DL [10], an extension of ASP, to solve large-scale scheduling
problems. Yet, despite its effectiveness, ASP is designed for discrete problems, while in many scheduling
applications, some variables and goals, such as the energy consumption, are intrinsically real numbers.

Therefore, we propose a novel CP model to solve the E-DFJSP problem. We employ IBM CP Optimizer
(CPO) [11] as a solver, since CPO is one of the most popular state-of-the-art CP-based tools for modeling
and solving scheduling problems [12, 13, 14, 15, 16, 17]. To evaluate the model, we introduce two
datasets that reflect the structure of the E-DFJSP for two different use cases within the steel-cutting
context of our industrial partner. Each dataset comprises between 50 and 500 jobs. The upper bound is
used to assess the scalability of our approach and is more than twice the number of cutting jobs required
in the actual use case. In the Present use case dataset 𝑃 , workers are preassigned to machines and jobs.
In contrast, the Future use case 𝐹 represents a prospectively planned, more general production scenario
where these restrictions are relaxed, giving rise to a general E-DFJSP problem.

As this study introduces a novel problem, there are currently no established state-of-the-art methods
available for direct comparison. The model is evaluated by comparing its performance on both datasets
within a timeout of 10 minutes under two different tolerance levels, 0% and 10%, representing relative
deviations from the global minimum that are still considered optimal. Our most significant finding is
that a valid schedule is always obtained for dataset 𝐹 . Moreover, in more than half of the runs on 𝐹 ,
tardiness is optimized, and in some cases, energy is as well. By contrast, although dataset 𝑃 is a special
case of 𝐹 with lower flexibility, CPO does not always find a solution for its instances, particularly for the
500-job cases. Nevertheless, in most of the 50-job instances of 𝑃 , at least one goal is optimized. Finally,
while makespan is rarely fully optimized in either dataset, its values remain consistently reasonable.

The remainder of the paper is organized as follows. A literature review is presented in Sec. 2, the
basics of JSP are given in Sec. 3, the industrial use case is described in Sec. 4, and the CP model is
proposed in Sec. 5. Our evaluation is illustrated in Sec. 6: the datasets are described in Sec. 6.1, the
experiments’ design is given in Sec. 6.2, and the results are discussed in Sec. 6.3. Finally, Sec. 7 concludes.

2. Literature Review

Flexible Job Shop Scheduling (FJSP) has been widely studied over the past 50 years [18]. In recent
years, multiple works have tackled the Energy-Aware FJSP (e.g., [19, 20]), mostly by relying on inexact
methods, and in particular on genetic algorithms (GA), as they proved to be effective in many domains.
The following works share the same objectives—the energy consumption and the makespan—and are
single-resource, i.e., each operation requires only one resource, such as a machine, a crane, etc. In [21], a
genetic algorithm and a CP encoding were proposed for addressing a JSP problem, i.e., not-flexible, but
with controllable machine modes. [19] introduced a genetic algorithm to solve the FJSP with multiple
machine modes, with the additional goal of minimizing the noise emission caused by milling and
drilling machines. [20] proposed a hybrid method for solving an FJSP with transportation constraints,
by including machines and cranes flexibility. [22] suggested a hybrid method for tackling a FJSP with
setup and transport operations, where the means of transport were autonomous vehicles. [23] proposed
a metaheuristic algorithm for solving an FJSP with transport time and sequence-dependent setup times,



but without an explicit means of transport. Using a cooperative evolutionary algorithm, [24] tackled
an FJSP with machines, cranes, and sequence-dependent setup times. Two studies considered the
Energy-Aware Multi-Resource FJSP. In [6], the E-DFJSP was solved, as both workers and machines were
included, and a hybrid algorithm was employed to minimize makespan, the maximum total labor cost,
and multiple green objectives. Similarly, [25] discussed a Multi-Resource FJSP with both machines and
workers. Yet, neither of them considered transport or setup operations, or machine modes.

In recent years, some works based on Constraint Programming (CP) have emerged. Notably, the
following studies minimize energy’s Time-Of-Use (TOU) rather than the pure energy consumption.
The TOU weights the energy consumption by its average cost over a fixed period of time, e.g., an hour.
In [26], a model for solving the FJSP with TOU-optimization was proposed. Similarly, [13] studied the
FJSP with TOU and preventive maintenance of the machines. Also, in [16], a comprehensive model was
introduced, which accounts for real-time pricing, power peak demand, renewable energy sources, and
carbon emissions, as well as setup times and machine availability. For readers more deeply interested in
energy-aware scheduling, [16] provides an extensive introduction, and [27] a noteworthy review.

3. Basics

The Flexible Job Shop Scheduling Problem (FJSP) [28] is defined by a set of machines (or more generally of
resources) 𝑀 = {𝑀1, ...,𝑀𝑄}, and a set of jobs 𝐽 = {𝐽1, ..., 𝐽𝑁}. Each job 𝑗 ∈ 𝐽 consists of a sequence
of 𝑁𝑗 operations [𝑜𝑗1, ..., 𝑜𝑗𝑁𝑗 ]. The set of operations is defined as 𝑂 = {𝑜𝑗𝑖 : 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑁𝑗}.
Each operation 𝑜𝑗𝑖 ∈ 𝑂 has an associated processing time pt 𝑗𝑖 and a set of eligible machines EMji ⊆ 𝑀
able to process 𝑜𝑗𝑖. It is typically assumed that (i) each machine can process up to one operation at a
time; (ii) any job can be processed independently from the others; and (iii) the execution of an operation
cannot be interrupted (no preemption). For every operation 𝑜𝑗𝑖 we denote by 𝑠𝑗𝑖 its assigned start time;
by 𝑐𝑗𝑖 = 𝑠𝑗𝑖 + pt 𝑗𝑖 its completion time; by 𝑜𝑗(𝑖−1) for 𝑖 > 1 its predecessor operation; and by 𝑜𝑗(𝑖+1) for
𝑖 < 𝑁𝑗 its successor operation. An assignment of each operation to a machine and a start time that does
not violate any of the following constraints is called a schedule: (a) each operation must end before its
successor may start, and (b) each operation must be assigned to exactly one of its eligible machines.

To broaden the applicability of the FJSP, many extensions have been proposed. In the Multi-Resource
FJSP (MR-FJSP) [9], each operation can require multiple resources of the same or of different types,
such as a machine and a human operator. Another extension is the so-called FJSP with variable machine
speeds1, where the speed at which the machine carries out the operation must be chosen from a set of
possible machine modes, leading to a dynamic duration of operations [19]. Usually, machine modes
are not directly treated as a continuous decision variable, but are assumed to have a set of valid values
given a priori. Also, different modes may be associated with different costs, quantifying, e.g., the energy
consumption of, or the caused wear on the machine. Additional extensions may consider transport times,
when operations 𝑜𝑗𝑖 and 𝑜𝑗(𝑖+1) are assigned to two different machines, and/or setup times, which may
be required before executing an operation. In most cases, the setup time solely depends on the operation
and on the machine, i.e., it can be expressed for operation 𝑜𝑗𝑖 on machine 𝑚 as st 𝑗𝑖𝑚 and thus can be
assumed to be directly expressed by means of the processing time pt 𝑗𝑖𝑚.

4. The Industrial Use Case

The real-world industrial use case considered in this work originates from an Austrian steel-cutting
facility, where each job comprises one or more cutting operations that segment large raw pieces into
smaller ones meeting specific customer requirements. The factory operates several cutting machines,
each equipped with a bandsaw. Jobs are assigned to workers, who in turn are assigned to machines.

