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Abstract

Blockchain technology has improved supply chain management by increasing transparency, traceability and
automation. This paper introduces an updated version of *-chain, an automated framework that enables the
creation of supply chain management systems from high-level designs through a user-friendly web interface. The
proposed improvements integrate events into Ethereum smart contracts to enable asset property notarisation
throughout the supply chain, without modifying on-chain states. This approach optimises efficiency and reduces
costs while preserving decentralisation and data immutability.
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1. Introduction

The globalisation of production and distribution networks has made supply chains increasingly complex,
involving multiple stakeholders across different regions. Among the challenges for suppliers and end
customers is the issue of counterfeiting. Counterfeit products can undermine the trust and integrity of
brands, as they often imitate the quality and branding of authentic goods. This not only poses risks to
consumers who may unknowingly purchase inferior products but also creates significant complications
for businesses that face potential revenue losses. For instance, counterfeit wine or olive oil, produced
under fraudulent claims of origin, can harm consumers by providing substandard products and also
undermine the reputation of legitimate producers. According to the European Union Intellectual
Property Office [1], counterfeiting costs the European economy billions annually, especially in sectors
such as clothing and cosmetics.

In this context, ensuring the authenticity, provenance, and integrity of goods has become a critical
challenge. One of the most effective ways to safeguard these aspects is through supply chain traceability,
which allows stakeholders to track the movement of goods from origin to final destination. This
practice is particularly crucial in industries where product integrity is tied to geographical origin,
traditional production methods, and consumer trust. Protected Designations of Origin (PDO) play a
vital role in ensuring the traceability of products and their production methods. PDOs are a form of
intellectual property protection granted to products that are deeply linked to a specific geographical
area and are produced according to traditional methods. In Italy, renowned examples of PDOs include
Parmigiano Reggiano, Prosciutto di Parma, and Olio Extra Vergine di Oliva Chianti Classico. These
products are carefully regulated and certified by local authorities to ensure they are only produced
in their designated regions using specific processes, thus safeguarding their authenticity. Besides
protecting against counterfeiting, PDOs also promote local economies, ensuring that the benefits
of authentic production stay within the communities that have historically cultivated the skills and
knowledge to produce these high-quality goods.
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Traditional supply chain systems for these products often rely on centralised databases, which are
vulnerable to manipulation and lack transparency across the entire product lifecycle. These limitations
hinder the ability to reliably track products from origin to destination, weakening both consumer
trust and regulatory compliance. Blockchain technology offers a promising solution by providing an
immutable, distributed ledger that can record product data in a transparent and tamper-evident manner.
When combined with smart contracts, it enables automated and verifiable traceability throughout the
supply chain. For instance, counterfeiting can be prevented by recording every stage of a product’s
journey, from production to distribution, on a blockchain that can be consulted by consumers and
stakeholders.

In previous work, the *-chain [2] framework was proposed to assist producers, whose expertise
is usually outside blockchain technologies, in designing and implementing blockchain-based Supply
Chain Management Systems (SCMS) for tracking specific production processes. The *-chain framework
includes a Domain-Specific Graphical Language (DSGL) and a set of tools to facilitate SCMS creation.
Users can design a graphical representation of a supply chain by combining predefined constructs
for operations, assets, containers, and roles. The framework then generates Solidity smart contracts
required to implement the SCMS and web interfaces for interacting with the blockchain.

In this paper, we present an enhanced version of *-chain that incorporates the use of events [3] to
notarise properties of an asset as it progresses through different stages of a supply chain. The language
used for the smart contracts is Solidity, which natively handles the emission of events in response to
operations called by users. Events are a Solidity logging mechanism that enables the tracking of specific
actions within a contract without using blockchain storage. These events are stored in the blockchain’s
log, which is separate from the contract’s state and can be accessed off-chain by external applications
or other contracts. Within *-chain, each time an asset transitions to a new state, an event is emitted that
records changes in its related properties. These events are immutable and can be read by stakeholders
like producers, consumers and other supply chain participants, to verify the asset’s properties at each
stage of its life cycle.

