CEUR-WS.org/Vol-4105/paper03.pdf

CEUR
E Workshop
Proceedings

published 2025-11-24

An Algorand-based Approach for Flexible Execution of
BPMN Choreographies

Nawaz Abdullah Malla?, Alessandro Marcelletti!, Andrea Morichetta® and Francesco Tiezzi?

"University of Camerino, Camerino, Italy

2Universita degli Studi di Firenze, Firenze, Italy

Abstract

Blockchain technology has enabled secure and decentralized execution of inter-organizational business processes.
Such processes define distributed interactions which can be designed using Business Process Model and Notation
(BPMN) choreographies, encoded as smart contracts and executed in the blockchain. However, such processes may
need to change at runtime to deal with unforeseen situations. This leads to the need for flexibility mechanisms,
permitting the adaptation of the choreography specification and consequently the blockchain implementation.
However, the immutability of blockchain poses challenges in this direction, as smart contract code typically
cannot be updated once deployed. While some solutions as redeployment and patterns, are available, these
introduce high costs and increased complexity. With the recent advent of the Algorand blockchain, intrinsic
update capabilities are available, opening for novel solutions addressing flexibility needs. For this reason, we use
Algorand to enable flexible execution of BPMN choreographies. Our approach modularly encodes choreographies
as Algorand smart contracts, giving the means to allow and control runtime adaptation of the implementation.
By changing the initial choreography, corresponding updates are reflected in the underlying smart contract,
providing a novel solution that eliminates the need for complex gas-intensive patterns.

Keywords
BPMN choreography, Flexibility, Smart contract update, Algorand, business processes, blockchain

1. Introduction

The advent of blockchain has enabled the creation of novel decentralized applications where partici-
pants have trust and accountability needs. Among the various domains, inter-organizational business
processes have found in blockchain a proper solution to create technical infrastructures supporting
process execution in decentralized and untrusted environments [1]. By encoding business logic into
smart contracts, the latter enforce the proper execution of the process behavior, automatically executing
constraints and advancing the state of the process. Blockchain immutability and transparency also play
a crucial role, as they allow for keeping a secure and accessible track of past business interactions [2, 3].

Over the years, different approaches have emerged to leverage blockchain for process automation
and coordination, typically relying on Ethereum-based platforms [4, 5]. Such solutions specify inter-
organizational interactions employing the Business Process Model and Notation (BPMN) standard [6],
which has been established over the years as a dominant solution both in industry and academia. In
particular, BPMN choreographies allow for modeling inter-organizational interactions, specifying only
the message exchange between participants without exposing their internal behavior. In this context,
blockchain serves as a target technology, encoding the choreography and its interactions, supporting
their distributed execution at runtime [7, 8].

While the adoption of blockchain has enabled a concrete and trustworthy enactment of choreogra-
phies, it has also led to several challenges, among which flexibility is a significant one. When modeling
business interactions in terms of a choreography, not all scenarios can be foreseen. Thus, it is crucial
to deal with possible factors that can affect a process at runtime, which may lead to the introduction

DLT2025: 7th Distributed Ledger Technology Workshop, June, 12-14 2025 - Pizzo, Italy

*Corresponding author.

& nawaz.malla@unicam.it (N. A. Malla); alessand.marcelletti@unicam.it (A. Marcelletti); andrea.morichetta@unicam.it
(A. Morichetta); francesco.tiezzi@unifi.it (F. Tiezzi)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5y

mailto:nawaz.malla@unicam.it
mailto:alessand.marcelletti@unicam.it
mailto:andrea.morichetta@unicam.it
mailto:francesco.tiezzi@unifi.it
https://creativecommons.org/licenses/by/4.0/deed.en

of changes in the initially designed choreography model and, hence, the consequent update of the
underlying implementation [9]. This ability to react to unforeseen scenarios is called adaptation [10].

However, in the context of blockchain-based execution of choreographies, flexibility remains a
persistent and open challenge due to the native structure of blockchain [4]. Indeed, the inherent
immutability of blockchain typically does not allow for direct updates to smart contract code once
deployed, making it difficult to deal with runtime changes. This requires dedicated solutions, opening to
new research directions. While updates can be implemented through new smart contract deployments,
these come with significant costs and operational overhead, especially if adopting complex patterns
[11]. Off-chain solutions have been explored to address this limitation [12], but they introduce their
own set of challenges, including security risks and increased complexity in integration.

On the other hand, these limitations can be overcome nowadays by exploiting blockchain architectures
that introduce mechanisms for more flexible and adaptive execution [13]. In particular, Algorand [14] is
a blockchain platform that aims to address the ‘blockchain trilemma’, concerning the simultaneous satis-
faction of the scalability, security, and decentralization challenges. Designed with a pure proof-of-stake
consensus mechanism, Algorand provides instant transaction finality, high throughput, and robust fork
resistance, which are key properties for enabling reliable, time-critical business workflows. Traditional
blockchain platforms, such as Ethereum, often suffer from issues like unpredictable transaction fees
and intricate upgrade procedures, which can limit scalability and reduce the flexibility needed for
dynamic business process execution [15]. Instead, Algorand adopts a fixed, low-fee model that provides
predictability and cost efficiency for developers and users alike. Furthermore, Algorand offers native
features that facilitate updates of smart contracts and storage elements, without the use of proxies,
enabling seamless and secure business process evolution and minimizing operational disruption [16].
These capabilities make Algorand particularly well-suited for implementing flexible choreographies,
where adaptability, reliability, and low overhead are critical.

In this work, we explore how Algorand’s design principles can be leveraged to realize flexible
and trusted execution of inter-organizational business processes specified in terms of BPMN
choreographies. To this purpose, we encode BPMN choreographies as smart contracts, deployed and
executed on the Algorand blockchain. We show how the adaptation of a choreography at runtime is
reflected and enacted on the corresponding smart contract. In fact, a choreography can be adapted
to multiple perspectives of the process, and each change leads to a specific update in the underlying
smart contract. By relying on the native Algorand update capabilities, we do not need complex and
gas-consuming patterns or operations to update the underlying smart contract. In addition, using
a native update mechanism allowed us to define a lean approach to control the conditions enabling
smart contract updates, thus fostering the definition of update policies for regulating the choreography
adaptation. Furthermore, the performance efficiency of Algorand permits dealing with adaptation
without incurring high costs.