A high-level description of a job is the following. Each job begins with the worker loading the input
piece on the machine, setting the appropriate parameters, and starting the cutting operation. Once the

1Different works may refer to it with different namings, such as controllable in place of variable, and similarly machining
speeds, processing speeds, or simply modes instead of machine speeds.



cut is finished, the operator has to unload the cut pieces. These can be either ready for delivery or must
be cut again. In the latter case, whenever a different machine is required to perform the next cut, the
time necessary for transporting the piece between the machines must be considered.

This process repeats daily, with hundreds of jobs, tens of machines, and tens of workers. Coordinating
and planning the resources and operations in such a scenario constitutes a complex task to be addressed
by a manufacturing company. As outlined in the introduction, the integration of multiple resource
types, e.g., machines and workers, with setup and transport times has not yet been addressed within
the context of energy-aware FJSP. This combination, however, is typical in various industrial contexts.

The industrial use case we address in this work is precisely characterized by the following assumptions:

1. All resources, machines 𝑀 and workers 𝑊 , are available for the entire scheduling horizon, i.e.,
tool wear, machine maintenance, or workers’ shifts are not considered.

2. All jobs are released before the start of the scheduling horizon.
3. Each job 𝑗 ∈ 𝐽 is composed of a sequence of tasks, where each task is a sequence of three

operations—load, cut, and unload—associated with one and the same cut. Thus, job 𝑗 has form
(load1, cut1, unload1, . . . , load𝑐, cut𝑐, unload𝑐) where 𝑐 is the number of tasks and 𝑁𝑗 = 3 * 𝑐.

4. The cut operations represent the 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 operations and require exactly one machine.
5. The 𝑠𝑒𝑡𝑢𝑝 operations, i.e., load and unload, require exactly one machine and exactly one worker.
6. Each job 𝑗 ∈ 𝐽 is preassigned to one, and only one, worker 𝑤 ∈ 𝑊 .
7. Each machine 𝑚 ∈ 𝑀 is preassigned to one, and only one, worker 𝑤 ∈ 𝑊 . The set of machines

assigned to worker 𝑤 is referred to as 𝑀𝑤.
8. For every operation 𝑜𝑗𝑖 ∈ 𝑂 a non-empty set of eligible machines EMji is given. Each eligible

machine 𝑚 ∈ EMji ⊆ 𝑀𝑤 is preassigned to the same worker 𝑤, to whom job 𝑗 ∈ 𝐽 is assigned.
9. For each processing operation 𝑜𝑗𝑖 ∈ 𝑂 and for each eligible machine 𝑚 ∈ EM 𝑗𝑖, a non-empty

set of machine modes MDji ,m is given, each allowing to accomplish the operation 𝑜𝑗𝑖 on machine
𝑚 and implying a specific duration and energy consumption.

10. The times for load and unload depend only on the weight of the material that is cut.
11. The transport time depends only on the weight of the material to be moved, as each machine set

𝑀𝑤 is located closely enough that inter-machine distances can be considered negligible.
12. Any sequence of operations (1) unload, (2) transport—only if the subsequent operation is assigned

to a different machine—and (3) load for one and the same job must be executed in immediate
succession without interruptions.

Remark 1. Due to Assumptions 6 and 7, the assignment of a unique worker to every job and machine
essentially leads to a partitioning of both the jobs and the machines. This has two implications. First,
workers are not a flexible resource, and so the described problem is not a Double-Flexible JSP. Yet, the
problem is still a Multi-Resource JSP, as setup operations must be assigned to a worker and a machine at
a specific time point. Second, and more importantly, the overall scheduling problem can be decomposed
into separate subproblems, one per worker. Therefore, given an input instance, one could basically
preprocess it, create |𝑊 | smaller and simpler subproblems, and solve each of them independently to
obtain an overall schedule. However, in our evaluations (Sec. 6), to simulate a practical scenario where
an a-priori problem analysis and decomposition is not always feasible, we solved each problem instance
as-is, without applying any preprocessing. Moreover, to nevertheless obtain a more complete picture,
we generate and analyze a second more general dataset, where Assumptions 6 and 7 are dropped and
problem decompositions based on a partitioning of jobs and machines are no longer possible.

5. The Proposed Constraint Programming Model

The proposed model, based on Constraint Programming (CP), encodes and enables solving the Energy-
Aware Double-Flexible JSP (E-DFJSP) [6], a variant of the JSP that incorporates multi-resource (workers
and machines), routing flexibility, and energy minimization. Beyond that, we also consider the follow-
ing extensions: controllable machine modes, sequence-independent setup operations, and transport
operations. Note that the E-DFJSP comprises, in particular, the use case problem described in Sec. 4.



5.1. Model Notation

The model is implemented in IBM CPLEX Studio, and is solved by IBM CP Optimizer (CPO) [11]. CPO is
probably the most popular CP-based tool for modeling and solving JSP problems [12, 13, 14, 15, 16, 17].
In particular, Da Col and Teppan [14] showed that CPO is the state-of-the-art tool for solving scheduling
problems, as up to one thousand jobs could be successfully scheduled. Due to the absence of a standard
notation for defining CP models, we employ the Optimization Programming Language (OPL). We
summarize in Table 1 OPL’s built-in functions and keywords used in this work.

Table 1
OPL functions and keywords available in CPO. Adapted from [16].

Function / Keyword Description
[dvar] interval𝑥 [optional] Defines an interval variable 𝑥, represented as a tuple ⟨𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛⟩.

If optional, it may not be present, i.e., the tuple could be undefined. If dvar
then it is a decisional interval variable.

dvar sequence 𝑠 in𝑋 Defines a sequence 𝑠 from a set of interval variables 𝑋 = {𝑥1, 𝑥2, ...} to be
ordered, which typically represents the queue of operations of a resource.

𝑥 in 𝑙..𝑟 Limits the domain of interval var 𝑥 to [𝑙, 𝑟] at declaration. The most classic
use is 0..Horizon, where Horizon is a sufficiently large integer.

𝑥 size 𝑠 Sets the duration of interval var 𝑥 to a fixed duration 𝑠 ∈ N at declaration.
Suitable also for optional interval variables, where, in such a case, each option
has a corresponding fixed duration.

startOf(𝑥) Returns the start of interval 𝑥 if present, otherwise an absent value.
endOf(𝑥) Returns the end of interval 𝑥 if present, otherwise an absent value.
sizeOf(𝑥) Returns the duration of interval variable 𝑥. Useful to dynamically constrain

the duration of 𝑥, depending on the value of some decision variables.
alternative(𝑥,𝑋, 𝑘) Represents a constraint on an interval variable 𝑥 and a set of optional intervals

𝑋 = {𝑥1, 𝑥2, . . . } to ensure that (i) exactly 𝑘 (1 by default) of the intervals in
𝑋 are present if 𝑥 is present, and (ii) both 𝑥 and the 𝑘 present variables in 𝑋
share the same interval ⟨𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛⟩.

presenceOf(𝑥) Boolean function indicating whether interval variable 𝑥 is present. Useful to
dynamically check which optional interval variable 𝑥 ∈ 𝑋 is chosen.

endBeforeStart(𝑥, 𝑠𝑢𝑐𝑐(𝑥)) Represents a constraint between interval variables 𝑥 and its successor 𝑠𝑢𝑐𝑐(𝑥),
ensuring the successor cannot start until 𝑥 ends.

startAtEnd(𝑠𝑢𝑐𝑐(𝑥), 𝑥) Represents a no-wait constraint between interval variables 𝑥 and its successor
𝑠𝑢𝑐𝑐(𝑥), ensuring the successor starts as soon as 𝑥 ends.

noOverlap(𝑠) Ensures that all present variables 𝑥1, 𝑥2, ... in sequence 𝑠 do not overlap.
prev(𝑠, 𝑥, 𝑦) Ensures that if the interval variables 𝑥, 𝑦 ∈ 𝑠 are present, then 𝑥 is the

predecessor of 𝑦 in sequence 𝑠.
staticLex(𝑔1, 𝑔2, . . . ) Enables a priority ordering for multicriteria optimization.

