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Abstract

Landslides triggered by intense or prolonged rainfall are a growing threat in the context of climate change.
Physically based models are commonly used to estimate slope stability under varying hydrogeological conditions.
However, their high computational cost may limit their use in time-sensitive risk assessment and decision-making
scenarios. We propose a novel application of artificial intelligence (AI) for planning in safety-critical domains.
In particular, our approach accelerates the prediction of key slope stability indicators—the factor of safety, the
depth of the sliding surface, and the final position of the water table—under various rainfall events. Using a
large dataset of more than 16,000 simulations, we train regression models that quickly approximate the results of
complex numerical analyses across various slope geometries, soil properties, and hydrological conditions. The
proposed models can perform rapid risk assessment for rainfall-induced landslides, exploring various rainfall
scenarios and slope responses in tight timeframes. This helps select mitigation strategies that prioritize safety
while considering reliability, feasibility constraints, and the likelihood of rainfall events. Our approach is thus key
for complex, real-world Al planning in hydrogeological risk management, in particular considering the context
of climate change, which will increase the number of sites requiring effective protective measures and rapid
intervention in years to come.
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1. Introduction

Landslides triggered by intense or prolonged rainfall are becoming more frequent and severe due to
climate change. These events threaten infrastructure, communities, and ecosystems in many regions.
Recent studies confirm that rainfall is one of the most common triggering agents [1]. Precipitation
significantly affects slope behavior by progressively saturating the upper soil layers. This reduces the
soil resistance and leads to the formation of a failure zone [2]. In addition, water infiltration following
intense rainfall events can raise the phreatic level and trigger instability. The slope equilibrium is
affected by the opposite roles of the resisting force and the driving force. The ratio between the resisting
and driving forces is defined as the factor of safety (FoS): the slope is considered unstable when the FoS
is lower than or equal to 1.

Physically based models (PBMs) can simulate a slope behavior under various hydrological conditions,
and are widely used to support risk assessment and planning. Hydro-mechanical models can evaluate
the changes in the F'0S, considering the effects of rainfall infiltration and changes in pore water pressure
(3, 4]. PBMs are grounded in well-understood physical laws and are often used in both local- and
regional-scale studies [5].

Recent developments in slope stability modeling have used various computational techniques to
enhance predictive reliability under complex conditions, especially in unsaturated soils. In particular, a
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probabilistic calibration method for coupled hydro-mechanical modeling was proposed to demonstrate
that the use of multiple sensors (e.g., displacement, pore pressure, water content) improves parameter
estimation under rainfall infiltration [6]. A Bayesian framework helped calibrate physical landslide
models by combining spatially variable parameters via random fields and approximate Bayesian com-
putation [7]. Bayesian networks were also used to update the soil parameters and susceptibility to
landslide through spatial and cross correlations based on observed slope performance [8].

However, PBMs are generally computationally expensive. They require time-consuming setup
processes, including the preparation of configuration files, the setting of many parameters, and the
tuning of boundary conditions. These tasks require expert knowledge and can delay the use of PBMs in
operational contexts [9]. Computational time becomes a major limitation, in particular when using
PBMs in time-critical applications, such as emergency planning, or when there is a need to explore
many options to select the best mitigation strategy for a given slope and certain rainfall scenarios that
are highly likely to occur in the slope area.