The rest of the paper is structured as follows. Section 2 provides an overview of the Algorand
blockchain and BPMN choreographies. Section 3 introduces our approach and focuses on possible
changes that can be applied to a choreography. Section 4 details the implementation of the approach,
showing how smart contracts encode the business logic of choreographies and how they can be updated
at runtime; the section also provides a cost analysis for the flexible execution approach we propose.
Section 5 compares our approach with relevant related works, while Section 6 concludes the work and
touches on future directions.

2. Background

In this section, we introduce basic notions of the Algorand blockchain, focusing on its peculiarities and
technical features. We then describe BPMN choreography diagrams and their elements via a simple
example.

2.1. Algorand

Algorand is a decentralized, permissionless blockchain platform designed for scalability, security, and
true decentralization [17, 14]. Different to other blockchain technologies such as Ethereum-based ones, it
introduces several novelties both at the protocol and implementation layers. As a consensus mechanism,
Algorand relies on a Pure Proof-of-Stake (PPoS) protocol, which randomly selects a committee of users
to propose and validate blocks depending on their stake amount in the network. This approach ensures
fast finality, low latency, and resistance to forks while maintaining decentralization.

Algorand supports smart contracts (also referred to as applications) through the Algorand Virtual
Machine (AVM). Developers can write smart contracts using Transaction Execution Approval Language
(TEAL), a language optimized for safety and performance. To simplify development, Algorand also
offers Python-based languages, i.e., PYTEAL and Algorand Python. In this work, we use the latter one.

Another key difference with respect to other platforms is the Algorand storage model, which includes
three different types of storage: Local storage, Global storage, and Box storage. Specifically, the local
storage is suited for storing user-specific data, the global storage for shared data accessible by all users,
and the box storage for application-specific data. In this work, we mainly rely on the global storage, as
it provides a persistent on-chain storage that serves as shared memory among business participants
to keep exchanged information. More specifically, the global storage in Algorand is a key-value store
directly associated with a smart contract application. Each application can store up to 64 key-value
pairs, with each pair having a combined maximum size of 128 bytes (key + value < 128 bytes), and a
total storage limit of 8 KB shared across all pairs. Technically, this storage is maintained as part of the
application’s on-chain state, where keys are stored as byte slices and values can be either byte slices
or uint64 integers. To modify global storage in a smart contract, developers must use the appropriate
methods within the contract code. Global state can be managed using two approaches:

« Implicit declaration (self.var = UInte4(1)): This method directly assigns a typed value to the
variable, offering concise syntax. It provides limited control over state behavior and obscures the
underlying storage mechanism.

« Explicit declaration (self.var = Globalstate(UInt64(1))): This approach clearly defines the variable
as part of the global state. It uses .value for access and modification, and provides a richer API
and support for explicit deletions.

Both approaches use the same TEAL opcodes and incur identical minimum balance requirements.
However, the explicit method is preferred for clarity, better error handling, and maintainability.

2.2. BPMN Choreographies

The BPMN standard provides the choreography diagram [6, Ch. 11] as an intuitive and graphical means
to describe the interactions that should occur among the multiple participants of a distributed scenario.
We illustrate some key elements of this kind of diagram by resorting to the choreography model in
Fig. 1. We use this simple model throughout the paper as a running example.

The starting point of the choreography is represented by the start event (start1), which is drawn as
a circle with an outgoing edge. As in any workflow diagram, edges are used to specify the execution
flow by connecting choreography elements. Although edge names typically are not visualized in the
graphical representation of the diagram, these names are always included in the underlying XML file
produced by BPMN modelers; to improve the paper’s readability, we reported edge names (using the
gray color) in the model in Fig. 1.

The start event is connected by edge e1 to a choreography task element, which describes a message
exchange between two participants involved in the choreography. The task is represented as rectangles
divided into three bands: the central one contains the task’s name (Task 1), the white band refers to the
initiator participant (A), and the grey one refers to the recipient participant (B). The exchanged message,
of type msg1, is graphically represented by a white envelope. Its payload is formed by a single field (x),
whose actual content will be used subsequently in the choreography execution to make a choice.

msg2(y)

(B)
msg1(x) B
>
ST
A A end1
Task 1 EE——
Q—> x xor1
start1 B

x<=0 (>

end2
Figure 1: Running example: original choreography.

1 @baremethod(allow_actions=["UpdateApplication"])

2 def update(self) -> None:

assert Txn.sender == self.admin.value

4 assert self.update_policy.value == UInt64(1)

5 self.locked.value = UInt64(1) #Lock the contract

7 @arc4.abimethod
s def update_global_store(self) -> None:
9 assert Txn.sender == self.admin.value,

1 #Added variables

2 self.e6.value = UInt64(0)

3 self.msg4_payload_k.value = UInt64(0)

4 self.msg3_payload_z.value = UInt64(0)

5 self.party_c.value = Account ("OWSIGWONHI. . .WIH775ZZLE")

#Removed variables
8 del self.msg2_payload_y.value

0 self.locked.value = UInt64(0) # Unlock the contract

Listing 1: Update policy example.

The execution flow of the choreography is controlled by using gateways. Gateways act as either split
nodes (forking into outgoing edges) or join nodes (merging incoming edges). In the example model,
Task 1 is connected by e2 to the exclusive (XOR) gateway xor1. This is drawn with a diamond marked
with the x symbol and represents a conditional choice based on the value previously exchanged via
message msgl. More specifically, this is a XOR-split gateway defining two execution branches to be
selected on the basis of the conditions labelling the outgoing edges (i.e., €3 is selected if the value of the
field x is greater than 0, otherwise e5 is selected); when executed, the gateway activates exactly one
outgoing edge.

If x>0, the choreography execution continues with Task 2, which allows the participant B to reply
to the participant A with a message of type msg2. After this message exchange, the choreography
terminates by means of an end event (end1), which is drawn as a circle with an incoming edge and
denotes an ending point of the choreography. If instead x<=0, the choreography execution directly
terminates by means of the end2 event.

3. Flexible Execution of Choreographies on Algorand

In this section we show the general idea of how BPMN choreographies can be executed on the Algorand
blockchain considering flexibility needs. We start by describing the main components and then we
focus on the adaptation of choreographies and the different kind of changes that can be applied.