5.2. Parameters and Variables

As previously introduced, we recall that 𝐽 , 𝑂, 𝑀 , 𝑊 stand for the sets of jobs, operations, machines,
and workers, respectively. There are three operation types OT = {load, cut, unload}, where load
and unload are setup operations, while cut is a processing operation. We denote the set of setup
and processing operations by SO and PO , respectively. The predecessor and the successor of each
processing operation are setup operations (cf. Assumption 3 in Sec. 4). The set of resource types
RT = {mch,wrk} enables distinguishing between machines (mch) and workers (wrk). The set of
resources 𝑅 is defined by the set of all tuples ⟨𝑚,mch⟩, ⟨𝑤,wrk⟩ where 𝑚 ∈ 𝑀 is a machine and
𝑤 ∈ 𝑊 is a worker. To improve the readability, we define two labels: typeo : 𝑂 → OT , which, given
an operation 𝑜 ∈ 𝑂, outputs the corresponding operation type; and typer : 𝑅 → RT which, given a
resource 𝑟 ∈ 𝑅, outputs its resource type. For any operation 𝑜 ∈ 𝑂, we define by 𝑅𝑜 its set of eligible
resources. For each processing operation po ∈ PO and eligible machine 𝑟 = ⟨𝑚,mch⟩ ∈ 𝑅po , a



predefined set of eligible machine modes MDpo,r is available.2 We treat machine modes as a finite set of
possible feed rate (𝑉𝑓 ) and blade speed (𝑉𝑐) combinations, i.e., a set of tuples of the form ⟨𝑉𝑓 , 𝑉𝑐⟩.3 Each
machine mode 𝑚𝑑 ∈ MDpo,r is associated with duration pt𝑝𝑜,𝑟,𝑚𝑑 and processing energy 𝑝𝑒𝑝𝑜,𝑟,𝑚𝑑.
Since setup and transport times are only weight-dependent (cf. Assumptions 10 and 11), they can be
represented as 𝑠𝑡𝑠𝑜 and tt𝑠𝑜, respectively, where 𝑠𝑜 ∈ 𝑆𝑂 is a setup operation. Decision variables are
highlighted in bold: 𝑇𝑇𝑇 𝑜 is the interval variable of every operation 𝑜 ∈ 𝑂. Two optional interval variables
are defined, which enable representing possible alternative ways to execute an operation, e.g., using a
different resource. In particular, we define 𝑃𝑇𝑃𝑇𝑃𝑇 po,r ,md for every processing operation 𝑝𝑜 ∈ PO , eligible
resource 𝑟 ∈ 𝑅𝑝𝑜, and available machine mode 𝑚𝑑 ∈ MDpo,r . Similarly, we introduce the optional
interval variable 𝐴𝑇𝐴𝑇𝐴𝑇 o,r for all operations 𝑜 ∈ 𝑂 and eligible resources 𝑟 ∈ 𝑅o . Both 𝑃𝑇𝑃𝑇𝑃𝑇 𝑝𝑜,𝑟,𝑚𝑑 and
𝐴𝑇𝐴𝑇𝐴𝑇 𝑜,𝑟 are synchronized with 𝑇𝑇𝑇 𝑜. We also introduce, for each resource 𝑟, a sequence decision variable
𝑠𝑠𝑠𝑟 , which contains all the operations for which 𝑟 is eligible. We also define a derived decision variable
𝐶𝐶𝐶𝑗 , which represents the completion time of each job 𝑗 ∈ 𝐽 . Table 2 summarizes the notation and the
description of all the defined sets, parameters, and variables.

Table 2
Notations and definitions.
Notation Definition
Indices and Sets
𝐽 Set of jobs 𝑗 ∈ 𝐽 = {𝑗1, . . . , 𝑗𝑁}
𝑂 Set of operations 𝑜 ∈ 𝑂 = {𝑜𝑗𝑖 | 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑁𝑗} = PO ∪ SO
PO Set of processing operations 𝑝𝑜 ∈ PO ⊂ 𝑂 = {𝑜𝑗𝑖 | 𝑜𝑗𝑖 ∈ 𝑂, 𝑖 ≡ 2 (mod 3)}
SO Set of setup operations 𝑠𝑜 ∈ SO ⊂ 𝑂 = {𝑜𝑗𝑖 | 𝑜𝑗𝑖 ∈ 𝑂, 𝑖 ̸≡ 2 (mod 3)}
OT Set of operation types 𝑂𝑇 = {load, cut, unload}
RT Set of resource types rt ∈ RT = {mch,wrk}
𝑀 Set of machines 𝑚 ∈ 𝑀
𝑊 Set of workers 𝑤 ∈ 𝑊
𝑅 Set of resources 𝑟 ∈ 𝑅 = {⟨𝑚,mch⟩ : 𝑚 ∈ 𝑀} ∪ {⟨𝑤,wrk⟩ : 𝑤 ∈ 𝑊}
𝑅𝑜 Set of eligible resources 𝑟 ∈ 𝑅𝑜 for operation 𝑜 ∈ 𝑂
MDpo,r Set of modes 𝑚𝑑 ∈ MDpo,r for processing operation 𝑝𝑜 ∈ 𝑃𝑂 on resource 𝑟 ∈ 𝑅𝑝𝑜

Parameters
𝑝𝑡𝑝𝑜,𝑟,𝑚𝑑 ∈ N+ Processing time of operation 𝑝𝑜 ∈ PO on resource 𝑟 ∈ 𝑅𝑝𝑜 with mode 𝑚𝑑 ∈ MDpo,r

𝑝𝑒𝑝𝑜,𝑟,𝑚𝑑 ∈ R+ Processing energy of operation 𝑝𝑜 ∈ PO on resource 𝑟 ∈ 𝑅𝑝𝑜 with mode 𝑚𝑑 ∈ MDpo,r

𝑠𝑡𝑠𝑜 ∈ N+ Setup time of operation 𝑠𝑜 ∈ SO
𝑡𝑡𝑠𝑜 ∈ N+ Transport time of operation 𝑠𝑜 ∈ SO
𝑑𝑗 ∈ N+ Deadline of job 𝑗 ∈ 𝐽
𝑡𝑦𝑝𝑒𝑜 Type of operation 𝑜 = 𝑜𝑗𝑖 ∈ 𝑂: equals load if 𝑖 ≡ 1 (mod 3), cut if 𝑖 ≡ 2 (mod 3), and

unload if 𝑖 ≡ 0 (mod 3)
𝑡𝑦𝑝𝑒𝑟 Type of resource 𝑟 = ⟨𝑖𝑑, 𝑟𝑡⟩ ∈ 𝑅: equals 𝑟𝑡 ∈ 𝑅𝑇 .
Decision Variables
𝑇𝑇𝑇 𝑜 Interval representing start and end time of operation 𝑜 ∈ 𝑂
𝑃𝑇𝑃𝑇𝑃𝑇 po,r ,md Optional interval for operation 𝑝𝑜 ∈ PO on resource 𝑟 ∈ 𝑅𝑝𝑜 with mode 𝑚𝑑 ∈ MDpo,r

𝐴𝑇𝐴𝑇𝐴𝑇 o,r Optional interval for operation 𝑜 ∈ 𝑂 using resource 𝑟 ∈ 𝑅𝑜

𝑠𝑠𝑠r Sequence of optional intervals for resource 𝑟: ∀𝑜 ∈ 𝑂 [𝑟 ∈ 𝑅𝑜 ⇐⇒ 𝐴𝑇𝐴𝑇𝐴𝑇 𝑜,𝑟 ∈ 𝑠𝑠𝑠𝑟].
𝐶𝐶𝐶𝑗 Completion time of each job 𝑗 ∈ 𝐽 , defined as 𝐶𝐶𝐶𝑗 = endOf(𝑇𝑇𝑇 𝑗𝑁𝑗

)
Objectives
Tard Tardiness
PE Total Processing Energy
𝐶𝑚𝑎𝑥 Makespan

2Machine modes can be defined, e.g., based on domain expertise, engineering knowledge, or machine learning models.
3By using a discrete set of tuples to represent all relevant modes, no real-valued decision variables are required in the model.
Note that CPO does not support real-valued decision variables.