To address these limitations, recent studies have explored artificial intelligence (AI) models trained on
numerical simulation outputs. For example, tree-based and neural models have been tested to estimate
landslide-related indicators under specific site conditions [10, 11]. Some works have introduced models
that simplify slope stability simulations in various geotechnical contexts [12]. Combining physical
modeling and Al is a promising direction for geohazard prediction [13]. For example, various Al models
were trained on synthetic data from limit equilibrium simulations to predict the factor of safety [14].
Limit analysis was integrated with neural networks to evaluate slope stability of inhomogeneous soils
[15]. This approach was then extended to 3D slope stability by training neural models on dimensionless
parameters derived from slope charts, enabling rapid 3D/2D factor of safety comparisons [16]. Convo-
lutional neural networks were also used as a surrogate for the random field finite element method to
capture spatial soil variability while reducing computational costs [17]. An extensive 2D parametric
study (+4,000 simulations) combined hydraulic, mechanical, and geometric variables to generate a
comprehensive dataset for early warning systems [18]. Finally, a multi-approach algorithm using a
simplified physically based model (X-Slip) was proposed for spatial and temporal prediction of soil slips
over large areas [19].

Although these approaches are interesting, there is a need for fast and reliable Al solutions that can
approximate the output of PBMs under a broad range of conditions. In particular, there are few methods
that can simultaneously predict multiple indicators.

This paper proposes an Al-based model to predict the FoS, the depth of the sliding surface, and the
position of the water table. The FoS evaluates slope stability, whereas the other two indicators help
suggest effective slope stabilization measures. To train the model, we generated a dataset of more than
16,000 simulations based on various combinations of slope geometries, soil types, and rainfall events.
Each sample of the dataset was obtained by associating each combination with the FoS, depth of the
sliding surface, and the position of the water table, returned by GeoStudio, a geotechnical software to
perform slope stability and seepage analyses (using PBMs).

The trained regression models achieved high precision compared to the results of PBMs, with near-
instant response time. Our method can thus perform rapid Al-based planning in multiple rainfall
scenarios. In particular, it can help decision-makers select mitigation strategies that consider safety,
cost, and time of implementation. This multi-criteria approach is key in a changing climate, where the
number of at-risk slopes is expected to grow and where quick intervention will often be required. The
experiments showed that the method predicts the three target indicators with an average precision close
to 94.3%. Our method is a starting point for developing a modular Al-based planning tool. In particular,
it could be updated to include new slope geometries, soil characteristics, and rainfall events that map
to an area of interest. The idea is to use our method as a module of a decision support system, where
users can select the properties of the slope and the rainfall event, and then obtain the corresponding
hydrogeological risk based on the factor of safety. We conclude the paper by showing that experts
can be given the possibility to select a set of Al-planned mitigation guidelines, including information
regarding reliability, feasibility, implementation, and typical cost, based on the risk obtained and on the
predicted depth of the sliding surface and water table position. This helps authorities work alongside



experts to choose the best safety plan for a given risk scenario, using a fast and easy-to-use tool.

This work delivers the results of part of the European Project "SAFE-LAND — Mitigating the risk of
flooding and landslides via artificial intelligence with a view to extreme climate events,” grant number
101140345, co-funded by the European Commission.

The structure of the paper is as follows: Section 2 introduces the problem and the dataset; Section 3
describes the model; Section 4 presents two application examples; Section 5 draws the conclusions.

2. Simulations and Dataset

2.1. Slope stability: basic concepts and parameterization

A slope (natural or man-made) is an inclined surface of soil or rock exposed to gravity. The gravitational
force tends to move the soil downward: if it becomes higher than the resisting force, slope failure (i.e., a
landslide) occurs. Slope failure is based on soil type, groundwater location, seepage, and slope geometry.

The soil type is characterized by mechanical and hydraulic properties. The shear strength under
saturated conditions—i.e., when soil voids are completely occupied by water—depends on the mechanical
properties, such as the effective cohesion (¢’), the effective friction angle (¢'), and soil unit weight (). In
unsaturated conditions—i.e., when the soil voids are partially filled by air and water— the shear strength
also depends on hydraulic properties, including suction (negative pore pressure), which contributes to
an increase in resistance.

The geometry of a slope is characterized by the slope angle (angle of inclination to the horizontal),
the slope height and length, the depth of the soil layer above the bedrock (rock layer under the soil),
and the depth of the bedrock (Fig.1).