An initial motivation for adopting an event-driven approach in our framework is the significant
reduction in gas costs. Indeed, while a storage update can cost around 20,000 gas, emitting an event
with similar data may only require 2,000-3,000 gas, reducing costs by up to ten times. Events also
make it possible to create reactive interfaces where significant changes are notified without additional
storage operations. This allows external components with asynchronous workflows, such as payment
confirmations or shipment tracking, to react passively to state changes, avoiding constant polling of
smart contracts and thus reducing network load. Moreover, since events are immutable and verifiable,
they prove to be useful for auditing, debugging and tracking contractual interactions. Popular libraries
such as Web3.js and Ethers.js provide native support for event management, further simplifying the
integration with decentralised applications.! Finally, the use of events promotes a clear separation
of concerns: while the smart contract manages the logic and state of the application, events are used
exclusively to signal changes.

Therefore, this work is a study to evaluate whether events can be effectively used to manage SCMS,
particularly using *-chain as a case study to explore the practical implications of this design choice.

The remainder of this paper is organised as follows. Section 2 provides an overview of the Solidity
language, with a focus on events, and briefly describes the DSGL introduced in [4]. Section 3 outlines
the use of events within the *-chain framework, illustrating the registration and retrieval of asset
properties via the blockchain log. Section 4 highlights the main advantages we have identified for the
use of events, also exemplifying practical scenarios through the *-chain web user interfaces. Section 5
reviews significant literature related to our work, and Section 6 concludes the paper with a discussion
of potential future directions for this research.

The Web3.js and Ethers.js documentation are respectively available at https://docs.web3js.org and https://docs.ethers.org.
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2. Background

In this section, we provide background information on the technologies used in our work, including
Solidity, Ethereum events, and the *-chain DSGL.

2.1. Solidity

Smart contracts are programs based on rule sets and deployed on the Ethereum blockchain, which allows
functions to be executed if certain conditions are met. Ethereum smart contracts can be written using
several programming Turing-equivalent languages, but the most popular is Solidity. These contracts
can execute transactions automatically, so there is no need for a third-party entity to take action. Their
use will thus ensure that transactions are executed safely, quickly, autonomously and transparently.
Solidity is a high-level, statically typed programming language specifically designed for writing smart
contracts on Ethereum and Ethereum-compatible blockchains. It includes features such as inheritance,
libraries, and complex user-defined types, which make it well suited for creating robust and modular
contract logic. Solidity compiles down to the Ethereum Virtual Machine bytecode, allowing developers
to define both state variables and executable functions within contracts.

Smart contracts written in Solidity are powerful tools that facilitate automated transactions and
interactions on the blockchain. They enable users to execute a series of operations that maintain the
blockchain’s state and handle persistent data. These contracts can respond to external transactions
or function calls, making them highly versatile. Due to the immutable and decentralised nature of
the blockchain, it is critical for developers to focus on both efficiency and security when designing
smart contracts. Efficiently written contracts minimise the computational resources required to execute
operations, which not only improves performance but also reduces costs for users. Given that each
operation within a smart contract incurs a gas cost, optimizing code can lead to considerable savings
for those interacting with it.

Gas serves as a measure of the computational effort needed to execute the operations on the Ethereum
network. Users are charged gas fees based on the complexity and intensity of the resources of the
operations they wish to perform. Every transaction initiated and every function call made within a
smart contract consumes gas, and users pay for this gas in Ether, the native cryptocurrency of the
Ethereum network.

2.2. Events

Events in Solidity act as a communication mechanism between smart contracts and components outside
the blockchain. When an event is emitted, it writes data into the blockchain’s log, which is not
directly accessible by other smart contracts but can be retrieved efficiently by external applications like
monitoring tools. These logs, although not part of the contract status, are permanently stored on the
chain and cryptographically linked to the transaction that issued them, thus guaranteeing immutability
and verifiability.

When declaring an event, a template is defined for the log entries, specifying the parameters that will
be included when the event is emitted. Some of these parameters may be marked as indexed, which
means that they will be stored as searchable entries separated by arguments to facilitate efficient filtering
and querying. During contract execution, when the emit keyword is used to trigger an event, the
Ethereum Virtual Machine creates a log entry consisting of the contract address, an array of arguments,
and a data load. The first argument is always the hash of the event signature, while the other arguments
correspond to the indexed parameter values. Non-indexed parameters are encoded using the Application
Binary Interface (ABI) specification and stored in the data field.

Events are particularly useful for signalling state changes, enabling asynchronous communication
and reducing computation on the chain by moving logic to external observers. A typical use case of
events concerns transaction tracking, real-time updates of user interfaces, and verification. For example,
an event could be issued when a load of olives is washed, and users subscribed to this event could react
immediately to the change of state, without having to continuously query the blockchain.