5.3. Constraints

Constraints (1), (2), and (3) are used to assign resources to operations. Each processing operation 𝑝𝑜
must be assigned to exactly one eligible machine 𝑟 ∈ 𝑅𝑝𝑜 and must be executed according to the chosen
machine mode 𝑚𝑑 ∈ MDpo,r . Note, if 𝑟 ∈ 𝑅𝑝𝑜 then 𝑡𝑦𝑝𝑒𝑟 = mch.

alternative(𝑇𝑇𝑇 𝑝𝑜, {𝑃𝑇𝑃𝑇𝑃𝑇 po,r ,md : 𝑟 ∈ 𝑅𝑝𝑜,𝑚𝑑 ∈ MDpo,r}) ∀𝑝𝑜 ∈ PO (1)

Recall from Assumptions 4, 5 that setup operations require both a machine and a worker, while processing
operations only require a machine. Constraint (2) defines the worker assignment and therefore applies
only to setup operations. For the present dataset, in which workers are preassigned, the choice of the
worker is trivial. Nevertheless, the constraint is essential to synchronize the optional variables 𝐴𝑇𝐴𝑇𝐴𝑇 𝑜,𝑟

with the main variable 𝑇𝑇𝑇 𝑜. Constraint (3) specifies the machine assignment.4

alternative(𝑇𝑇𝑇 𝑠𝑜, {𝐴𝑇𝐴𝑇𝐴𝑇 so,r : 𝑟 ∈ 𝑅𝑠𝑜, 𝑡𝑦𝑝𝑒𝑟 = wrk}) ∀𝑠𝑜 ∈ SO (2)

alternative(𝑇𝑇𝑇 𝑜, {𝐴𝑇𝐴𝑇𝐴𝑇 o,r : 𝑟 ∈ 𝑅𝑜, 𝑡𝑦𝑝𝑒𝑟 = mch}) ∀𝑜 ∈ O (3)

Constraint (4) links the choices in Constraints (1) and (3), as one, and only one, machine must be used
for each task. Due to Constraint (1), the sum on the right-hand side is always ≤ 1. Moreover, we
associate the value true (false) of the predicate presenceOf(·) with 1 (0).5

presenceOf(𝐴𝑇𝐴𝑇𝐴𝑇 jk ,r ) =
∑︁

𝑚𝑑∈MDji,r

presenceOf(𝑃𝑇𝑃𝑇𝑃𝑇 ji ,r ,md )

∀𝑜𝑗𝑖 ∈ 𝑂 ∀𝑟 ∈ 𝑅𝑗𝑖 : 𝑡𝑦𝑝𝑒𝑗𝑖 = cut, 𝑘 ∈ {𝑖− 1, 𝑖, 𝑖+ 1}
(4)

Constraints (5) and (6) ensure the correct duration for the setup operation and the transport operation.
The duration of a setup operation 𝑠𝑜 ∈ SO is 𝑠𝑡𝑠𝑜, but, whenever an unload operation 𝑜𝑗𝑖 and its
subsequent load operation 𝑜𝑗(𝑖+1) are assigned to different machines, the transport time 𝑡𝑡𝑗𝑖 must be
included. To this end, Constraint (5) states that the duration of setup operation 𝑠𝑜 ∈ 𝑆𝑂 must be at
least as long as 𝑠𝑡𝑠𝑜. Constraint (6), on the other hand, handles the machine-switch case, in which the
duration of the unloading operation is equal to the setup time 𝑠𝑡𝑠𝑜 plus the transport time 𝑡𝑡𝑠𝑜.

sizeOf(𝑇𝑇𝑇 𝑠𝑜) ≥ 𝑠𝑡𝑠𝑜 ∀𝑠𝑜 ∈ 𝑆𝑂 (5)

presenceOf(𝐴𝑇𝐴𝑇𝐴𝑇 ji ,r1 ) ∧ presenceOf(𝐴𝑇𝐴𝑇𝐴𝑇 j (i+1 ),r2 ) =⇒ sizeOf(𝑇𝑇𝑇 𝑗𝑖) = st 𝑗𝑖 + 𝑡𝑡𝑗𝑖

∀𝑜𝑗𝑖 ∈ 𝑂 ∀𝑟1 ∈ 𝑅𝑗𝑖 ∀𝑟2 ∈ 𝑅𝑗(𝑖+1) : 𝑖 < 𝑁𝑗 , type𝑗𝑖 = unload, 𝑟1 ̸= 𝑟2
(6)

Constraints (7) and (8) encode the intra-job precedence of operations. In particular, Constraint (7) is the
classic precedence constraint, which is defined only between the end of a processing operation and
the start of the subsequent unloading operation. In the other cases, no-wait constraints are defined,
i.e., stricter precedence constraints that also enforce that two operations are executed in immediate
succession. No-waits are defined (i) between load and cut —as it would be nonsensical to wait before
starting an operation once loading is complete, unless additional costs such as time-of-use or peak-power
costs are considered—, and (ii) between unload and load (according to Assumption 12).

endBeforeStart(𝑇𝑇𝑇 𝑗𝑖,𝑇𝑇𝑇 𝑗(𝑖+1)) ∀𝑜𝑗𝑖 ∈ 𝑂 : 𝑡𝑦𝑝𝑒𝑗𝑖 = cut (7)

startAtEnd(𝑇𝑇𝑇 𝑗(𝑖+1),𝑇𝑇𝑇 𝑗𝑖) ∀𝑜𝑗𝑖 ∈ 𝑂 : 𝑡𝑦𝑝𝑒𝑗𝑖 ̸= cut (8)

Constraint (9) guarantees that the operations of the same task (load, cut, unload) occur consecutively
on the same machine (cf. Assumption 3). Note that it is defined only if both ATATAT 𝑗𝑖,𝑟, and ATATAT 𝑗(𝑖+1),𝑟

4Constraint (3) is redundant, since Constraint (1) already selects the machine for the processing operations (and consequently
for the setup operations). The extra cost—along with that of synchronizing such choices in Constraint (4)—keeps each
sequence 𝑠𝑠𝑠𝑟 linear in |𝑂|, by linking 𝑠𝑠𝑠𝑟 to 𝐴𝑇𝐴𝑇𝐴𝑇 𝑜,𝑟 instead of 𝑃𝑇𝑃𝑇𝑃𝑇 𝑜,𝑟,𝑚𝑑.