The stability of a slope depends on the ratio of the shear strength of the soil (characterized by
mechanical parameters) and the shear strength developed along a potential failure surface. Various
limit equilibrium methods can evaluate the stability of a slope [20, 21, 22, 23]). These methods discretize
the potential sliding mass into slices. The main differences among these approaches lie in the specific
equations of statics they satisfy (moment equilibrium and/or force equilibrium), and in the interslice
forces they consider. Formally, a landslide occurs when the shear stress applied along a failure surface
overcomes the soil shear strength. Considered a potential failure surface, the F'0S is defined as follows:

FoS =171/t (1)

where 7 is the shear strength of the soil and 7, is the mobilize shear strength.
The reduction in shear strength— for example, due to rainfall infiltration, weathering, excess pore
pressure—can act as triggering factors of slope movements.

2.2. Parametric analyses

A dataset was generated by considering diverse rainfall events and multiple slope geometries, each
characterized by specific configurations of mechanical and hydraulic parameters, to evaluate the slope
response. Within the dataset, each slope—rainfall pair was associated with three parameters obtained
via simulations implemented using physically based models: i) the factor of safety (#'0S5); ii) the depth
of the sliding surface zg; iii) the final position of the water table 25 Our dataset was made up of
16,019 samples.

The Morgenstern-Price [22] method was selected as the limit equilibrium method. The saturated

shear strength was described by the Mohr-Coulomb model, defined as:
7 =c + o) tan(¢) )

where 0, is the effective normal stress at the shear plane, a function of the soil unit weight. We analyzed
how the mechanical parameters in drained conditions influence the slope stability by varying the
effective cohesion (¢/), effective friction angle (¢'), and soil unit weight () whose mean values (),



Table 1 Table 2

Values of the mechanical properties of the soil Values of hydraulic soil properties
Mechanical properties i Range A  Soiltype K¢ [m/s] van Genuchten (1980)
Effective cohesion, ¢’ [kPa] 20 0-40 10 akPa™'] n[] m[]
Effective Friction Angle, ¢’ [°] 25  5-45 10  1-High 1.00 x 1074 0.5 2 0.5
Soil Unit Weight v [kN/m?] 18  12-24 3 2-Medium 1.00 x 107 0.08 1.7 0412
3-Low 1.00 x 10~® 0.02 1.5 0.333

ranges of variation, and step sizes (A) are in Table 1. These are representative values of the behavior of
sandy, silty, and clayey soils [24, 25].

In unsaturated soils, the increase in resistance [26, 27] is crucial to evaluate the probability of landslide
occurrence. For this reason, the increase in resistance due to suction was defined by the extended
Mohr-Columb model proposed by Vanapalli et al. [28] by considering the change in the volumetric
water content. The hydraulic parameters, namely the saturated hydraulic conductivity (K) and the van
Genuchten parameters [29]—that describe the unsaturated behavior of the soil—are in Table 2. Three
soil types were selected based on their value of K (high, medium, and low) corresponding to sandy, silty,
and clayey soils, respectively. Fig. 1 shows different geometrical configurations of the slope that were
used for generating the dataset used to train the Al models. The considered geometrical parameters
were the slope angle (o), slope length (L), total length (B), slope height (/), total height- upstream
(hy), total height-downstream (hg), soil depth-upstream (hg,), soil depth-downstream (hg,), bedrock
depth-upstream (h p,,) and bedrock depth-downstream (h ;). Table 3 summarizes all the combinations.
Three ratios between the soil strata and the bedrock were evaluated. The first two considered a
horizontal bedrock with hg, 99y = 0.9 - hy, and hgg90) = hsu(9o) — H (Fig. 1a), and hg, ;) = H and
hsacm) = O (Fig. 1b). The third case considered an inclined bedrock, where hg,(25) = 0.25 - hy,, and
hsacasy = 0.25 - hg (Fig. 1c). These values are representative of typical failure mechanisms (circular,
toe, and base).