2.3. *-chain DSGL

*-chain employs a DSGL specifically designed to allow domain experts, such as producers, to intuitively
model and represent any supply chain. This language uses a set of predefined constructs that correspond
to the various operations of the production process, each with its own graphical representation. Below,
we outline the key elements of the system, i.e. assets, containers, operations and roles, referring the
reader to [2] for an in-depth description.

Assets represent the objects involved in the production process described by the supply chain. For
example, in olive oil production, a batch of olives is considered an asset. Each asset is associated with a
set of properties that reflect the effects of operations on it during production. Two special properties
are common to all assets: the owner, i.e. the participant in the supply chain who owns the asset, and the
controller, which is the participant who has physical control of the asset.

Containers are used to store and move assets. Uncountable assets must always be placed in containers
to be tracked, while countable assets can be stored in containers for convenience. When an asset is
placed in a container, some of its properties become unchangeable, while others, associated with those
of the container itself, may change. For example, the weight of a batch of olives cannot change when
they are placed inside a container, but their position changes along with that of the container when it is
moved.

The operations in *-chain DSGL represent the activities performed on assets during the production
process. These operations allow the creation, transformation, tracking, and management of assets
within the supply chain. Let us now list some of the various types of operations defined, using the olive
oil supply chain to illustrate their functioning.

« asset_create is employed to create new assets in the system. In the olive oil process, this
operation can be used during the olive harvesting stage to create the olive asset.

« asset_update: modifies asset properties such as position or temperature. For example, moving
a batch of olives produces an update of their position property.

« asset_transformrepresents significant transformations that create new assets starting from
existing ones, such as turning olives into olive paste.

« asset_destroy represents the destruction of an asset, such as when the remaining pomace is

discarded.

Each operation can be paired with constraints, e.g. conditions based on asset properties, to ensure its
validity within the system. Additionally, operations can only be executed by participants in the supply
chain who play the appropriate role and possess the corresponding rights.

The role system regulates the execution of operations by supply chain participants. The idea is that
operations can only be performed by authorised participants with specific capabilities certified by their
role. *-chain adopts a role-based access control (RBAC) [5] model, in which distinct roles are defined
and the right to execute an operation is linked to one or more of these roles. When designing a supply
chain using, the domain expert first creates a set of roles to assign to supply chain participants upon
registration, then associates an authorisation rule with each operation requiring protection.

2.4. *-chain Tools

The *-chain framework comprises several core components that collectively enable the design, imple-
mentation, and interaction with blockchain-based SCMSs. The Graphical Editor supports supply
chain domain experts in modelling their SCMSs by means of the *-chain DSGL. This tool generates two
parallel representations of the modelled supply chain: a graphical representation and a JSON-based
textual representation.

The Model Translator processes the latter representation to produce a skeleton of the SCMS
in the Solidity language. This skeleton defines the structure and signatures of the smart contracts
corresponding to the elements specified in the supply chain model. The resulting Solidity code can
then be refined by a domain expert, who incorporates the application-specific logic required to fulfil



the operational needs of the SCMS. The expert is also responsible for deploying the finalised smart
contracts onto the designated blockchain platform.

In parallel, the Model Interface Builder enables the automatic generation of user interfaces tailored
to different actors within the SCMS. These include:

« the Administrator Interface, which allows administrators to configure the SCMS by assigning
roles and permissions to participating entities;

« the Participant Interface, through which users can record their actions on supply chain assets,
according to their assigned roles;

« the Viewer Interface, which provides visibility over the historical operations performed on a
specific asset, as recorded on the blockchain.

3. Event-Driven Optimisation in *-chain

In the smart contracts generated by *-chain, we incorporate events to track state changes of blockchain-
based assets without increasing the storage requirements of the contract. For each asset type defined
in the supply chain model, the Model Translator produces a dedicated event to emit snapshots of the
asset’s state whenever an operation is performed. These events capture essential metadata, including
the asset’s unique identifier, ownership and control addresses, off-chain references (e.g. properties hash)
and the current lifecycle state.

Unlike earlier versions of our system [2] that relied on additional on-chain variables, events now
provide a more efficient mechanism for recording asset state transitions. The insertion of events is
automated at the points in the contract where asset state mutations occur. Specifically, the generator
adds an event emission in all *-chain operations discussed in Section 2.3.