5For readability, we slightly abuse notation and write 𝑥𝑗𝑖 instead of 𝑥𝑜𝑗𝑖 for variables associated with operation 𝑜𝑗𝑖 ∈ 𝑂.



are present and thus appear on sequence 𝑠𝑠𝑠𝑟, i.e., if both 𝑜𝑗𝑖, 𝑜𝑗(𝑖+1) have been assigned to resource
𝑟. Constraint (10) imposes that, if worker 𝑤 is assigned to operations 𝑜𝑗𝑖 (unload) and 𝑜𝑗(𝑖+1) (load),
the next operation for 𝑤 after 𝑜𝑗𝑖 must be 𝑜𝑗(𝑖+1). Note, this is always the case for the present dataset.
Constraints (9)-(10) are weaker than Constraint (8), but can be beneficial in terms of performance.6

prev(𝑠𝑠𝑠𝑟,ATATAT 𝑗𝑖,𝑟,ATATAT 𝑗(𝑖+1),𝑟) ∀𝑜𝑗𝑖 ∈ 𝑂 ∀𝑟 ∈ 𝑅𝑗𝑖 ∩𝑅𝑗(𝑖+1) : 𝑖 < 𝑁𝑗 , type𝑟 = mch (9)

prev(𝑠𝑠𝑠𝑟,ATATAT 𝑗𝑖,𝑟,ATATAT 𝑗(𝑖+1),𝑟) ∀𝑜𝑗𝑖 ∈ 𝑂 ∀𝑟 ∈ 𝑅𝑗𝑖 ∩𝑅𝑗(𝑖+1) : 𝑖 < 𝑁𝑗 , type𝑟 = wrk, type𝑗𝑖 = unload
(10)

Constraint (11) ensures that the operations assigned to the same resource 𝑟 do not overlap.7

noOverlap(𝑠𝑠𝑠𝑟) ∀𝑟 ∈ 𝑅 (11)

5.4. Objective Function

The objective function is defined by three objectives, each to be minimized, with a fixed order of priority:
(i) tardiness (Tard ), (ii) energy (PE ), and (iii) makespan (𝐶max ).

minimize staticLex(Tard ,PE , 𝐶max ) (12)

Tardiness measures the cumulative lateness of all given jobs 𝐽 , and we measured it in 8-hour shifts, i.e.,
SHIFT_LEN = 480 [𝑚𝑖𝑛]. We compute it as the sum of all non-negative differences between the shift
⌈𝐶𝐶𝐶𝑗/SHIFT_LEN⌉ where a job 𝑗 is completed and the shift 𝑑𝑗 where the job is due, over all jobs 𝑗 ∈ 𝐽 :

Tard =
∑︁
𝑗∈𝐽

max (⌈𝐶𝐶𝐶𝑗/SHIFT_LEN⌉ − 𝑑𝑗 , 0) (13)

The processing energy of a single operation is computed by taking the consumed energy of the chosen
machine mode. Note that, due to Constraint (1), exactly one of the presenceOf(·) predicates per operation
must be true. Then, the total energy is obtained by summing over all the processing operations:

PE =
∑︁

𝑝𝑜∈PO

∑︁
𝑟∈𝑅𝑝𝑜

∑︁
𝑚𝑑∈MDpo,r

presenceOf(𝑃𝑇𝑃𝑇𝑃𝑇 po,r ,md ) * 𝑝𝑒𝑝𝑜,𝑟,𝑚𝑑 (14)

The makespan is the total duration of the entire schedule:

𝐶𝑚𝑎𝑥 = max
𝑗∈𝐽

𝐶𝐶𝐶𝑗 = max
𝑗∈𝐽

endOf(𝑇𝑇𝑇 𝑗𝑁𝑗 ) (15)

6. Evaluation

6.1. Dataset

The presented model is tested on two similar problems, which resemble the real-world scenario of a
steel-cutting company described in Sec. 4. To preserve the confidentiality of our industry partner’s
data, the datasets were generated using a random sampling procedure based on the real use case. In
particular, we distinguish between the present and the future use case scenarios, where the former
reflects current assumptions while the latter anticipates slight changes planned by the considered
steel-cutting company. More specifically, in the present use case scenario, each machine is assigned to
exactly one worker, while in the future use case scenario, multiple workers are allowed to operate the
same machine. The single-worker-per-machine assumption in the former scenario implies that the
scheduling problem can be decomposed into a set of independent subproblems (cf. Remark 1), while
this is not possible in the latter scenario. As a result, analyzing this more general case is particularly
interesting from both theoretical and practical perspectives. On the one hand, the problem becomes
more complex, as it corresponds to a Double-Flexible JSP; on the other hand, introducing additional
worker flexibility may lead to reductions in makespan and tardiness.
6Constraint (9) is only partially redundant, as it also covers the case in which type𝑗𝑖 = cut.
7Alternatively—if no prev constraints are defined—, one could define a cumulFunction and limit its value ≤ 1. IBM guide
suggests that including both may improve performance, but we did not observe so, and thus we only used noOverlap.



Table 3
The structure of the two generated datasets. 𝐽 , 𝑀 , 𝑊 are the number of jobs, machines, and workers. 𝐽/𝑀
and 𝐽/𝑊 are the ratios between the number of jobs and the number of machines and workers. 𝑎𝑣𝑔(𝑂) is the
average number of operations. 𝑎𝑣𝑔(𝐻) is the average upper bound Horizon. 𝐹, 𝑃 stand for future and present
datasets. 𝑑(𝑀) stands for 𝑑𝑒𝑔𝑟𝑒𝑒(𝑚𝑎𝑐ℎ𝑖𝑛𝑒), i.e., the number of workers assigned to it, and analogously 𝑑(𝑊 ).
𝑎𝑣𝑔(Vars) and 𝑎𝑣𝑔(Const) are the average number of variables and constraints.

𝑑(𝑀) 𝑑(𝑊 ) 𝑎𝑣𝑔(Vars) 𝑎𝑣𝑔(Const)
dataset 𝑃 𝐹 𝑃 𝐹 𝑃 𝐹 𝑃 𝐹

𝐽 𝑀 𝑊 𝐽/𝑀 𝐽/𝑊 𝑎𝑣𝑔(𝑂) 𝑎𝑣𝑔(𝐻)

50 3 1 16.7 50.0 307 2610 1 3 1569 2395
4 1 12.5 50.0 290 2252 1 4 1730 2603
8 2 6.2 25.0 296 1478 1 2 4 8 1777 1974 2679 2728
9 3 5.6 16.7 278 1314 1 3 3 9 1477 1848 2223 2309

15 5 3.3 10.0 299 688 1 3 3 9 1562 2140 2370 2491
16 4 3.1 12.5 280 790 1 2 4 8 1727 2143 2574 2646

200 12 4 16.7 50.0 1167 3690 1 3 3 9 6019 7985 9101 9523
16 4 12.5 50.0 1165 2983 1 2 4 8 7017 8725 10544 10856
32 8 6.2 25.0 1157 1649 1 2 4 8 7050 9475 10532 10890
36 12 5.6 16.7 1158 1225 1 3 3 9 6000 9162 9051 9569
60 20 3.3 10.0 1192 664 1 3 3 9 6217 9701 9406 9977
64 16 3.1 12.5 1199 969 1 2 4 8 7232 10026 10837 11216

500 30 10 16.7 50.0 2896 3511 1 3 3 9 15043 22471 22651 23895
40 10 12.5 50.0 2917 2994 1 2 4 8 17927 24399 26913 27925
80 20 6.2 25.0 3031 1886 1 2 4 8 18240 25619 27464 28488
90 30 5.6 16.7 2927 1323 1 3 3 9 15240 24341 22985 24395

150 50 3.3 10.0 2904 914 1 3 3 9 15135 24364 22757 24096
160 40 3.1 12.5 2875 1162 1 2 4 8 17395 24584 25962 26913