L R L L
H
Soil T Zud
hSd hSd
hg Bedrock Bedrock
h, Bedrock ‘ hgg

B B B
(a) (b) (©)

Figure 1: Slope geometries.

2.3. Methodology

Slope stability was evaluated using GeoStudio, which enables time-dependent analysis by solving the
water mass balance equation with the finite element method (FEM) in the SEEP/W module, followed
by limit equilibrium analysis in the SLOPE/W module. Slope stability assessed trough FEM-based
models can capture complex failure mechanism. However, the Limit Equilibrium Method (LEM) is
more computationally efficient for large-scale simulations and sensitivity studies [30, 31]. The SEEP/W
module solved the mass balance equation by considering the water flow in time through saturated and
unsaturated porous media. Different rainfall events and positions of the water table were considered to



Table 3
Values of geometrical parameters

] hsy [m] hsq [m]
a1 Liml Blm] Hm] hyim] hq[m] hguoy  Psues) hsu)y  hsdoo)  Psdes)  hsa)
20 100 7.3 25 17.7 22.5 6.3 7.3 15.2 4.4 0.0
20 40 200 14.6 45 30.4 40.5 11.3 14.6 25.9 7.6 0.0
80 400 29.1 90 60.9 81.0 22.5 29.1 51.9 15.2 0.0
20 100 11.5 35 23.5 31.5 8.8 11.5 20.0 59 0.0
30 40 200 23.1 70 46.9 63.0 17.5 23.1 39.9 11.7 0.0
80 400 46.2 140 93.8 126.0 35.0 46.2 79.8 235 0.0
20 100 16.8 50 33.2 45.0 12.5 16.8 28.2 8.3 0.0
40 40 200 33.6 100 66.4 90.0 25.0 33.6 56.4 16.6 0.0
80 400 67.1 200 1329 180.0 50.0 67.1 1129 33.2 0.0
20 100 23.8 70 46.2 63.0 17.5 23.8 39.2 11.5 0.0
50 40 200 47.7 145 97.3 130.5 36.3 47.7 82.8 24.3 0.0
80 400 95.3 290 194.7 261.0 72.5 95.3 165.7 48.7 0.0

define changes in the volumetric water content. Rainfall-induced instability was modeled by applying
surface water fluxes (mm®/h/mm?) at the ground level, simulating low, medium, and high rainfall
intensities (30-, 200-, and 500-year return periods). Table 4 presents the total 100-hour accumulated pre-
cipitation for each case, distributed using Chicago hyetographs with a central peak. Three groundwater
table scenarios were considered: (1) high water table ("), matching the ground surface; (2) low water
table (zI"l'), aligned with the bedrock surface; (3) intermediate water table (z"f), located between the

ground surface and the bedrock.

Table 4
Rainfall events
Intensity Return Period Accumulated
7 T, [years] precipitation, h,, [mm]
11 30 315.90
12 200 480.50
i3 500 586.00

The dataset considers 36 combinations of geometrical parameters (Table 3), 3 types of soil based on
hydraulic characteristics (Kgqt,1, Ksat,2, and K4t 3), as reported in Table 2, 3 rainfall events (i1,i2, and
i3) and a base scenario i without precipitation (Table 4), 3 initial positions of the water table (27},
zfﬁt and z,,3init), and 13 combinations of mechanical parameter (Table 1). Table 5 summarizes the
combinations of parameters for each row of Table 3. The outputs of each simulation were the factor
of safety (FoS), the de })th of the sliding surface (z;), and the final position of the water table after the
precipitation event ( mal) The FoS leads to the risk assessment (slope unstable if FoS<1), whereas 2,

and 21" help suggest stabilization measures.