Listing 1 shows the code of a generic *-chain event to log the full snapshot of an asset’s state.
productId is the unique ID of a product, which refer to an instance of an asset. owner is the address
of the asset’s owner. controller is the current controller responsible for the asset. hash is the hash
of asset’s properties at this specific state, with the full data stored off-chain in a database. state is the
current state of the asset, represented as an enum.

event asset_history(

uint256 indexed productId, // Unique identifier for this product
address owner, // Permanent owner address

address controller, // Entity currently controlling the product
bytes32 hash, // Off-chain data reference to properties
asset_state state // Enum: lifecycle state of the asset

Listing 1: Example of an auto-generated event for asset tracking.

In our framework, we represent the properties of each asset through a single cryptographic hash
rather than emitting each property individually within the event. This design choice is motivated by two
primary factors: gas efficiency and technical limitations in the Solidity event system. First, storing and
emitting multiple properties directly in an event incurs significant gas costs, especially when dealing
with complex or high-dimensional data structures. Each additional parameter increases the size of the
event log and, consequently, the cost of executing transactions that trigger those events. By aggregating
all relevant asset attributes into a single off-chain data structure and computing a hash of its contents,
we can drastically reduce the on-chain computation and make the event emission more cost-effective.

Second, Solidity enforces a strict limit on the number of parameters that can be passed to an event,
currently capped at 17, with at most 3 of them being indexed.” For asset models with many attributes

?Solidity ABI specification: https://docs.soliditylang.org.
Solidity compiler implementation: https://github.com/ethereum/solidity.
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this limit becomes a bottleneck. Using a hash sidesteps this constraint entirely, allowing us to include
an arbitrary number of properties in the off-chain record, while still maintaining verifiability through
the on-chain hash. Moreover, this approach guarantees data integrity and tamper detection, as the hash
acts as a compact fingerprint of the off-chain asset properties. Any unauthorised modification to the
underlying data will result in a hash mismatch, signalling that the record has been altered.

Consequently, trust in the off-chain application is not required for data verification. Since the hash of
the asset state is immutably recorded on-chain, any user can independently validate the integrity of the
clear-text data retrieved from the database by recomputing the hash and comparing it to the on-chain
reference.

However, this mechanism comes with an inherent limitation: the hash is non-reversible by design. If
the original off-chain data is lost or corrupted, it cannot be reconstructed from the hash alone. This
implies that while the hash ensures that data has not been tampered with, it also makes the system
dependent on reliable and persistent off-chain storage for data availability and recovery. Therefore,
ensuring secure and redundant storage of asset records is essential to complement the use of hashing in
event logging.

The proposed architecture can be further refined to mitigate the risk of a single point of failure,
such as through the adoption of distributed storage, including traditional database replication and
decentralised technologies such as IPFS.* Replication strategies [6] also offer valuable insights for
improving data availability and resilience in similar decentralised settings. Moreover, given that the
data in question are used to certify the integrity of supply chain processes, the stakeholders involved
have a direct incentive to ensure their availability over time, as this directly impacts their ability to
prove the authenticity and quality of their products.

The asset contract emits events every time a function that alters the asset’s state is invoked. In
particular, when an asset is created, an event is triggered to log its initial state. This occurs in the
function that initialises the asset, ensuring that all relevant parameters in Listing 1 are recorded as soon
as the asset is created in the contract. Capturing this initial state allows for tracking the creation of each
asset. Once a specific operation authorised by the contract is successfully executed, for example for
processing an asset or performing an irreversible action via a user-triggered function, the contract emits
an event to signal its completion. For instance, when an asset changes storage location or undergoes
a significant transformation, the emitted event marks the finalisation of that action, recording the
performed operation. Finally, when an asset is destroyed or reaches its final state (e.g. after it has been
processed and its usefulness in the chain has ended), an event is emitted to record this finalisation.
This serves as the closing point of the asset’s lifecycle and certifies that the destruction of the asset is
completed and cannot be altered.

3.1. Accessing the Event Log

Our system must be capable of deploying decentralised applications that interact with the Ethereum
blockchain. To this end, the most widely used tools from an implementation perspective are the Web3.js
and Ethers.js libraries.* Both libraries provide similar core functionalities: they enable connections
to Ethereum providers, interaction with smart contracts via ABI definitions, message and transaction
signing, and wallet management.

In *-chain, we adopt Ethers.js, currently one of the most lightweight solutions for managing smart
contracts, accounts, providers, and cryptographic operations. While Web3.js has historically been
the most popular choice, in recent years Ethers.js has emerged as the preferred alternative among
developers and researchers due to a range of architectural and practical advantages.