Original choreography Updated choreography

a0 —— Update = I e
O :> oS =9
L _/ oa—
S ENRS Dt —
x<0 (mz) E‘ g
Translate Translate
Global Updated
storage /oo > global

storage

Smart contract v.1 Smart contract v.2

Algorand blockchain

Figure 2: Overview of the main phases and components supporting flexible execution of choreographies.

Figure 2 depicts an overview of the different phases supporting the deployment and update of
choreographies. During the deployment, a BPMN choreography model is created and translated
into blockchain artifacts. In particular, a choreography translates into a smart contract, containing
the logic of the interactions to be executed. Additionally, the Algorand global storage is instantiated,
containing all relevant information to be stored in a permanent manner, such as data exchanged through
choreography messages. At this point, the smart contract can be executed by interested parties sending
data according to the deployed logic. During the execution, a choreography may need to adapt to certain
changes in the business scenario or the general context. To manage such flexibility need, an update
is performed on the choreography model, by applying changes to elements such as tasks, messages
or participants. This leads to an update of its smart contract implementation, as the choreography is
translated into a new version of the smart contract, which is deployed in the blockchain and replaces
the existing one. In addition to the smart contract logic, it is also possible to update the global storage
by operating on the relative information (e.g., adding or removing storage variables).

3.1. Runtime Adaptation of Choreographies

To ensure a flexible execution of choreographies, the update phase is crucial as it consists of the
choreography and its underlying implementation. For this reason, here we focus on the high-level
changes that can be applied to the choreography specification and used to derive the new version of
the smart contract.

Choreography changes. When adapting a choreography at runtime, several changes can be made
to the BPMN model categorized into different types [10, 13]. In this work, we focus on the (i) addition,
(ii) deletion, and (iii) modification operations, as they represent atomic types of changes that can be
applied to a choreography and that directly reflect on the smart contract and the global storage. These
operations can affect the various BPMN choreography elements introduced in Section 2, specifically by
adding, removing, and modifying (a) tasks, (b) messages, (c) participants, (d) control flow elements, and
(e) events.

To provide an overview of the possible changes that can be applied, we rely on an updated version of
the running example model in Fig. 1. Let us adapt it as shown in Fig. 3 to support two different replies
from participant B: one directed to A and another one to C. More specifically, the changes in the adapted
model are as follows (modified elements are highlighted in red color, while added ones are in blue):

msg1(x) B
M e e 2D
A A end1

Task1 X
xor1
B)
B
start1 B
e6
Task 3
x<5

C end2

Figure 3: Running example: updated choreography.

(i) the XOR conditions are modified; (ii) message msg? is replaced by msg4; (iii) Task 3, exchanging
message msg3, is added; (iv) edge e6, connecting Task 3 to end2, is added. It is worth noticing that the
shown types of changes represent base operations that can be combined or integrated to derive more
complex patterns. For example, choreography elements can be moved, swapped, or replaced. Anyway,
thanks to their compositional nature, these patterns do not pose any additional issue concerning the
update of the underlying smart contract and global storage.

Controlling adaptation. While updating BPMN choreographies at runtime allows for dynamic
adaptation to evolving requirements, some restrictions could be necessary. To this purpose, update
policies can be adopted to regulate and constrain changes to the choreography.

A first possibility is the enablement or disablement of changes. In certain contexts, it may be desirable
to disable updates for a certain period once the choreography is deployed. For instance, changes
may be allowed only during specific reconfiguration periods or under defined conditions, such as
when a quorum among participants is reached. Furthermore, a limited number of updates can be
allowed for a given choreography; once this limit is reached all update requests will be denied. Another
important aspect refers to participant permissions. Not all entities involved in the choreography should
necessarily possess the authority to modify its structure. Policies can be used to assign update rights
only to authorized participants, such as process owners. In addition, policies can be used to define
element-specific restrictions. To safeguard essential parts of the process logic, certain elements may be
declared immutable, or some elements act as a commit action that disables the update capability.

These various types of policies can be embedded in the smart contract layer associated with the
choreography model. In this way, they will be a publicly visible part of the contract. By doing so, the
execution infrastructure can automatically enforce the specified constraints, thereby mitigating the risk
of undesired operations. The effectiveness and robustness of this controlled form of controlled update
strongly rely on the native update mechanisms of Algorand.

4. Implementation

In this section we present the implementation of our proposal according to the different phases described
in Section 3. We start by describing how an Algorand smart contract implements a BPMN choreography,
then showing how it reflects runtime updates.

4.1. Choreography smart contract deployment

The first phase consists of the deployment of the Algorand smart contract encoding the logic of the
BPMN choreography model. To this purpose, the smart contract is derived through a translation of the

choreography model into smart contract code. As a translation mechanism, in this work we rely on
the general approach presented in [18]. This is a modular translation, in the sense that the structure
of the generated smart contract follows the structure of the choreography from which it originates,
thus ensuring a one-to-one correspondence between BPMN choreography elements and smart contract
functions. The translation is defined by induction on the syntax of choreographies and transforms
each element of the BPMN choreography model into a corresponding function of the smart contract
that faithfully implements the element’s semantics. The general structure of the smart contract is
composed of several functions related to: state initialization, message execution, control flow execution,
and contract update. In the following, we show the main parts of the smart contract, focusing on the
variables and functions affected by the successive update.

Listing 2 shows the init and create methods used to initialize the global storage of the smart contract.
This state contains several variables. The admin variable (line 3) represents a privileged account used to
manage sensitive operations such as updates or administrative controls in an Algorand smart contract. It
is typically declared as self.admin = GlobalState(account), storing the authorized address directly in the
global storage. This variable can be initialized at deployment using self.admin.value = Txn.sender (line
23), or assigned to a specific address with self.admin.value = Account("ADDRESS"). Access control is then
enforced in the other methods through checks like assert Txn.sender == self.admin.value. Variables
party_a and party b (lines 4-5) store the addresses of the two choreography participants, i.e. A and B,
respectively. The subsequent list of variables (lines 8-13) represents the marking of the edges ef, ...,
e5 connecting the BPMN elements of the choreography (notably, e0 represents a spurious edge for
denoting the enabled/disabled status of the start event). The values of these variables represent the
choreography marking, which drives the execution flow. Message-specific variables (lines 16-17) keep
track of the exchanged message data. The locked variable (line 20) is used to lock the smart contract
methods (by means of assertion assert self.locked.value == UInt64(0) that causes method calls to fail)
until the global storage is correctly updated. This variable acts as a safety switch: when it is set to false
(i.e., value 0), the contract runs normally, instead, during updates it is set to true (i.e., value 1) to block
all external activities, preventing inconsistencies; after the global storage updates, it is reset to false to
resume execution safely. More details on the update procedure are provided in Section 4.2. Finally, the
create method (lines 22-25) initializes the admin variable (line 23) and starts the process execution at
the app creation time by placing one token on the edge e0 (line 24).