3. Predicting Landslide with Artificial Intelligence

This section describes the training process of three regression models to predict the Factor of Safety
(F'0S), the depth of the sliding surface [m] (z5), and the final position (i.e., depth from the ground
surface) of the water table [m] (24,""*). The maximum values of z, and 2, inal were selected in order
to define the mitigation measure. Then, the section discusses the importance of each feature to the
predictions of each model.



Table 5
Parameter combination for the dataset

Geometry hs, 2" K. Intensity,i Simulation ID
o Ksat,l
Ot,L,B,];I7 hu hsu(l) Z$I1t Ksat,2 io 1-13
Ksat,?)
K 14-65
o, L,B,H,hy, hsy(i) 295 Kaz fo,i1,102,13 65-117
K3 118-169
K 170-221
a, L, B7 ]‘I7 hu hsu (’L) Z;Bg Ksat,2 io, il, ig, ’i3 222-273
K 274-325

3.1. Data Preparation

The dataset was partitioned into two mutually exclusive subsets: a training set comprising 70% of the
data (11,213 samples), and a hold-out test set containing the remaining 30% (4,806 samples). The split
was performed using a stratified random sampling to preserve the distribution of the target variable in
both subsets. All regression models were evaluated on the hold-out test samples, which were not used
during the training. This procedure ensured that model performance reflects the ability to generalize to
unseen cases.

The parameters describing the slope rainfall interaction were preprocessed to extract the features used
as inputs to the three regression models. Features were normalized using the z-score normalization to
obtain zero mean and unit standard deviation. Normalization parameters (mean and standard deviation)
were computed from the training data to prevent data leakage and ensure unbiased evaluation on the
test set [32].

3.2. Feature Selection

To find the most relevant input parameters (features) for the regression models, we used the Sequential
Feature Selection (SFS) algorithm [33]. SFS iteratively adds features that minimize a predefined per-
formance criterion. Decision Trees (DTs) [34] were chosen as regression models for their ability to
capture non-linear relationships and their interpretability, which is essential in engineering applica-
tions requiring transparent and explainable models. The DT is a supervised learning algorithm that
recursively partitions the input space based on feature values. At each node, the algorithm selects the
optimal feature and threshold to split the data, using a criterion as the Gini index. The splitting process
continues recursively until a stopping criterion is satisfied, such as reaching a maximum tree depth.
The resulting tree structure consists of internal nodes representing decision rules and leaf nodes that
provide the final prediction. In regression tasks, the prediction at each leaf corresponds to the average
value of the target variable in that subset.

The predictive contribution of each feature was evaluated using a 10-fold cross-validation scheme.
Each fold comprised about 1,122 samples, with models trained on nine folds and validated on the
remaining one. The mean R? computed across the test folds was used as a performance criterion. To
ensure robustness, the SFS was repeated 30 times with different random seeds, and the set of selected
features was obtained by averaging the results over all repetitions.

The most frequently selected features were as follows: 2t ppa @, for predicting the FoS and

; wu
the zg, zgﬁjt, hBd, ksqt, Ty for predicting the z{;mal. These features were then used to train the DTs.

3.3. Train and Test

Three DTs regressors were trained to predict the three target variables (i.e., 25, 2, z{;mal), all following

the same hyperparameter optimization procedure. The hyperparameters considered were the maximum



Table 6
Mean and standard deviation of R2 scores over the 10-fold cross-validation.

