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Abstract

This paper presents Block-Timer, a layer-optimized approach for executing BPMN processes with time constraints
on blockchain networks. Time-bound activities are core components of business processes, representing regu-
latory deadlines and service level agreements. While blockchain technology offers transparency and trustless
coordination for process execution, implementing time constraints on blockchain presents significant technical
challenges. Traditional blockchain platforms rely on vulnerable block timestamps, while executing complex
processes entirely on Layer 1 faces economic and throughput limitations. We propose a conceptual hybrid-
solution where a block-number-based implementation of timer events ensures secure, manipulation-resistant,
time tracking without external dependencies. Our solution automatically translates BPMN processes with timer
events into executable smart contracts, with a comparative analysis of execution costs between Ethereum (Layer
1) and Arbitrum (Layer 2) across three diverse case studies. The analysis reveals that Layer 2 implementation
reduces operational costs compared to Layer 1 while maintaining functional equivalence. Based on these findings,
we propose an hybrid architecture that strategically distributes process operations between layers according
to security requirements and cost considerations. This approach optimizes the balance between security guar-
antees and economic feasibility for blockchain-based business process execution, particularly for multi-party
workflows requiring both trust and efficiency. Our security analysis confirms the integrity of the block-based
timer implementation with no critical vulnerabilities, demonstrating a conceptual solution for time-constrained
process execution on blockchain networks.
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1. Introduction

Business Process Model and Notation (BPMN) has emerged as the standard for modeling organizational
workflows, providing a graphical representation that bridges the gap between process design and
implementation [1]. In today’s business environment, time constraints are fundamental components
of these processes, often manifested as regulatory deadlines, service level agreements, or operational
timeframes. These time-bound activities are represented in BPMN as timer events, which trigger specific
actions after predetermined periods or at scheduled timestamps.

Meanwhile, blockchain technology offers important capabilities for business process execution
through immutable record-keeping, transparent operations, and trustless coordination between par-
ticipants [2]. The integration of BPMN with blockchain technology creates new opportunities for
automated, transparent, and verifiable process execution, particularly for multi-party workflows where
trust and accountability are essential.

However, implementing time constraints on blockchain presents significant technical challenges
[3]. Traditional blockchain platforms like Ethereum rely on block timestamps, which are vulnerable to
manipulation by miners within certain bounds. Additionally, executing complex business processes
entirely on Layer 1 blockchains faces practical limitations due to high transaction fees that make
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frequent operations economically unfeasible, especially during network congestion periods. Layer 1
blockchains also have inherent throughput limitations that restrict their ability to handle high-volume
process execution, while block confirmation times can impact the timing precision required for critical
business processes [4].

While Layer 2 scaling solutions like Arbitrum significantly reduce transaction costs through optimistic
rollups, they introduce different security assumptions such as delayed finality through fraud-proof
mechanisms rather than immediate consensus, and potential vulnerability to validator collusion [5].
These differences may not be appropriate for all operations within a business process, especially
those requiring immediate finality or maximum decentralization. This creates a contrast between cost
efficiency and security guarantees that must be balanced according to process requirements.

This paper presents an approach that addresses these challenges through a block-number-based
implementation of timer events that ensures secure, manipulation-resistant time tracking without
relying on external time services. We automatically translate BPMN processes with timer events
into secure, executable Solidity smart contracts, along with a comparative analysis of execution costs
between Ethereum (Layer 1) and Arbitrum (Layer 2) across three diverse case studies. From this analysis,
we propose a conceptual hybrid architecture that strategically distributes process operations between
Layer 1 and Layer 2 based on security requirements and cost considerations.

Our approach was validated through the implementation of three different BPMN case studies: a
municipal document request process, an insurance policy application workflow, and an academic exam-
ination process. Each case demonstrates different patterns of timer event usage and inter-participant
coordination. We provide a complete replication package including all the case study BPMN codes, the
Java code of the automatic translator and the translated three smart contracts at this link to support
reproducibility and verification.

The remainder of this paper is organized as follows: Section 2 provides background on blockchain
time mechanisms and BPMN integration approaches. Section 3 details our methodology for block-based
timer implementation and smart contract generation. Section 4 presents the implementation results and
cost analysis across different blockchain layers. Section 5 introduces our proposed hybrid architecture.
Section 6 discusses assumptions and threats of our study and section 7 implications, limitations, and
concludes with future research directions.