Listing 3 shows how the logic of a BPMN choreography model is rendered in terms of Algorand
Python smart contract methods. In fact, the translation approach we rely on maps each choreography
element (i.e., event, gateway, or task) into a method. Specifically, the reported code refers to the methods
corresponding to the first three elements of the running example model, i.e., the event start1, the task
Task 1, and the XOR-split gateway xorT1; the other elements are translated in a similar way. The method
corresponding to the start event start1 (lines 1-7) checks if the spurious edge of the event (i.e., e0)
is marked; in the negative case it returns false (i.e., value 0), because the condition that triggers the
element execution is not satisfied, otherwise the method moves one token from the spurious edge to the
outgoing edge (i.e., e1) and returns true (i.e., value 1). Notably, esubroutine are methods to encapsulate
internal logic, where no user interaction is admitted. These functions are not publicly exposed and can
only be called internally by the contract. In contrast, for tasks involving user interaction, we defined
@arc4.abimethod methods, which serve as the public, externally callable interface of the smart contract.

The method corresponding to the task Task 1 (lines 9-17) allows an external user to exchange the
message msg]; this is indeed a directly callable method (see annotation earc4.abimethod). The method
accepts as input the payload to be sent, which is then stored inside the global storage in the variable self.
msg1_payload_x (line 15). Before executing the method, three checks are performed: (i) the contract must
be unlocked (line 11); (ii) the task must be enabled according to the control flow of the choreography
(i.e., the edge el must be marked) (line 12); (iii) the caller account must corresponds to participant A
(line 13). If all checks are positive, the method consumes the incoming token (line 14), stores the input
data in the global variable (line 15), marks the outgoing edge to advance the control flow (line 16), and
resumes the choreography execution (line 17). Finally, the method corresponding to the XOR-split
gateway xor1 (lines 19-28) checks if the gateway is enabled (i.e., the incoming edge e2 is marked); in

1 def __init__(self) -> None:

Account variables

self.admin = GlobalState(Account)

self.party_a = GlobalState(Account ("ZLVEALW2YMEDRRXIUYHMGVICCPQVJR6YBF22TVWFJE7DRKJEOL5JBBUDLA"))
self.party b = GlobalState(Account ("6WHFXXVYMBFTZGRAVKGLNAGFUSPF7TYAXD5KL7H5MWB3VKIWILRI7ZBTIY"))

Edge marking variables

self.e0 = GlobalState(UInt64(0))
self.el = GlobalState(UInt64(0))
self.e2 = GlobalState(UInt64(0))
self.e3 = GlobalState(UInt64(0))
self.e4 = GlobalState(UInt64(0))
self.e5 = GlobalState(UInt64(0))

Message-specific variables
self.msgl_payload_x = GlobalState(UInt64(0))
self.msg2 payload y = GlobalState(UInt64(0))

Locking variable
self.locked = GlobalState(UInt64(0)) # 0 = unlocked, 1 = locked

def create(self) -> None:
self.admin.value = Txn.sender
self.e0.value = UInt64(1)
self.locked.value = UInt64(0)

Listing 2: Initialization of global state for the choreography contract.

the negative case it returns false, otherwise it executes the logic of the gateway and returns true. The
gateway logic consists of consuming the incoming token (line 22) and checking the condition x>0 (line
23), on the basis of which one of the outgoing edges is marked (line 24 or line 26).

The execution of the choreography is carried out by the execute() method, which has the same code
for any choreography (i.e., it is choreography agnostic). This is the public method that one has to
invoke to activate the choreography once the smart contract has been deployed in the blockchain.
It iteratively executes one choreography element method at a time until one element is successfully
executed (denoted by the return value true); in our running example, the invoked methods are start1(),
xor1(), end1(), and end2(). Notably, methods task1() and task2() are not invoked by execute(), because
they have to be called by external users. If all elements of the choreography cannot be executed,
the instance execution stops. In case there are enabled tasks, the execution is suspended and will be
resumed when the waited message is delivered (see the call execute() as the last instruction of a task
method’s body). The complete code of the running example choreography is available in an online
public repository [19].

Once the Algorand Python smart contract is derived from the choreography model, it has to be
compiled to obtain the corresponding TEAL files, containing the approval and clear programs. Finally,
these files can be deployed in the Algorand blockchain, creating an Algorand application, via the
following command:
algokit goal app create

--creator XYWE34VCZTEGZJ5PBTGN44PT75ZGUG7T2C0IFAYU6T3TUHWSJ 7INSYI3ZE

--approval-prog original_ running_example.approval.teal

--clear-prog original_ running_example.clear.teal
--global-byteslices 16 --global-ints 35 --local-byteslices 8 --local-ints 8 --extra-pages 3

It is worth noticing that the above command specifies the maximum number of byte slices that may be
stored in the global/local store (global-byteslices/local-byteslices), the maximum number of integer
values that may be stored in the global/local store (global-ints/local-ints), and the additional program
space for supporting larger TEAL programs (extra-pages). The specification of these limits is necessary
in order to provide enough space for future extensions of the contract and related stores. However,

1

@subroutine

2 def startl(self) -> UInt64:

3

8

9

if self.e0.value == UInt64(1):
self.e0.value -= UInt64(1)
self.el.value += UInt64(1)
return UInt64(1)

return UInt64(0)

@arc4.abimethod
def taskl(self, msgl param x: UInt64) -> None:
assert self.locked.value == UInt64(0), "Contract is locked"
assert self.el.value > UInt64(0), "Task 1 not active."
assert Txn.sender == self.party_a.value, "Only A can send msgl"
self.el.value -= UInt64(1)
self.msgl_payload_x.value = msgl_param_x
self.e2.value += UInt64(1)
self.execute()

@subroutine
def xori(self) -> UInt64:
if self.e2.value > UInt64(0):
self.e2.value -= UInt64(1)
if self.msgl payload x.value > UInt64(0):
self.e3.value += UInt64(1)
else:
self.e5.value += UInt64(1)
return UInt64(1)
return UInt64(0)

Listing 3: Contract methods corresponding to BPMN choreography elements (an excerpt).

after the application creation, such values are immutable.