1 2 3 4 5 6 7 8 9 10
FoS 0.940 £ 0.015 0.935 £ 0.017 0.943 £ 0.012 0.930 £ 0.019 0.945 £ 0.016 0.936 £ 0.014 0.939 £ 0.013 0.931 £ 0.020 0.946 £ 0.017 0.937 £ 0.015
Zs 0.887 £+ 0.026 0.894 £ 0.020 0.880 £ 0.023 0.889 £ 0.027 0.898 £ 0.021 0.882 £ 0.025 0.895 £ 0.018 0.884 £ 0.022 0.893 £ 0.020 0.890 £ 0.021
zsiv’::;x 0.999 £ 0.004 1.000 £ 0.002 0.998 £ 0.005 1.000 £ 0.002 0.999 £ 0.004 1.000 £ 0.002 0.998 £ 0.004 0.999 £ 0.003 1.000 £ 0.002 1.000 £ 0.001
1 12 13 14 15 16 17 18 19 20
FoS 0.938 £+ 0.013 0.942 £ 0.016 0.934 £ 0.015 0.933 £+ 0.016 0.940 £ 0.014 0.932 £ 0.018 0.944 £ 0.016 0.936 £ 0.013 0.937 £+ 0.015 0.939 £ 0.014
Zs 0.886 £+ 0.023 0.891 £ 0.022 0.883 £ 0.020 0.889 £ 0.023 0.887 £+ 0.025 0.893 £+ 0.017 0.885 £ 0.024 0.888 £ 0.020 0.890 £ 0.021 0.884 + 0.020
zsiv’::;x 0.999 £ 0.004 1.000 £ 0.002 0.999 £ 0.003 1.000 £ 0.002 1.000 £ 0.002 0.999 £ 0.003 1.000 £ 0.002 1.000 £ 0.001 0.999 £ 0.002 0.999 =+ 0.002
21 22 23 24 25 26 27 28 29 30
FoS 0.935 £+ 0.016 0.943 £ 0.017 0.931 £ 0.018 0.938 £ 0.014 0.936 £+ 0.016 0.934 £ 0.015 0.940 £ 0.015 0.937 £ 0.014 0.939 £ 0.015 0.935 £ 0.016
Zs 0.896 £ 0.018 0.882 £ 0.024 0.892 £ 0.021 0.889 £ 0.021 0.885 £ 0.023 0.887 £ 0.021 0.890 £ 0.019 0.883 £ 0.020 0.894 £ 0.023 0.888 £ 0.020
zsiv’::;x 1.000 + 0.003 0.998 £ 0.004 1.000 #£ 0.002 1.000 % 0.002 0.999 + 0.004 0.998 £ 0.005 1.000 +£ 0.001 1.000 + 0.002 0.999 + 0.004 1.000 + 0.002

tree depth d, maximum number of splits s, minimum number of leaf nodes [, and number of features
f. These hyperparameters were optimized via a grid search, evaluating multiple combinations to
maximize model performance in terms of the R? score. The search space included the following
ranges: d € {5,...,15},s € {3,...,8}, 1€ {3,...,8},and f € {1,...,6}. For each hyperparameter
combination (d, s, [, f), we performed 30 independent training sessions using the 10-fold cross-validation.
Model performance was assessed using the mean and standard deviation of the R? score across folds.

The configurations that achieved the highest mean R? across all runs were: d = 16,s = 9,1 = 7,
and f = 4 for predicting the FoS,d = 11, s = 7,1 = 5, and f = 3 for predicting z5,d = 8, s = 5,1 = 3,
and f = 2 for predicting 2,

Table 6 summarizes the mean and standard deviation of the R? obtained from each run of 10-fold
cross-validation. The performance is shown separately for the three DTs predicting the FoS, the z,, and
the z{f}mal. The results confirmed the stability and robustness of the models, with FoS and z; achieving
high R? values (averaging around 0.94 and 0.89, respectively), and zhmal consistently reaching highly
accurate scores across all runs.

R2:0.938 — MAE:0.106 56 R2:0.891 — MAE:1.265 49 R%2:1.0 — MAE:0.0
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Figure 2: Regression plot of the Factor of Safety (FoS) (a), the depth of sliding surface [m] (z;) (b), and the
maximum final piezometric surface depth [m] (z/%) (c).

3.4. Model Evaluation

After finding the best architecture for each DT model, we trained each regressors using the entire
training set. Then, we tested the resulting three regressors using the samples in the hold-out test set.

