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Abstract

Traditional manufacturing sectors, particularly aluminium casting, face growing pressure to improve knowledge
transfer to new generations and customers. The complexity and volume of production information often make
conventional methods inefficient. While Large Language Models (LLMs) and Knowledge Graphs (KGs) show
promise in knowledge management, applying them to domain-specific contexts like aluminium casting processes
presents persistent challenges. This paper draws on practical implementation experience to highlight key obstacles
encountered in deploying an LLM-KG system for knowledge transfer in this setting.
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1. Introduction

Traditional manufacturing industries, including those that produce aluminium casting, rolling, forging,
and stamping, form the backbone of global industrial supply chains, producing critical components for
sectors ranging from aerospace to consumer electronics. Decades of operational expertise have endowed
these industries with invaluable knowledge that directly impacts product quality, process efficiency,
and innovation capacity. However, traditional methods of knowledge transfer and dissemination are
often limited and result in critical know-how being confined within specific individuals or departments.
This creates several challenges. First, companies face significant costs—both in time and resources—to
train employees to an expert level [1]. Second, when experienced personnels leave, they frequently
take valuable knowledge with them, including knowledge they have reported, but often lack effective
management of that reported knowledge, making it difficult to preserve or share with newcomers
[2, 3]. Furthermore, transferring manufacturing expertise across departments or to customers remains
problematic. Understanding production processes often requires hands-on experience and contextual
knowledge that are not easily documented or communicated [4]. For customers, even comprehensive
on-site training programs may fail to ensure effective knowledge transfer, particularly when introducing
new manufacturing techniques [5]. These challenges are pervasive across material manufacturing
domains and highlight the need for more systematic and scalable knowledge management solutions.
Advances in large language models (LLMs) offer powerful capabilities for knowledge extraction and
dissemination, while Knowledge Graphs (KGs) provide graph-based representations that contextualise
and interlink domain-specific knowledge. Their integration enables more intelligent knowledge man-
agement by bridging unstructured textual content with structured semantic representations. Together,
these two technologies have shown promising results in various domains in enhancing the accessibility
and transfer of domain expertise across organisational boundaries and also system faulse detection
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(6,7, 8,9, 10, 11]. However, the application of KGs and LLMs in the material manufacturing sector
remains limited. Further development, validation, and testing are still needed. Effective deployment also
requires substantial domain-specific knowledge and close collaboration with experts. In this industrial
statement paper, we share our experience utilizing KGs and LLMs in the light metal manufacturing
sector. Specifically, we describe our initial efforts to leverage these state-of-the-art methods to manage
extensive technical documentation and facilitate knowledge transfer processes within and beyond the
organization.

2. Use Case Description

This project applies LLMs and KGs to (1) manage historical casting documents, (2) enhance knowledge
sharing, (3) streamline training for employees and customers, and (4) structure the data repository.
A dedicated ontology [12] and prototype domain-specific LLM [13, 14] have been developed, with
domain experts guiding data preparation and evaluation. LLM outputs are evaluated by using F1 score,
precision, and expert review. The initial development results indicate strong potential to support these
objectives.

3. Lessons Learned and Areas Needing Further Work

Through our efforts to implement LLM- and KG-based knowledge transfer solutions in manufacturing,
we have gained several insights and identified areas needing further progress.

First, while many organizations have extensive documentation, much of it is unstructured and
inconsistently managed. Converting this information into usable formats requires considerable time
and effort. Establishing standardized documentation practices and clear data governance remains
essential. Second, the domain-specific nature of production data makes expert involvement both critical
and challenging. Limited expert availability for data preparation, validation, and knowledge review
has significantly slowed progress. Developing workflows and tools that reduce their time burden and
help scale their input is an ongoing need. Third, key knowledge about defects, mistakes, and practical
experience is often tacit and informally retained. Employees may be unwilling or unable to share
this information, and some knowledge is difficult to articulate. Raising awareness of the importance
of capturing and sharing such insights requires sustained cultural change. Finally, building trust in
new systems is vital. Gaining acceptance across the organization takes time and depends on clear
communication and demonstrable benefits. In order to tackle the above-mentioned difficulty, we are
currently working on several projects that leverage LLMs to assist in ontology and knowledge graph
construction within the metallurgy domain, and around 15 papers and 4 books were used. We also
welcome collaborations to accelerate these efforts.
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