6.1.1. The Present Use Case Dataset (Decomposable)

We generated a dataset for the present use case by means of the following parameters:
(i) three different numbers of jobs, |𝐽 | ∈ {50, 200, 500}, corresponding respectively to medium-,

large-, and very large-scale instances;
(ii) two different workers’ flexibility degrees as the number of machines assigned to each worker,

𝑑(𝑊 ) = (|𝑀 |/|𝑊 |) ∈ {3, 4}, in accordance with the real use case;
(iii) the fixed machines’ flexibility degree, i.e., the number of assigned workers to each machine,

𝑑(𝑀) = 1 (cf. Assumption 7);8

(iv) for each setting of 𝑑(𝑊 ), three different jobs-to-machines ratios, |𝐽 |/|𝑀 |, i.e., "few" (up to 4),
"some" (up to 10), and "many" (more than 10), to represent periods of varying system load; and

(v) the fixed number of machine modes per cut operation, 𝑘 = 2.
The numbers of machines |𝑀 | and workers |𝑊 | then follow from the flexibility degree 𝑑(𝑊 ), the
jobs-to-machines ratio |𝐽 |/|𝑀 |, and the number of jobs |𝐽 |. Note that if the number of jobs is fixed but
the number of resources increases, both makespan and tardiness are expected to decrease—since fewer
jobs are assigned to each resource—while the number of decision variables handled by the solver may
increase. Therefore, by varying the jobs-to-machines ratio, we can observe how changes in resource
availability influence both throughput and solver performance.

Once all the parameters are set, the remaining data is sampled as follows. The jobs’ due dates are
defined in terms of shifts (of 8 hours) and follow a gamma distribution Gamma(𝛼 = 2, 𝜃 = 1).9 Each
job 𝑗 ∈ 𝐽 is randomly assigned to one of the workers 𝑤⋆ ∈ 𝑊 , who in turn is assigned to a set of 3 or 4
machines 𝑀𝑤⋆ , according to the workers’ flexibility degree 𝑑(𝑊 ). For the processing operation 𝑜𝑗𝑖,
its set of eligible resources is a random non-empty subset of 𝑀𝑤⋆ , i.e., 𝑅𝑗𝑖 = {⟨𝑚,mch⟩ : 𝑚 ∈ 𝑀𝑗𝑖}
8The machines-workers assignments can be represented as a bipartite graph 𝐺 = (𝑀,𝑊,𝐸), where (𝑤,𝑚) ∈ 𝐸 if worker
𝑤 ∈ 𝑊 is assigned to machine 𝑚 ∈ 𝑀 . Thus, the node-degree 𝑑(𝑤) represents the number of assigned machines to worker
𝑤. Since it is constant for each 𝑤 ∈ 𝑊 , we denote it by 𝑑(𝑊 ) for brevity. The same applies to the machines.

9Each sample is then rounded to the nearest integer ≥ 1. The resulting distribution is similar to a positively skewed bell-shape
with expected value E[𝑋] = 𝛼𝜃 = 2 and variance Var(𝑋) = 𝛼𝜃2 = 2. That is, 80 % of the jobs have a due shift ≤ 3.



where 𝑀𝑗𝑖 ⊆ 𝑀𝑤⋆ . Basically, since |𝑀𝑤| = 𝑑(𝑊 ) for any 𝑤 ∈ 𝑊 , the number of eligible machines
per operation follows a discrete uniform distribution 𝒰{1, . . . , 𝑑(𝑊 )}. Load and unload operations
also require a worker, namely 𝑤⋆, the one assigned to job 𝑗. Therefore, the set of eligible resources for
the setup operations can be defined as 𝑅𝑗(𝑖−1) = 𝑅𝑗(𝑖+1) = 𝑅𝑗𝑖 ∪ {⟨𝑤⋆,wrk⟩}.

The single operations are generated as follows. The number of processing operations per job
follows a shifted exponential distribution Exp(𝜆 = 1) + 1.10 Each processing operation has an
associated physical piece to be cut. The dimensions of each input piece (height, width, and depth)
before the cut operation are randomly sampled from three normal distributions 𝒩 (𝜇 = 100, 𝜎 =
50),𝒩 (450, 400),𝒩 (200, 80) [mm].11 Then, out of these three values, two of them are randomly
selected, one to be the cut depth and the other one to be the cut channel; these values represent (i) how
long the cut will be and (ii) the width of the cut on a single blade-pass. The weight is then computed
by multiplying the density constant of the steel, 7.85 [𝑔/𝑐𝑚3], with the volume of the piece, derived
by multiplying together height, width, and length, i.e., by assuming that all pieces are cuboids. The
weight also enables deriving the setup time and the transport time. The 𝑘 different machine modes
(processing speeds) are then computed by first obtaining the manufacturers’ suggested values12 and
then by applying 𝑘 different random perturbations. The duration of the processing operations depends
on the chosen machine mode, and, for a given machine mode, can be computed as the ratio between the
cut depth [𝑚𝑚] and the feed rate 𝑉𝑓 [𝑚𝑚/𝑚𝑖𝑛]. Finally, we estimate the processing energy of each
option, and then randomly perturb the prediction. To do so, we assume having a black-box model that
estimates the energy of a cut given the machine mode, the cut channel, and the cut depth. We also
compute a worst-case upper bound Horizon for the entire schedule.

The procedure presented here is exemplary of how a scheduling problem in the manufacturing sector
could look. Note that each combination of the parameters ⟨|𝐽 |, 𝑑(𝑊 ), |𝐽 |/|𝑀 |⟩—which in total are
18 = 3× 2× 3—leads to a unique combination ⟨|𝐽 |, |𝑀 |, |𝑊 |⟩. For each of the latter, we generate 3
different random instances. Thus, the number of instances for the present dataset is 3× 18 = 54.

6.1.2. The Future Use Case Dataset (General)

In the future use case scenario, multiple workers can be assigned to each machine. To evaluate the
impact of such a generalization, we keep the two datasets as identical as possible while preventing
decomposability. We modify the machines-workers assignments so that at least 2 workers are assigned
to each machine, i.e., the machines’ flexibility degree 𝑑(𝑀) ≥ 2. Starting from one worker per machine,
we achieve this by randomly assigning additional workers to each machine while ensuring that the
expected number of machines assigned to each worker is realistic, i.e., E[𝑑(𝑊 )] < 10. Apart from that,
all settings are equal to the present use case (Sec. 6.1.1), including the use of the same interval variable
upper bound Horizon to ensure a fair comparison.

Table 3 details parameters and properties of the generated datasets, where 𝐹 stands for the future
(general) dataset and 𝑃 for the present (decomposable). The columns mentioning 𝑎𝑣𝑔(·) are derived by
averaging the values from the 3 random instances. Note that dataset 𝐹 has more variables (as there are
more choices) and more constraints (as there are more prev constraints) than dataset 𝑃 . For dataset 𝐹 ,
entries with 𝑊 = 1 are left blank, as with only one worker, the instances for 𝑃 and 𝐹 are identical.
Thus, the number of instances for the future dataset is 54− 3 * 2 = 48.

6.2. Experiments

To present the experiment design, we first need to introduce the notion of a tolerance level.

10A shifted random distribution adds a constant 𝑘 to all values of the original distribution. Since ∀𝑘Exp(1) + 𝑘 > 𝑘, by
setting 𝑘 = 1 we define at least one cut operation for each job (discretization is done by rounding to the nearest integer).