From a technical standpoint, Ethers.js offers a modular and security-oriented design. Unlike Web3js,
which includes numerous legacy dependencies and a more cumbersome API, Ethers.js was built to be
easily integrable, and better suited to contexts where code size and transparency are critical requirements.

*IPFS website: https://ipfs.tech.
*Web3.js documentation: https://web3js.readthedocs.io.
Ethers.js documentation: https://docs.ethers.org.
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This makes it particularly appropriate for our needs, where we deploy user interfaces as distributed
applications and need to seamlessly integrate decentralised components (smart contracts) with off-chain
modules. Another key advantage of Ethers.js is its native compatibility with development tools like
Hardhat, which greatly simplifies the creation of local testing environments.” This is increasingly
valuable as public testnets become less reliable for routine development and debugging of blockchain-
based applications.

In our implementation, blockchain events are read and processed with the aim of retrieving two key
pieces of information: the hashes of the properties associated with a given product, and the current
state of that product. This information is crucial for two tasks. The first is to allow the complete history
of a product to be displayed in the interface of participants and viewers. The second is to correctly
determine which operations are permitted on a certain product, based on its state and the user’s role.
To this end, we implement two separate functions that interact with the Ethereum blockchain via the
Ethers.js library. These functions read and process relevant events from the blockchain log.

The first function, queryBlockchainEventHash, queries the blockchain for a specific type of
event associated with a product1d. Each of these events represents a recorded state transition for that
product and includes the hash of the properties characterising the asset in that particular state. The
function extracts these hash values from the emitted events and returns them as an array. The hashes
are then cross-referenced with off-chain database entries to retrieve the corresponding human-readable
property names and values. As a result, for each individual product, it is possible to reconstruct the
complete sequence of states it has gone through, together with the associated properties at each state.
This historical view is then displayed in the web interface, allowing users to inspect how the product’s
characteristics evolved over time.

To execute the query, three elements are required: the ABI of the smart contract, the address of the
contract on the blockchain, and the name of the event to be filtered, which is derived dynamically
according to the type of product selected. When executed, the function loads the appropriate ABI,
connects to the Ethereum network via MetaMask and instantiates the smart contract interface. It then
filters the blockchain logs for all matching events based on the productid. From each event thus
retrieved, the hash is extracted, which will then be used to trace back the properties associated with the
product in the database. This mechanism allows the system to reconstruct and visualise the evolution
of the state of any product in terms of its associated properties in the various states.

In addition to retrieving the properties of the product, we also need to identify its current state,
since, similarly to the role system, this determines which operations are permitted on it. In fact, each
operation can only be performed if the product is in a specific state. To determine the current state,
the function queryBlockchainEventLastState adopts the same event query procedure used for
property hashes. However, unlike the latter, which requires processing all the retrieved events, this
function extracts the state only from the last event emitted. Since the events returned by filtering the
logs with Ether.js are ordered chronologically by block number, from oldest to newest, the last event
returned will also contain the most recent status associated with the selected product. Based on the
retrieved state, the participant interface dynamically enables the operations available for the product,
in accordance with the user’s role and SCMS logic.

A key advantage offered by public blockchains, such as Ethereum, is the total transparency of recorded
information. All smart contract transactions, as well as issued events, are visible and can be consulted by
anyone. *-chain intentionally exploits this feature to guarantee maximum traceability and ensure that
the state of an asset can be fully reconstructed simply by reading the sequence of events associated with
its identifier. This allows any observer, both internal and external to the supply chain, to independently
verify the correctness of the process, thus fostering auditability and trust.

We reiterate that the privilege to consult the status of an asset does not imply the possibility of
modifying it. In fact, the operations that enable the life cycle of an asset to be advanced are protected by
the access control mechanism embedded in our smart contracts: only participants officially registered in
the chain and endowed with the appropriate role can invoke operations that alter the state of the asset.

Hardhat website: https://hardhat.org,
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3.2. User Interfaces

We now demonstrate how the properties and states read from the events modify the participant interface
to show updates on products. Each participant will have access to functionalities based on their role.
Although our goal is to provide a general overview of the system through the lens of the newly
introduced events, without focusing on a specific supply chain, in this section we will use the oil supply
chain, previously studied in [4], for illustrative purposes.

In Figure 1, we see three panels of the the participant interface displaying summary information about
products and the operations executable on them by a participant with the "miller" role. The leftmost
panel shows all registered products, along with their respective identifiers, owners, and controllers.
These details are all retrieved from the blockchain using functions automatically generated by *-chain.
When one of these products is selected, the functionalities of the other two panels are activated.