To visually examine the error, Fig. 2 shows the regression plots regarding the FoS (a), 25 (b), and
Zhimal (c). Each sample is represented by a green dot whose coordinates represent the values of Fos, z,
and Z{Zmal (abscissa)—obtained by GeoStudio—and the corresponding predicted values (ordinate). Each
plot in Fig. 2 also shows the regression line (in blue) determined using the least squares method.

The model achieved high accuracy for all outputs to predict (targets), with R? 0f 0.938, 0.891, and 1.0
for FoS, z,, and 2™, respectively. The FoS model shows a point distribution close to the regression
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Figure 3: Feature importance plot of the Factor of Safety (FoS) (a), the depth of sliding surface [m] (z5) (b), and

the maximum final piezometric surface depth [m] (z/%) (c).

line, with minimal dispersion and a mean absolute error (MAE) of 0.106. Predictions for z; also shows a
similar trend, but with slightly higher variance, particularly for larger depth values. The zimal regressor
is the most precise, with a high fidelity to the values obtained by GeoStudio.

Fig. 3 shows three histograms that represent the feature importance for each regression model. For
all targets, the initial elevation of the water table (z"%*) was the most influential predictor, highlighting
both its key role in slope stability and the importance of considering the unsaturated behavior.

In the prediction of FoS (Fig. 3a), both 2" and the bedrock depth (hp,) contributed significantly,
whereas effective friction angle (¢') and cohesion (¢’) played a secondary role, in line with geotechnical
expectations. Regarding the depth of the sliding surface zs, Fig. 3b shows that 2" dominates again,

followed by the bedrock depth-upstream (), whereas mechanical parameters had a minor influence.
Finally, regarding the prediction of z{,"", Fig. 3c highlights that 2" was the most important only.
This confirms that the final position of the phreatic level is highly influenced by its initial position
(zinit) and marginally by rainfall.
These results are in line with the consolidated strong dependence of the outputs on the hydro-

mechanical parameters.

4. Application examples

Our system can be used to assess the hazard conditions of a slope and suggest appropriate mitigation
measures. This enables Al planning for decision-making in slope stabilization.

For unstable slopes (FoS<1), the system helps select the most suitable stabilization intervention
mainly based on the predicted values of z5 and 2! This selection can be made using predefined
effectiveness matrices each suggesting a possible stabilization technique: piles, diaphragm walls, soil
nailing, and strand anchors (see Tables 7 to 10).

For each technique, the corresponding matrix quantifies the degree of mitigation by using an effec-
tiveness score based on the interaction between the depths of the sliding surface and the piezometric

level (water table). Effectiveness scores are discretized as follows:

« 1 = highly effective (green)

+ 0.5 = quite effective (orange)

+ 0.25 = moderately effective (yellow)
« 0 = ineffective (white).

When multiple stabilization measures achieve the same score, the selection requires inspecting the
applicability matrix (see Tab. 11). This matrix considers additional practical aspects (reliability, feasibility,
ease of implementation, and indicative cost) by assigning each intervention an applicability score (.5):

+ S > 3 (green): highly recommended measure
+ 2 < S < 3 (orange): suggested measure

« 1 < S <2 (yellow): less suitable measure

« S < 1 (white): not recommended measure.



To demonstrate how the system integrates predictive modeling and Al planning, we discuss two
examples involving two representative unstable slopes. As a first example, we consider an unstable slope
whose indicators returned by the Al models were FoS = 0.84, depth of the sliding surface z; = 13.5 m,
and depth of the phreatic level (z,"") of 13.5 m (low depth of the water level). With reference to the
effectiveness matrices of Tab. 7 to 10, interventions DW and S A are associated with an effectiveness
index equal to 1: they are both highly effective. Based on the applicability matrix (see Tab. 11), DW is
characterized by a higher applicability score than S A (3 vs 2): diaphragm walls are thus preferred. As a
second example, consider an unstable slope characterized by FoS = 0.95, with z; = 5 m and zhimal — 23
m. The effectiveness matrices of Tab. 7 to 10 identify piles as the most effective measure, thereby
allowing us to propose this stabilization measure without referring to the applicability matrix.