11Note that there is no loss of generality in assigning random dimensions to every cut operation, even though it is inconsistent
with the real case, since the dimensions at task 𝑖+ 1 depend on the ones at task 𝑖− 1.

12In general, the values suggested by the manufacturer can be represented as a function that, given the material type to be cut,
the machine, and the cut channel, retrieves the suggested cutting parameters. For the sake of simplicity, we only rely on the
cut channel, while the machine and the material type are simply randomly selected.



6.2.1. Tolerance levels

In single-objective minimization, tolerance levels quantify the acceptable deviation from the (unknown)
global optimum 𝑔*. For a given tolerance level |tol | (or, in relative terms, tol% < 1) and a lower
bound 𝑔LB ≤ 𝑔*, a solution with value 𝑔 is considered optimal if gap = 𝑔 − 𝑔LB ≤ |tol | (or if
gap% = gap/𝑔LB ≤ tol%). When this happens, the search stops. In contrast, in the multi-objective
case (with fixed priorities), the solver continues optimizing the subsequent goal. CPO provides tolerance
levels, as it is able to estimate lower bounds while solving. Combining tolerance levels and staticLex(·)
(cf. Table 1) seems a promising approach, especially for finding initial solutions. By relaxing the priority
order of the goals up to a tolerance level, the solver is prevented from stalling in proving the optimality of
the current goal. Instead, it can advance to the following goals, which may offer a more straightforward
margin for improvement (while still not worsening any of the previously optimized goals).

6.2.2. Design

The model was evaluated using CPO v22.1.2 with default settings, except for tolerance and timeout.
Experiments were executed in parallel (up to four concurrently), each bound to a CPU (taskset -c cpu,
cpu ∈ {0, 1, 2, 3}) on Ubuntu 24.04.2 LTS (x86_64) with an AMD EPYC 9354 (32 cores, 3.25 GHz)
and 62 GB RAM. CPO runs were executed in parallel mode (workers=4). We employed a single
timeout, 𝑡𝑜𝑢𝑡 = 10 minutes, and two different tolerance levels, ⟨|tol |, tol%⟩ ∈ {⟨0, 0%⟩, ⟨5, 10%⟩},
where |tol | is the absolute tolerance and tol% is the relative tolerance.13 For every instance and for
each tolerance, we launched CPO three times, each with a different random seed. The tolerance levels
are motivated as follows: with ⟨0, 0%⟩ we aim at the global optimum, while with a tolerance ⟨5, 10%⟩
we investigate the impact of such a tolerance level on solution quality (in theory, it should find solutions
having higher tardiness but lower energy and makespan). A small constant |tol | is needed when the
lower bound can be zero, as it is for the tardiness, because, in such a case, the gap% is undefined, and
thus any value for tol% would have no effect. Thus, we set |tol | = 5 to avoid the solver getting stuck
in minimizing tardiness without minimizing the other goals as well.

We collect the following data: the number of variables Vars and of constraints Const (cf. Table 3), the
solving time in [𝑠] and memory in [MB ], the values of the goals (Tardiness [#shifts], Energy [kWh],
𝐶max [min]), the number of optimized goals #OG , and the Boolean flags Solved and Optimal .

6.2.3. A Bug in CPO

Unfortunately, we found bugs and unexpected results in CPO when combining tolerance levels with
staticLex. Initially, IBM indicated that, although negative gaps could appear, optimality reports would
remain reliable. Later, however, we found cases where CPO declared optimality despite some goals
being well beyond their acceptable values (𝑔 ≫ 𝑔* + 𝜖). Therefore, we used tolerance levels, but did not
employ the staticLex function. Instead, we optimized one objective at a time by externally updating the
goal function and its bounds. IBM has indicated that this bug will be resolved in the next CPO version.14

6.3. Results

Tables 4 and 5 summarize the results for the two datasets, the present and future use cases, for a total
timeout of 10 minutes. The resource usage is not reported in the tables, as the timeout is basically
always reached, while the memory usage is consistently reasonable (the peak virtual memory size
of 2113 [MB ] was recorded with 𝐽 = 500, 𝑀 = 40 with dataset 𝐹 ). Each table cell per ⟨𝐽,𝑀,𝑊 ⟩
combination reports an average (or a percentage) over 9 runs (3 instances, each run 3 times). The
objectives’ averages are based only on the solved runs. 𝑆𝑜𝑙𝑣𝑒𝑑[%] (𝑂𝑝𝑡𝑖𝑚𝑎𝑙[%]) denotes the percentage
of runs for which a solution (the optimal solution, up to the given tolerance) is found. Note that a

13If both absolute and relative tolerances are defined, a solution is considered acceptable iff gap ≤ |tol | ∨ gap% ≤ tol%.
14For details, check the discussion thread on the IBM community: https://community.ibm.com/community/user/question/

consistency-of-cpo-lower-bounds-combined-with-staticlex-and-tolerances.

https://community.ibm.com/community/user/question/consistency-of-cpo-lower-bounds-combined-with-staticlex-and-tolerances
https://community.ibm.com/community/user/question/consistency-of-cpo-lower-bounds-combined-with-staticlex-and-tolerances


Table 4
Results for dataset 𝑃 solved with 𝑡out = 10 minutes and 𝑡𝑜𝑙% ∈ {0%, 10%}. The values for #OG , Solved [%],
Optimal [%] are averaged from 9 runs (3 per instance). For the objectives, only the solved runs are considered; if
none, then the symbol “–” is reported.

#OG Solved [%] Optimal [%] Tardiness Energy Makespan
𝑡𝑜𝑙[%] 0 10 0 10 0 10 0 10 0 10 0 10

𝐽 𝑀 𝑊

50 3 1 0.0 0.0 100 100 0 0 12.7 13.0 38.3 38.3 1551 1571
4 1 0.3 0.7 100 100 0 0 7.0 7.3 31.1 31.3 1535 1512
8 2 1.0 1.0 100 100 0 0 2.7 2.7 41.6 41.6 972 972
9 3 1.0 1.0 67 67 0 0 2.0 2.0 32.2 32.2 876 876

15 5 2.0 2.0 67 67 67 67 0.0 0.5 30.7 30.7 410 444
16 4 3.0 3.0 100 100 100 100 0.7 1.0 36.1 36.1 437 466

200 12 4 0.0 0.0 0 0 0 0 – – – – – –
16 4 0.0 0.0 67 67 0 0 93.5 98.0 144.5 144.6 1876 1848
32 8 0.0 0.3 33 33 0 0 38.0 5.0 101.8 101.5 977 957
36 12 0.0 0.0 0 0 0 0 – – – – – –
60 20 0.3 0.3 33 33 0 0 0.0 0.0 105.6 105.6 474 474
64 16 0.3 0.3 33 33 0 0 2.0 2.0 106.9 106.9 567 567

500 30 10 0.0 0.0 0 0 0 0 – – – – – –
40 10 0.0 0.0 33 33 0 0 424.0 415.0 258.6 257.4 2086 2098
80 20 0.0 0.0 0 0 0 0 – – – – – –
90 30 0.0 0.0 0 0 0 0 – – – – – –

150 50 0.0 0.0 0 0 0 0 – – – – – –
160 40 0.0 0.0 0 0 0 0 – – – – – –
Average 0.4 0.5 41 41 9 9 53.0 49.7 84.3 84.2 1069 1071

solution is optimal iff all the objectives have been optimized. #𝑂𝐺 ∈ [0.0, 3.0] indicates the average
number of optimized goals. Thus, #OG = 3.0 means Optimal [%] = 100%, but #OG = 0.0 does not
imply Solved [%] = 0%. Also, being an average, #OG = 1.0 does not imply that in all runs the first
goal (i.e., tardiness) has been optimized.