Products Olive_2 Operations
Product  Controller Owner Property Value Name Type Parameters
Olive_0 X X id: 2 Wash update
Olive_1 X X weight: 100kg
Olive_2 X X position  Mill

) 17443644

Figure 1: Example of participant interface displaying product details, property history, and valid operations
based on product state.

The central panel displays properties related to the asset selected from the left panel, including the
name and associated value. If the product has undergone state changes, the properties from each state
will be shown sequentially, so that the user can reconstruct the product’s history. The properties are
read as hashes from the events in the blockchain logs via the function queryBlockchainEventHash,
as described above. The off-chain database then allows us to map each hash to the name-value pairs of
the associated properties.

Finally, the rightmost panel lists the valid operations allowed on the selected product, i.e. those for
which the product is in the required state, the user holds the required role, and constraints on the
owner and controller are met. In addition to the operation name, its type and input parameters are also
displayed. These parameters will set the properties the product will assume in the next state. Operations
of the type asset_create are the only ones handled differently, as they can be executed without
selecting an existing product. As such, we have chosen to display them in the first panel, making the
consultation and creation of individual products more straightforward. When an operation is invoked,
by clicking its name in the third panel or using the “Create new product” button in the first panel,
a form appears where parameters can be set and execution confirmed. If executed successfully, the
operation registers the necessary information on the blockchain and emits an event with the hash of
the properties. At this point, the interface is updated, displaying the properties and operations for the
selected product corresponding to its current state.

The participant interface also displays a visual representation of the supply chain generated using
the *-chain DSGL. This visual aid provides an immediate overview of the product’s progress through
the chain, as illustrated in Figure 2. When a product is selected and after each operation has been
performed, the interface highlights the following components of the representation:

« the current state of the asset

« the valid operations available from the current state

« the history of previous states and operations the product has passed through
« the properties associated to current and previous asset states



To enhance their visibility, the operations that can be performed on the product are further highlighted
with a shadow in the background. All other elements of the representation that have not yet been
reached in the production cycle, that is, potential future states, properties, and operations that cannot
yet be executed, are displayed with transparency.

Wash ) '

_participant

position welght

Figure 2: Example of participant interface with a dynamic visualisation of the product’s state, valid operations,
and history within the supply chain.

4. The Practical Role of Events in Asset Lifecycle Management

Events in Ethereum smart contracts play a central role in linking on-chain processes with off-chain
systems and provide a powerful abstraction for tracking asset lifecycles. This section explores how
events can be leveraged to improve the usability, transparency and performance of our system, using
practical examples from supply chain contexts to illustrate the benefits in concrete terms.

4.1. Event Logging and Advantages for Auditability and Tracking

Events are stored on transaction receipts instead of being stored in contract storage, providing a gas-
efficient way to track important changes without increasing on-chain data costs. Although events
are not part of the contract’s permanent state, they are permanently recorded in the blockchain logs
and cannot be altered or removed. This immutability makes them highly reliable for purposes such as
compliance auditing, debugging, and tracking the lifecycle of contractual operations.

From an architectural point of view, this approach supports an event-driven model that decouples
on-chain logic from off-chain processing. External systems, such as monitoring tools, dashboards,
or analytics platforms, can subscribe to our event streams and respond to changes in near-real time.
This enables asynchronous integration, allowing external user-facing applications to reflect changes in
contract states without the need to repeatedly query the blockchain. Furthermore, event logs provide
a transparent and verifiable history of every significant action taken within the smart contract. For
auditors and external developers, this allows for a detailed inspection of asset flows and role-based
interactions. For end users, events enhance trust and usability by powering transaction histories,
notifications, and activity timelines.

Importantly, this event-driven design significantly enhances both the development and usability of our
participant and viewer interfaces. By allowing the front end to listen to emitted events and reflect state
changes in real-time, it removes the need for manual data fetching or complex state synchronisation. As
a result, the architecture ensures that contract activities are communicated efficiently and transparently
to all users.

4.2. Separation of Responsibilities and Security

A key design principle in smart contracts is the separation of responsibilities between core logic and
external data handling. In our framework, this separation is maintained: the smart contract enforces
the rules and governs asset state transitions, where the state represents the current phase or condition
of the asset within the supply chain, while the event system is used to notify external systems and store
verifiable summaries of those states.