Remark 1. When deploying the choreography’s smart contract, the admin user must take into account
the limits imposed by the Algorand platform on the occupancy of the contract and the associated storage.
In particular, the user has to foresee how much additional space the contract and its variables may require
in the future, as these space limits cannot be modified later. Notably, as shown in Section 4.2, variables
unused in the updated contract can be removed from the global storage, freeing the space they occupy.

4.2. Choreography smart contract update

The second implemented phase includes the update of the choreography smart contract due to an
adaptation of the choreography model. This is achieved by translating the adapted BPMN model into a
new version of the choreography smart contract and then updating it in the blockchain.

To this purpose, we rely on the adapted choreography model illustrated in Fig. 3. While the translation
of the choreography’s logic follows the approach previously described, its update is managed by means
of two dedicated methods: one for updating the smart contract code and checking update rights, and
another one for updating the global storage, initializing new variables, or deleting old ones. Therefore,
the update procedure requires two separate method invocations.

Listing 4 shows the methods involved in the update. Differently from the previous shown methods,
update() (line 1) is a baremethod, i.e., a low-level method for administrative operations that does not
require data type encoding. In particular, it handles the raw action updateapplication. This method
contains all the checks required to manage permissions for update and can trigger additional logic. In
our running example, the update method checks if the user performing the contract update is authorized
(line 3). Here, we assume that only the admin user can perform the update operation; of course, such
privilege could be granted to more than one user, on the basis of the specific authorization policies
required by the considered scenario. In addition, the method locks the contract by setting the variable

1

@baremethod(allow_actions=["UpdateApplication"])

2 def update(self) -> None:

assert Txn.sender == self.admin.value, "Only admin can update the contract"
self.locked.value = UInt64(1) # Lock the contract

@arc4.abimethod

7 def update_global_store(self) -> None:

assert Txn.sender == self.admin.value, "Only admin can update the global store"

Added variables

self.e6.value = UInt64(0)

self.msg4_payload_k.value = UInt64(0)

self.msg3_payload_z.value = UInt64(0)

self.party_c.value = Account ("OWSIGWONHIYMNMP7ZA53Z23GTRDXZYB3TGDPHSLH5TI3QBHDWIH7 75ZZLE")

Removed variables
del self.msg2 payload_y.value

self.locked.value = UInt64(0) # Unlock the contract

Listing 4: Methods managing the smart contract update.

locked accordingly (line 4). This prevents executing any methods implementing the logic of the updated
choreography until the global storage is updated as well, in order to avoid any inconsistency.

The admin user can perform the update of the smart contract by means of the following command:
algokit goal app update

--app-id 1001

--from XYWE34VCZTEGZJ5PBTGN44PT75ZGUG7T2COTFAYU6T3TUHWSJ 7INSYI3ZE

--approval-prog updated_running_example.approval.teal
--clear-prog updated_running_example.clear.teal

where 1001 is the identifier of the previously deployed Algorand application (generated and returned by
the create command). The update command automatically invokes the update() method of the smart
contract currently deployed; if it executes successfully, the current contract code is replaced by the new
one.

The second method in Listing 4 (lines 6-19) permits updating the global storage to include new
variables (representing, e.g., the marking of edges or the payload of exchanged messages) and/or delete
variables no longer used in the updated contract. Similarly to the update () method, it can be successfully
executed only by the admin user (line 8). The method performs additional actions that depend on the
specific changes applied to the choreography. In this example, it adds variables representing the new
edge e6 (line 11), messages msg3 and msg4 (lines 12, 13), and participant C (line 14). Moreover, the
method deletes the variable representing the removed message msg2 (line 17). The variables that have
to be added or removed can be automatically determined by comparing the original smart contract and
the one generated from the choreography after it has been modified. Notably, the replacement of msg2
into msg4 is achieved by deleting the former variable and adding the latter. Finally, the method always
unlocks the contract (line 19).

Remark 2. Although, in principle, unused variables could be kept in the global storage, we decided to
delete them in order to free the memory space they occupy. Indeed, we recall that the dimension of the
global storage is limited and fixed once and for all at application creation time.

It is also worth noticing that all variables referred into the the two methods in Listing 4 must be
declared in the init() method. This also applies to deleted variables (msg2_payload_y in the example).
Anyway, in case of further updates, the variable deleted in this code could be omitted by subsequent
versions of the contract code.

Remark 3. It is worth noticing that we cannot perform the update of both the smart contract and the
global storage in a single step. Indeed, if the code performing the update of the global storage (within
update_global_store()) would be moved inside the update() method, it would not be executed when the
update of the smart contract is called by means of the algokit goal app update command. This is because,
the command executes the update () method of the currently deployed contract, i.e., the initial one, and not
the updated one.

4.3. Cost analysis

To evaluate the feasibility of the proposed implementation, we present an evaluation of the cost analysis
of the executed scenarios on the Algorand blockchain!, expressed in both cryptocurrency and fiat
currency.

More specifically, we have considered different execution scenarios concerning our running example.
First, we executed the original choreography depicted in Figure 1 (scenarios 1 and 2), then we considered
executions where the choreography is replaced by the one shown in Figure 3 (scenarios 3, 4, and 5). Due
to Algorand’s flat and low transaction cost structure, the expenses in microAlgos (uA) remain especially
low (the fees for every transaction in our experiments are 1000 pA).

We detail below the five scenarios, whose results are reported in Table 1, also with the USD conversion
of total costs?.

1. Scenario 1: The choreography is deployed (1000 yA) and start1 is executed (1000 pA). Then, Task
1 is executed (1000 pA), providing an input value greater than 0, which directs the execution flow
to Task 2. After the execution of Task 2 (1000 p:A), the choreography terminates with end1.