First, and surprisingly, we can see that CPO consistently finds a schedule only for the general dataset
𝐹 , but not for the present dataset 𝑃 , although the latter is decomposable and involves fewer variables,
constraints, and choices. A plausible reason could be the following. Although the choice space in 𝑃
is smaller—since workers are fixed and each operation has fewer eligible machines—the job-machine-
worker eligibility graph is sparse and disconnected. This can make finding a valid time interval 𝐼 for
operation 𝑜 on resource 𝑟 more difficult. By contrast, the additional worker-machine assignments in
𝐹 make its eligibility graph connected and denser. Therefore, the chances of finding a resource 𝑟 for
operation 𝑜 available at interval 𝐼 are higher. So, CPO can find an initial solution for 𝐹 more easily.
Despite that, 𝐹 has a larger search space, and the global optimum with no tolerance is never reached.

Second, we observe that the problem becomes more complex not only as the number of jobs increases,
but also as the number of resources decreases. In fact, as 𝑀 and 𝑊 increase (i.e., as the 𝐽/𝑀 and
𝐽/𝑊 ratios decrease), #OG grows, and the solutions achieve higher quality (e.g., lower tardiness). The
simple reason for this is that a reduction in the number of available resources limits the opportunities to
distribute jobs across them. As a result, the remaining resources experience long queues of operations,
and identifying the optimal solution requires determining the most efficient execution order for the jobs
on each resource—a combinatorial task whose complexity grows factorially. Thus, the instances sharing
equal ratios of 𝐽/𝑀 and 𝐽/𝑊 , such as {⟨50, 15, 5⟩, ⟨200, 60, 20⟩, ⟨500, 150, 50⟩} also reflect similar
optimal values for tardiness and makespan (cf. the entries in the tables having #OG ≥ 1). However,
since the solver often reaches the timeout, this statement can be experimentally observed only in a few
cases. Clearly, a larger 𝐽 yields a larger search space, which can negatively impact solution quality.

In general, CPO appears to be more effective at minimizing makespan than tardiness. Although
makespan optimization—the third objective—often cannot even start before the timeout (cf. the global



Table 5
Results for dataset 𝐹 solved with 𝑡out = 10 minutes and 𝑡𝑜𝑙% ∈ {0%, 10%}. The values for #OG , Solved [%],
Optimal [%] are averaged from 9 runs (3 per instance).

#OG Solved [%] Optimal [%] Tardiness Energy Makespan
𝑡𝑜𝑙[%] 0 10 0 10 0 10 0 10 0 10 0 10

𝐽 𝑀 𝑊

50 3 1 0.0 0.0 100 100 0 0 12.7 13.0 38.3 38.3 1551 1571
4 1 0.3 0.7 100 100 0 0 7.0 7.3 31.1 31.3 1535 1512
8 2 2.0 2.3 100 100 0 33 1.0 1.0 41.2 41.2 798 814
9 3 2.0 2.0 100 100 0 0 1.0 0.7 35.2 35.2 485 493

15 5 2.0 2.0 100 100 0 0 0.0 0.0 32.6 32.6 299 300
16 4 2.0 2.7 100 100 0 67 0.0 0.0 35.7 35.9 343 355

200 12 4 0.0 0.0 100 100 0 0 76.0 82.0 179.8 178.7 1747 1865
16 4 0.0 0.0 100 100 0 0 62.0 76.3 142.2 142.4 1576 1574
32 8 0.7 1.0 100 100 0 0 11.9 2.3 129.4 128.9 932 871
36 12 1.7 1.7 100 100 0 0 2.7 2.7 143.3 145.8 592 561
60 20 2.0 2.0 100 100 0 0 0.0 0.0 103.7 105.7 335 321
64 16 2.0 2.0 100 100 0 0 0.0 0.0 150.8 156.0 435 410

500 30 10 0.0 0.0 100 100 0 0 327.3 379.7 401.1 398.9 1670 1628
40 10 0.0 0.0 100 100 0 0 494.7 403.2 357.0 356.1 1659 1709
80 20 0.0 0.0 100 100 0 0 139.7 129.0 412.2 410.5 992 929
90 30 0.7 0.7 100 100 0 0 22.8 27.3 359.9 362.0 601 614

150 50 1.0 2.0 100 100 0 0 0.0 0.0 346.8 354.6 403 372
160 40 1.0 2.0 100 100 0 0 0.0 0.0 337.8 345.8 447 428
Average 1.0 1.2 100 100 0 6 64.4 62.5 182.1 183.3 911 907

avg(#OG) ≤ 1.2 in 𝐹 and 𝑃 ), the resulting makespan values still appear reasonable. In contrast,
despite being the primary objective, tardiness values can become quite large.15 Thus, CPO shows limited
ability in minimizing tardiness and may lack effective heuristics for it (e.g., Earliest-Deadline First).

Tolerance levels prevent the solver from spending excessive time optimizing a single goal while
neglecting others. Their impact on solution quality appears once the optimization runs long enough
for at least one goal to be optimized. Unfortunately, in dataset 𝑃 , in most cases, CPO cannot even
optimize the first goal, while, in 𝐹 , only the first is optimized on average (cf. column #𝑂𝐺 in the tables).
Thus, the effects of the tolerances are limited in our experiments, and in fact, the average values of the
objectives have a low deviation from each other. This is especially true for energy consumption since
(i) its optimization rarely begins due to timeouts (energy is the second objective), and (ii) the model
considers only the processing energy, but disregards idle and makespan-related energy costs.

7. Conclusion

Based on a real-world industrial use case in the steel industry, we introduced a novel and relevant
extension of the Energy-Aware Double-Flexible Job-Shop Scheduling Problem (E-DFJSP). While E-DFJSP
already includes energy costs and both machines’ and workers’ flexibility, we incorporated alternative
machine modes (with varying energy consumption and processing time), as well as setup and transport
operations—aspects often overlooked in traditional scheduling models. To address this problem, we
proposed and implemented a Constraint Programming model using IBM CP Optimizer (CPO). We
optimized tardiness, energy, and makespan (in this order) using defined optimality tolerance levels.

Conducting extensive experiments on two datasets from a steel-cutting company reflecting different
factory policies in terms of worker responsibilities, we found that: (i) finding the optimal solution is
unfeasible in most cases, (ii) CPO is consistently better in minimizing makespan rather than tardiness,

15All instances should have an optimal tardiness close to 0 since (i) avg(Tard) < 3 in all combinations of ⟨𝐽,𝑀,𝑊 ⟩ having
#𝑂𝐺 ≥ 1, and (ii) instances sharing equal 𝐽/𝑀 and 𝐽/𝑊 ratios also share similar optimal values for Tard and 𝐶max .



(iii) CPO can find solutions for harder instances (with many choices available) but failing for simpler
instances (with few choices), (iv) increasing the number of resources yields lower tardiness and makespan
and eases solving, and (v) CPO is not a memory-intensive solver. Finding (iv) is supported by the fact
that the resource-rich instances are the ones with the highest number of optimized goals (one or two).

Future research could extend this study in various meaningful ways. First, it appears promising
to devise ways of assisting CPO in tardiness optimization by supplying a valid initial solution (e.g.,
from a greedy algorithm), or by designing (or learning [29]) a custom heuristic. Second, the presented
model could be integrated with machine learning techniques, such as decision-focused learning [30], to
include the uncertainty of parameters such as energy consumption or induced tool wear, which must be
predicted based on the collected data in the factory. Third, inspired by [16], we aim to estimate the total
energy consumption, i.e., to extend our approach by accounting for idle and overall factory energy.
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