These two application examples show that our system can easily suggest stabilization planning
measures based on quantitative risk indicators obtained by the AI models. The integration with
stabilization effectiveness and applicability matrices helps select the most appropriate mitigation
strategies, balancing technical performance, feasibility, implementation effort, and economic impact.

Potential applications of the system include Al planning in the early design phases to quickly compare
multiple alternative stabilization measures, considering many hydrogeological scenarios. The system
could also be used in monitoring frameworks, where collections of updated input data could be used to

dynamically reassess slope stability and recommend stabilization measures as conditions evolve.

Table 7 Table 8
Effectiveness matrix of PILES (P) Effectiveness matrix of DIAPHRAGM WALLS (DW)
Depth of the piezometric level Depth of the piezometric level
PILES (P) High Low Absent DIAPHRAGM WALLS (DW) High Low Absent
0.5 1 1 0.5 1 1
Superficial (<1.0 m) 0 0 0 0 Superficial (<1.0 m) 0 0 0 0
Shallow (1 to 3 m) 0.5 0.25 0.5 0.5 Shallow (1 to 3 m) 0 0 0 0
Depth of N Depth of -
Medium (3 to 8 m) 1 0.5 Medium (3 to 8 m) 0.5 0.25 0.5 0.5
sliding surface sliding surface
Deep (8 to 15 m) 0.5 0.25 0.5 0.5 Deep (8 to 15 m) 1 0.5
Very deep (>15 m) 0 0 0 0 Very deep (>15 m) 0.5 0.25 0.5 0.5
Table 9 Table 10
Effectiveness matrix of SOIL NAILING (SN) Effectiveness matrix of STRAND ANCHORS (SA)
Depth of the piezometric level Depth of the piezometric level
SOIL NAILING (SN) High Low Absent STRAND ANCHORS (SA) High Low Absent
0.5 1 1 0.5 1 1
Superficial (<1.0 m) 1 0 0.5 Superficial (<1.0 m) 0 0 0 0
Shallow (1 to 3 m) 1 0 0.5 Shallow (1 to 3 m) 0 0 0 0
Depth of = Depth of =
Medium (3 to 8 m) 0.5 1] 0.25 0.5 Medium (3 to 8 m) 0.5 0.25 0.5 0.5
sliding surface sliding surface
Deep (8 to 15 m) 0 0 0 0 Deep (8 to 15 m) 1 0.5
Very deep (>15 m) 0 0 0 0 Very deep (>15 m) 0.5 0.25 0.5 0.5

Table 11
Example of applicability matrix for stabilization measures
. P DW SN SA
Reliability 1 1 0.5 0.5
Feasibility 1 1 0.5 0.5
Implementation 0.5 0.5 0.5 0.5
Typical cost 0.5 0.5 0.5 0.5
Total score (S) 3 3 2 2

5. Conclusions

This paper has presented an Al-based model for multi-criteria Al planning. Our system accelerates the
assessment of rainfall-induced landslide risk and helps select effective measures based on reliability,



feasibility, ease of implementation, and cost. Trained using a dataset +16,000 physically based simula-
tions, our model quickly predicts key indicators of slope response to rainfall—the factor of safety, the
depth of the sliding surface, and the position of the water table. The ability to rapidly explore a wide
range of rainfall scenarios and slope responses can help evaluate multiple mitigation strategies, thereby
supporting real-world planning and decision-making in hydrogeological risk management.

Our results show that Al can complement physically based simulations, bridging the gap between
high-fidelity modeling and operational usability. Future work will focus on extending the generalization
capabilities to more complex scenarios, including uncertainty quantification, and exploring collaboration
with optimization and planning algorithms for automated decision support.
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