Although we use events to persist a hash of the asset properties, this does not compromise the
contract’s role or responsibilities. The contract does not rely on event data for its own execution or
correctness. Instead, it emits a cryptographic fingerprint of the asset state, allowing external systems to
store and interpret the data without affecting the contract’s logic.

This approach keeps the contract simple and modular, making it easier to maintain or extend. From a
security point of view, it also ensures that any issues in off-chain processing do not impact the contract,
since the on-chain behaviour is fully self-contained [3]. Additionally, avoiding on-chain storage in
favour of events reduces gas costs while still supporting transparency and auditability, as the emitted
hashes can be used to verify the integrity of off-chain data.

4.3. Real-Time Interaction and System Efficiency

Smart contract events play a central role in enabling reactive architectures within blockchain-based
applications. Unlike traditional storage updates, events do not alter the contract’s internal state but are
instead recorded in the transaction logs, which are permanently accessible and efficiently indexable
by client applications. In *-chain, events are emitted to capture every meaningful state transition in
the lifecycle of supply chain assets. This mechanism allows external applications, such as dashboards,
web interfaces, and monitoring tools, to subscribe to these logs and maintain an up-to-date view of
the system without directly querying contract storage. In practice, this translates into significant
architectural and performance advantages, of which we provide an overview below.

Without events, applications would need to periodically query smart contracts to check for state
changes, which is both inefficient and costly. In contrast, event-driven systems can listen passively and
only react when relevant events are emitted, greatly reducing network load and resource consumption.
Events also enable the creation of user interfaces that automatically react to changes occurring on-chain.
For example, in an olive oil supply chain, when a batch is packaged, the smart contract can emit an
event that triggers a front-end interface to automatically update the status of the corresponding asset.
This update happens in real-time, without the need for manual refreshes or periodic polling. Moreover,
events are particularly suited for handling asynchronous workflows. They can confirm, for instance,
when a payment has been received or when a delivery has been initiated. These transitions often depend
on external interactions, such as user wallets or oracles, and events provide an efficient mechanism to
observe and respond to such changes. Additionally, events help separate concerns by decoupling state
updates from notification logic. Since events are primarily designed for off-chain consumption, they
allow state changes to be signalled to listening systems without requiring an additional write to the
blockchain. This further reduces gas consumption and enhances system efficiency.

To better understand the practical advantages of using events in blockchain applications, it is helpful
to compare two different approaches to handling state updates in a supply chain context. A concrete
example helps illustrate the difference: imagine a crate of olives that needs to be tracked as it moves
through various stages, being transferred from the warehouse to the mill, washed, and eventually
pressed into oil.

In an event-driven system, smart contracts emit events whenever something relevant happens along
this chain. When the crate is moved to the mill, an event is emitted. Later, when the olives are
washed, another event is triggered, and the same occurs once pressing is completed. These events
can be detected in real-time by external applications, such as dashboards, quality control systems, or
notification services. The key benefit is that the front-end automatically reflects each change as soon
as it is recorded on-chain, without requiring any manual action. This ensures that all stakeholders
(producers, processors, inspectors, or logistics operators) have an up-to-date view of the crate’s status,
improving coordination and reducing uncertainty.

By contrast, a system that does not rely on events would need to use manual checks or polling.
In the manual case, users must refresh the interface or actively request updates to see if the crate
has progressed to the next stage. If they forget or delay doing so, the displayed information may be
outdated, which can lead to poor decisions or miscommunication. Polling automates this process to
some extent by regularly querying the blockchain to check if a change has occurred. However, this



approach increases network load, introduces delays between state changes and their visibility in the
interface, and requires extra effort to manage the polling logic across many assets. This difference
becomes even more relevant as the supply chain grows in scale and complexity. With hundreds of
crates being processed simultaneously and multiple actors interacting with the system, continuously
checking the status of each item quickly becomes inefficient. Events provide a more scalable and elegant
solution, since applications simply listen for the specific changes they care about, and react only when
those changes occur.

4.4. Reducing Gas Costs Through Event-Based Logging

One of the most practical advantages of using events in Ethereum smart contracts is the significant
reduction in gas costs. Writing data to the blockchain’s persistent storage is among the most expensive
operations in terms of gas consumption, while emitting an event, although also recorded on-chain in
the transaction logs, is considerably cheaper. In a typical supply chain scenario, every time an asset (e.g.
a crate of olives) progresses in its lifecycle, the system must record the associated state change. If each
of these transitions, such as “transferred to mill”, “washed”, or “pressed”, were stored directly in the
contract’s storage, the cost would grow rapidly, especially when scaled to hundreds or thousands of
assets.