2. Scenario 2: The choreography is deployed (1000 pA) and start1 is executed (1000 pA). Then, Task
1 is executed (1000 pA) providing an input value equal to 0, leading the choreography directly to
terminate with end2.

3. Scenario 3: After deploying (1000 A) the choreography and executing start1 (1000 pA), an update
is performed via methods update() (1000 pA) and update_global_store() (1000 pA). Following this,
Task 1 is executed (1000 pA) providing an input value greater than 5, which triggers Task 2. The
execution of Task 2 (1000 pA) then leads the choreography to terminate with end1.

4. Scenario 4: After deploying (1000 pA) the choreography and executing start1 (1000 pA), an update
is performed via methods update() (1000 pA) and update_global store() (1000 pA). Following this,
Task 1 is executed (1000 pA) providing an input value less than 5, which triggers Task 3. The
execution of Task 3 (1000 pA) then leads the choreography to terminate with end2.

5. Scenario 5: The choreography is deployed (1000 pA) and start1 is executed (1000 pA). Then, Task
1 is executed (1000 pA) providing an input value greater than 5, which directs the execution flow
to Task 2. An update is performed via methods update() (1000 pA) and update_global_store() (1000
UA). The execution of the updated Task 2 (1000 pA) then leads the choreography to terminate
with end1.

Notably, if the update is performed after Task 1’s execution, task Task 3 can never be executed. In
fact, the execution of the choreography automatically progresses until it reaches a task, which requires
the related task initiator user to send the message by calling the method corresponding to the task.
Only during the period from the task enabling and its invocation, the update() method can be called to
update the contract. Hence, once Task 1 is executed, the execution flow stops at Task 2 and therefore,
after the update, Task 3 is unreachable (hence, the corresponding method is disabled).

If we consider choreography-based approaches in the literature, such as ChorChain [20] and FlexChain
[21], we can draw a general comparison with our solution, despite the differences in their objectives
and implementation architectures. Indeed, we observe that on a performant blockchain like Polygon®,
executing a choreography of 10 messages incurs approximately 0.10 USD for a supply chain scenario

"We used the Algorand local network for these experiments.
*Based on the ALGO/USD conversion at the time of writing (16/04/2025).
*Based on the POL/USD conversion at the time of writing (19/05/2025)

Table 1
Execution costs for the running example.

Scenario Cost (£A) Total (USD)
Deploy | Update | Execution | Total
1 1000 - 3000 4000 0.000717
2 1000 - 2000 3000 0.000537
3 1000 2000 3000 6000 0.0011
4 1000 2000 3000 6000 0.0011
5 1000 2000 3000 6000 0.0011

def __init__(self) -> None:

Update policy
self.update_policy = GlobalState(UInt64(0)) # 0 = update disabled, 1 = update enabled

def create(self) -> None:
self.update_policy.value = UInt64(1)

@arc4.abimethod
def taskl(self, msgl_param_x: UInt64) -> None:

self.update_policy.value = UInt64(0) # Disable the update
self.execute()

@baremethod(allow_actions=["UpdateApplication"])

7 def update(self) -> None:

assert Txn.sender == self.admin.value, "Only admin can update the contract"
assert self.update_policy.value == UInt64(1), "Update is disabled" # check the update policy
self.locked.value = UInt64(1)

Listing 5: Update policy example.

and 0.08 USD for an X-ray analysis scenario. In contrast, our implementation, for the same number of
tasks, would require approximately 11,000 pA. This corresponds to an estimated total amount of about
0.0026 USD, demonstrating negligible costs and economic viability of our solution.

4.4. Update policies

The update mechanism of the smart contract can be governed through a policy-based control mechanism.
A simple policy is illustrated in Listing 5. The purpose of this policy is to disable the update capability
of the choreography once Task 1 has been executed. To achieve this, we rely on variable update_policy
that acts as a flag: a value of 0 disables updates, while a value of 1 enables them. The variable is
initialized to 1 at contract creation (line 8), indicating that updates are initially allowed. The update
capability is disabled after the execution of Task 1 (line 13). The update() method (line 17) checks the
value of update_policy (line 19); if updates are disabled, the assertion fails, causing the transaction that
invokes update() to fail. Other simple update policies, based on the status of the choreography or the
authorization rights of the user requesting the update, can be implemented similarly.

5. Related Works

The integration of blockchain technology with BPM has obtained attention in recent years, driven
by the need for trustworthiness in multi-party business processes [22]. Blockchain, with its inherent
immutability and decentralized nature, offers a promising solution for ensuring the integrity and
transparency of such processes. Over the years, many works explored the creation of trustworthy

blockchain-based systems for the execution of processes, mainly leveraging Ethereum [23, 24, 20] and
tackling specific challenges such as confidentiality [25, 26, 27, 28], and flexibility [29, 21].

The latter is indeed a key limitation shared by Ethereum-based systems due to the lack of secure and
modular upgradeability. Ethereum contracts are immutable by default, requiring complex proxy-based
upgrade patterns [30] to allow logic evolution. These proxies delegate execution to separate logic
contracts while maintaining state, but introduce significant risks, including misalignment of storage
slots, selector clashes, and initialization bugs [31]. Tools like PROXYEX [11] and USCDetector [31]
have revealed severe vulnerabilities in many real-world upgradeable contracts. Additionally, empirical
studies show that a large portion of upgradeable contracts are never actually updated, raising concerns
about the practicality and maintainability of such patterns [13].