A straightforward optimisation is to store only a global cryptographic hash representing all asset
properties, rather than the properties themselves. This already offers a significant gain: writing a
single uint 256 hash to storage costs roughly 20, 000 gas, compared to storing multiple fields, which
could result in several times that amount. However, our proposed solution further reduces this cost
by emitting the hash as part of an event instead of persisting it in storage. Emitting an event with a
uint256 hash typically costs around 1, 500-2, 000 gas, an order of magnitude less than storing the
same hash in the contract state. This difference becomes particularly important when updates are
frequent or when the number of properties is large. Moreover, since events are designed for off-chain
consumption, they provide a natural mechanism for transparent communication with user interfaces
and external systems. In *-chain, only the minimal information required for validation and access
control is stored directly in the contract, while all non-critical but verifiable data (e.g. asset properties)
is emitted in structured events.

5. Related Work

In literature, various studies have addressed blockchain-based SCMS from multiple perspectives, often
focusing on specific use cases or industries. The survey in [7] provides a theoretical overview of trends
and future directions in blockchain-enabled supply chains, while [8] offers a comprehensive review of
agrifood applications, highlighting the potential of blockchain to improve traceability, safety, and fraud
prevention, as well as practical challenges such as scalability and regulation.

Other works focus on domain-specific models. [9] develops a blockchain-based economic exchange
tracking system to enhance trust in financial transactions, though the system remains largely theoretical.
In the manufacturing sector, [10] examines blockchain adoption strategies through a Stackelberg game
model, considering both direct and retail distribution channels. [11] addresses the use of blockchain in
vaccine distribution, suggesting verification mechanisms to ensure reliability, though without imple-
menting a concrete supply chain schema.

From a decision-theoretic perspective, [12] analyses the trade-off between traceability and environ-
mental sustainability in a global supply chain, showing that blockchain adoption is feasible only under
specific economic and consumer behaviour conditions. Finally, [13] presents a decentralised system
for pharmaceutical distribution that leverages smart contracts to eliminate intermediaries, improving
traceability and reducing transaction times.

While these studies provide valuable insights into the potential of blockchain in SCMS, they tend
to either remain conceptual or focus on storing data directly in the contract state. Our work takes a
different direction by investigating the feasibility of using events, rather than persistent storage, as the



main mechanism for recording supply chain interactions. This approach is evaluated within the context
of *-chain, an asset-oriented framework designed to be domain-agnostic and highly customisable.

6. Conclusion and Future Work

In this paper, we present an updated version of *-chain, a framework that helps experts design and
implement decentralised SCMS via web interfaces. The main contribution is the integration of events
into the generated Ethereum smart contracts, which allow the properties of assets to be recorded in the
blockchain log as they evolve along the supply chain. The advantage lies in the fact that writing into the
blockchain log requires less gas than writing into storage, while the decentralisation and immutability
of the data are maintained. This approach also opens up opportunities for system integrations in which
external components can listen for changes without continuously querying the blockchain. Although
this strategy does not replace all uses of on-chain states, it offers a practical compromise in contexts
where notarisation and verifiability are important, but full storage is not strictly necessary.

In future developments, we will focus on extending *-chain in several directions. One of our primary
goals is to introduce mechanisms that allow users to choose whether to record the properties of an asset
directly in the blockchain storage or via hashes in the logs as is the default in the current implementation.
At the same time, we plan to implement a type of operation that, by design, does not involve writing
into the blockchain, but uses exclusively an off-chain database. These adjustments aim to lower the
cost for operations that do not require strong guarantees. In order to improve cost efficiency, we also
would like to conduct an in-depth study of the cost differences resulting from the use of events and the
management of properties and other parameters via hashes.

Another line of research concerns the formal validation of smart contracts. Immediately after the
generation of the ABI, we could introduce automatic checks to ensure that the contract meets certain
key structural requirements. For example, it should be possible to derive a valid sequence of operations
like asset_create and subsequent transformations that logically link an asset at the beginning of the
supply chain to its final output. If no valid trace exists, the implementation of the contract must be
interrupted to avoid logical inconsistencies. Finally, we intend to incorporate a hierarchical RBAC model,
allowing for more expressive and secure role delegation. This will also result in a better alignment
between organisational structure and on-chain permissions.
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