These challenges are not unique and extend to BPM-specific platforms as well. The complexity of
maintaining backward compatibility, redeploying stateful logic, and orchestrating transitions between
contract versions can disrupt business workflows and undermine scalability [4]. For these reasons,
researchers have emphasized the importance of flexibility in business process management, proposing
solutions that answer the need to adapt process definitions at run-time. The authors in [21] encode
BPMN choreography diagrams as a set of rules. These are then stored on-chain and evaluated off-chain
for advancing the process state. In this way, runtime updates are enabled by updating the new rules
corresponding to the new choreography version. However, introducing an off-chain execution engine
represents a good trade-off between trust and flexibility, at the expense of potential vulnerabilities
connected to the off-chain part. Authors in [32] focus on the flexibility of executing business processes
on federated blockchains. The main goal is to provide interactions between different technologies,
where the system is developed with on-chain and off-chain components. Authors in [29] propose
a dynamic role binder for runtime choice of processes, focusing on controlled flexibility. This is
done by binding and unbinding actors to a role in a dynamic way. The authors provide a model and
corresponding binding policy specification language for the dynamic binding of actors to roles in
collaborative processes. However, despite the possibility of selecting alternatives at runtime, there is no
support for the introduction of brand-new elements in the choreography. In [33] the authors investigate
the issue of upgradeability of smart contracts. They use static and dynamic contracts for the storage of
logic and states, which incur high costs and a high level of complexity. The Algorand blockchain was
considered in [34], where the authors proposed a translation from the Dynamic Condition Response
(DCR) process modelling language to the Transaction Execution Approval Language (TEAL). However,
the work focuses on the translation approach, without considering an explicit management of runtime
updates.

Despite significant advancements, flexibility remains a persistent challenge in the execution of
decentralized choreographies. Existing works typically rely on custom strategies that either introduce
off-chain components or support a limited scope of changes. This limitation becomes even more
important when considering BPMN choreographies, for which only few solutions are available. Our
proposal leverages Algorand technology to natively support a fully flexible execution of choreographies
considering a wide range of changes across all choreography elements. The choice of Algorand [17]
was driven by its different execution model and native support for stateful smart contract upgrades,
enabling the update of contract logic in place, without relying on proxies or external redeployment. This
results in more secure, predictable, and maintainable upgrade paths. Moreover, a recent comparative
study by Weber et al [35] demonstrates that Algorand significantly outperforms Ethereum in terms of
runtime cost and process stability for BPM applications. Furthermore, Algorand’s Pure Proof-of-Stake
consensus protocol offers deterministic finality and low-latency transaction confirmation, crucial for
maintaining the responsiveness of distributed BPMN choreographies [36].

6. Conclusions

Blockchain enables new forms of inter-organizational collaborations where trust and accountability are
central concerns. Over the years, many solutions have been proposed to implement such collaborations

on Ethereum-based platforms. Such solutions rely on a high-level specification, translated then into
low-level code. In particular, BPMN choreographies have found widespread adoption for representing
inter-organizational interactions, deployed and executed as smart contracts. Choreographies permit
indeed to model only interactions between participants, without exposing internal details.

Despite blockchain supporting the implementation of choreographies, flexibility remains a major
challenge. Indeed, a choreography may need to be adapted at runtime to react to unplanned situations,
thus updating its implementation. However, despite changes to choreography that can be applied, the
inherited immutability of blockchain hinders smart contract code updates. Furthermore, structured
patterns or off-chain techniques lead to additional costs, increased complexity, or security limitations
requiring novel approaches. In this direction, the introduction of the Algorand blockchain and its
characteristics opens up novel research directions. Among the others, Algorand offers native features
supporting the update of smart contracts and related storage, without the need for complex or gas-
consuming patterns.

For this reason in this work we leverage Algorand to support flexible execution of BPMN chore-
ographies. Specifically, we show how smart contracts encode choregraphy logic, and how they can be
updated at runtime. To this purpose, we also consider different adaptation operations that can be done
on a choreography and consequently reflected in the related smart contract.

As future work, we plan to implement more structured policies enabling fine-grained access control
on update operations. Furthermore, we will systematically evaluate the proposed Algorand implemen-
tation in comparison with Ethereum-based upgrade patterns (e.g., proxy, diamond) by analyzing how
different choreography scenarios behave across various implementations. Finally, we aim to develop an
application with a user-friendly graphical interface that supports the shown phases, from the modeling
of the choreography to the automatic generation of smart contracts.

Acknowledgment

This work was partially supported by project SERICS (PE00000014) under the MUR National Recovery
and Resilience Plan funded by the European Union - NextGenerationEU and partially funded by
Ministero dell’Universita e della Ricerca (MUR), issue D. M. 351/2022 “Borse di Dottorato” - Dottorato
di Ricerca di Interesse Nazionale in “Blockchain & Distributed Ledger Technology”, under the National
Recovery and Resilience Plan.

Declaration on Generative Al

ChatGPT was used to assist with grammar, spelling, and phrasing. The authors reviewed and approved
all content and take full responsibility for the final manuscript.

References

[1] J. Mendling, I. Weber, W. V. D. Aalst, J. V. Brocke, C. Cabanillas, F. Daniel, S. Debois, C. D. Ciccio,
M. Dumas, S. Dustdar, et al., Blockchains for business process management-challenges and
opportunities, ACM Transactions on Management Information Systems (TMIS) 9 (2018) 1-16.

[2] C.D. Ciccio, G. Meroni, P. Plebani, Business process monitoring on blockchains: Potentials and
challenges, in: Enterprise, Business-Process and Information Systems Modeling, volume 387 of
LNBIP, Springer, 2020, pp. 36-51.

[3] C.D. Ciccio, G. Meroni, P. Plebani, On the adoption of blockchain for business process monitoring,
Software and Systems Modeling 21 (2022) 915-937. d0i:10.1007/S10270-021-00959-X.

[4] F. Stiehle, I. Weber, Blockchain for business process enactment: a taxonomy and systematic
literature review, in: International Conference on Business Process Management, Springer, 2022,
pp- 5-20.

http://dx.doi.org/10.1007/S10270-021-00959-X

(5]

[13]

[14]

[15]

S. Curty, F. Hérer, H.-G. Fill, Design of blockchain-based applications using model-driven engi-
neering and low-code/no-code platforms: a structured literature review, Software and Systems
Modeling 22 (2023) 1857-1895.

OMG, Business Process Model and Notation (BPMN V 2.0), 2011.

F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, F. Tiezzi, et al., Chorchain: A model-
driven framework for choreography-based systems using blockchain., in: ITBPM@ BPM, 2021,
pp- 26-32.

F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, F. Tiezzi, A choreography-driven
approach for blockchain-based iot applications, in: 2022 IEEE International Conference on
Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom
Workshops), IEEE, 2022, pp. 255-260.

F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, F. Tiezzi, Flexible execution of multi-
party business processes on blockchain, in: WETSEB, 2022, pp. 25-32.

M. Reichert, B. Weber, Enabling Flexibility in Process-Aware Information Systems - Challenges,
Methods, Technologies, volume 54, Springer, 2012.

M. Zhang, P. Shukla, W. Zhang, Z. Zhang, P. Agrawal, Z. Lin, X. Zhang, X. Zhang, An Empirical
Study of Proxy Smart Contracts at the Ethereum Ecosystem Scale , in: ICSE, IEEE Computer
Society, 2025, pp. 620-620.

F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, F. Tiezzi, A flexible approach to
multi-party business process execution on blockchain, Future Gener. Comput. Syst. 147 (2023)
219-234.

S. Malik, H. D. Bandara, N. R. van Beest, X. Xu, Smart contracts’ upgradability for flexible business
processes, in: BPM Blockchain, RPA, CEE, Educators and Industry Forum, Springer, 2024, pp.
55-70.

J. Chen, S. Micali, Algorand: A secure and efficient distributed ledger, Theoretical Computer
Science 777 (2019) 155-183.

W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng, Z. Chen, B. Xu, Smart contract development:
Challenges and opportunities, IEEE transactions on software engineering 47 (2019) 2084-2106.
Algorand, smart contract update, Algorand Developer, 2019.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich, Algorand: Scaling byzantine agreements
for cryptocurrencies, in: Proceedings of the 26th symposium on operating systems principles,
2017, pp. 51-68.

N. A. Malla, A. Marcelletti, A. Morichetta, F. Tiezzi, A blockchain-based, semantics-driven, modular
implementation of bpmn choreographies, in: Society 5.0, CCIS, Springer, 2025. To appear. Available
at https://github.com/nawaz-malla/Flexible-Business-Processes.

N. Malla, Github repository ‘Flexible-Business-Processes’, https://github.com/nawaz-malla/
Flexible-Business-Processes, 2025.

F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, F. Tiezzi, Engineering trustable and
auditable choreography-based systems using blockchain, ACM Trans. Manag. Inf. Syst. 13 (2022)
31:1-31:53.

F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, F. Tiezzi, A flexible approach to
multi-party business process execution on blockchain, Future Gener. Comput. Syst. 147 (2023)
219-234.

[22] Jan Mendling et al., Blockchains for business process management - challenges and opportunities,

[23]

[24]

[25]

ACM Trans. Manag. Inf. Syst. 9 (2018) 4:1-4:16.

O. Lopez-Pintado, L. Garcia-Bafiuelos, M. Dumas, I. Weber, A. Ponomarev, Caterpillar: A business
process execution engine on the ethereum blockchain, Softw. Pract. Exp. 49 (2019) 1162-1193.
A. B. Tran, Q. Lu, I. Weber, Lorikeet: A model-driven engineering tool for blockchain-based
business process execution and asset management, in: BPM Demo and Industrial Track, volume
2196 of CEUR Workshop Proceedings, CEUR-WS.org, 2018, pp. 56—60.

E. Marangone, M. Spina, C. D. Ciccio, I. Weber, CAKE: sharing slices of confidential data on
blockchain, in: CAiSE Forum, volume 520 of LNBIP, Springer, 2024, pp. 138—-147.

https://github.com/nawaz-malla/Flexible-Business-Processes
https://github.com/nawaz-malla/Flexible-Business-Processes
https://github.com/nawaz-malla/Flexible-Business-Processes

[26]

[27]

[28]
[29]

[30]

E. Marangone, C. Di Ciccio, D. Friolo, E. N. Nemmi, D. Venturi, I. Weber, MARTSIA: enabling
data confidentiality for blockchain-based process execution, in: EDOC, volume 14367 of LNCS,
Springer, 2023, pp. 58-76.

F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, E. Scala, F. Tiezzi, Model-driven
engineering for multi-party business processes on multiple blockchains, Blockchain: Research
and Applications 2 (2021) 100018.

E. Marangone, C. Di Ciccio, D. Friolo, E. N. Nemmi, D. Venturi, I. Weber, Enabling data confiden-
tiality with public blockchains, 2023. URL: https://arxiv.org/abs/2308.03791. arXiv:2308.03791.
O. Lopez-Pintado, M. Dumas, L. Garcia-Bafiuelos, I. Weber, Controlled flexibility in blockchain-
based collaborative business processes, Information Systems 104 (2022) 101622.

V. Buterin, et al., A next-generation smart contract and decentralized application platform, white
paper 3 (2014) 2-1.

X. Li, J. Yang, J. Chen, Y. Tang, X. Gao, Characterizing ethereum upgradable smart contracts and
their security implications, in: Proceedings of the ACM Web Conference 2024, 2024, pp. 1847-1858.
M. Adams, S. Suriadi, A. Kumar, A. H. M. ter Hofstede, Flexible integration of blockchain with
business process automation: A federated architecture, in: CAiSE Forum, volume 386 of LNBIP,
Springer, 2020, pp. 1-13.

P. Klinger, L. Nguyen, F. Bodendorf, Upgradeability concept for collaborative blockchain-based
business process execution framework, in: ICBC, volume 12404 of LNCS, Springer, 2020, pp.
127-141.

Y. Xu, T. Slaats, B. Diidder, S. Debois, H. Wu, Distributed and adversarial resistant workflow
execution on the algorand blockchain, in: FC, volume 13412 of LNCS, Springer, 2022, pp. 583-597.
F. Stiehle, I. Weber, The cost of executing business processes on next-generation blockchains:
The case of algorand, in: BPM: Blockchain, Robotic Process Automation, Central and Eastern
European, Educators and Industry Forum, Springer, 2024, pp. 89-105.

[36] J. Chen, S. Micali, Algorand, arXiv preprint arXiv:1607.01341 (2016).

https://arxiv.org/abs/2308.03791
http://arxiv.org/abs/2308.03791

	1 Introduction
	2 Background
	2.1 Algorand
	2.2 BPMN Choreographies

	3 Flexible Execution of Choreographies on Algorand
	3.1 Runtime Adaptation of Choreographies

	4 Implementation
	4.1 Choreography smart contract deployment
	4.2 Choreography smart contract update
	4.3 Cost analysis
	4.4 Update policies

	5 Related Works
	6 Conclusions