2. Background and Related Work

2.1. Blockchain-Based Business Process Execution

Blockchain technology has emerged as a support for collaborative business processes among mutually
untrusting parties in decentralized environments. Recent research has developed several model-driven
approaches to implement business processes on blockchain platforms using standardized process
modeling notations, particularly BPMN. Di Ciccio et al. [6] present the foundational principles of
blockchain support for collaborative business processes, highlighting how blockchain’s tamper-proof
ledger can capture process history and current state while smart contracts can encode business logic
and enforce process rules. The authors note that blockchain enables trustworthy process execution
among partially trustable parties without requiring centralized coordinators, making it ideal for inter-
organizational processes. They introduce two primary architectural approaches: using blockchain as a
message exchange mechanism for choreographies, and deploying entire collaborative processes on-
chain. Nousias et al. [7] address the challenges of developing and deploying Decentralized Applications
(DApps) on blockchain networks by standardizing and modeling these processes through BPMN.
Their approach begins with a Decision Model and Notation (DMN) decision model to help developers
determine if a DApp is justified for their use case, followed by two detailed BPMN models: one for DApp
development and another for DApp deployment. These models serve as a roadmap to enhance decision-
making, facilitate developer communication, and reduce implementation time and cost. The authors
demonstrate the practical application of their models by implementing a DApp for registering and
verifying academic qualifications, illustrating how BPMN can be a powerful tool for systematic DApp
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development. Other two key implementation frameworks for blockchain-based processes are: Lorikeet
and Caterpillar. Lorikeet [8], developed by Data61, is a model-driven engineering tool for blockchain
application development focusing on business processes and asset control. It generates Solidity smart
contracts from BPMN models and asset data schemas, allowing code review and adaptation before
deployment. Lorikeet extends BPMN with registry references and action invocations to interact with
on-chain asset data stores, making it particularly suitable for processes involving asset management.
Caterpillar, presented by Lopez-Pintado et al.[9], takes a different approach by implementing the
process execution logic entirely on-chain. It translates BPMN models into smart contracts that enforce
business process rules and maintain process state on the blockchain. Caterpillar follows three design
principles: modeling collaborative processes as if all parties shared the same execution infrastructure,
storing complete process state and metadata on-chain, and enabling process execution to proceed
even if off-chain components are unavailable. This approach provides stronger guarantees of process
compliance but with higher on-chain storage costs. Corradini et al. [10] present an approach for
modeling and executing BPMN choreographies with multiple instances on blockchain technology.
The authors address the limitation of existing blockchain-based choreography implementations that
typically focus on single-instance scenarios, which restricts their application in complex systems like IoT
where multiple devices perform similar operations. Their solution introduces support for multi-instance
participants and tasks in BPMN choreography diagrams, with clear semantics and implementation in
smart contracts. The framework includes modeling capabilities for specifying multiplicity attributes,
automatic translation of the models into Solidity code, and execution on blockchain platforms. To
demonstrate feasibility, the authors implemented a Smart Thermostat case study on the Polygon
blockchain, where a thermostat coordinates with multiple sensors and radiators. Their cost analysis
showed the approach is practical in terms of blockchain transaction fees, particularly when using Layer
2 solutions like Polygon rather than Ethereum mainnet. The same authors propose in [11] a flexible
approach that decouples process logic (stored off-chain in IPFS as Drools rules) from execution state
(stored on-chain), enabling run-time modifications without compromising blockchain’s trustworthiness
properties. Their FlexChain framework supports voting mechanisms to ensure agreement on process
changes, addressing the challenge of reconciling blockchain’s immutability with the need for business
process flexibility. A common challenge across these approaches is balancing on-chain and off-chain data
and computation. On-chain execution ensures integrity and transparency but incurs higher costs and
scalability limitations, while off-chain processing is more efficient but potentially less secure. Researchers
are actively addressing these trade-offs through hybrid architectures that optimize process execution
while maintaining essential trust guarantees. These implementations demonstrate the feasibility of
using blockchain as a foundation for trustworthy, transparent execution of collaborative business
processes, while continuing research focuses on improving flexibility, scalability, and cost-effectiveness
of blockchain-based process execution environments.

2.2. Time Constraints in Blockchain Systems

Time management is a challenge in blockchain-based systems due to the decentralized and asyn-
chronous nature of blockchain networks. Several approaches have been proposed to address these
points. Eichinger and Ebermann [12] investigate the effectiveness of smart contracts in stipulating
time constraints. They define "execution accuracy" as the probability that a smart contract execution
yields the same result based on world time and injected time. Their experiments on local blockchain
implementations (Ganache and Quorum) and public Ethereum test networks (Gorli and Rinkeby) show
that execution accuracy decreases near interval bounds. They identify two primary methods for im-
plementing time constraints: the "block timestamp method", which uses timestamps set by miners,
and the "parameter method", where transaction senders attach timestamps to transactions. Ladleif and
Weske [3] present an analysis of temporal constraints in blockchain-based process execution. They
identify five distinct time measures available in blockchain environments: block timestamp, block
number, parameter, storage oracle, and request-response oracle. Each measure has different charac-
teristics regarding accuracy, trust assumptions, immediacy, cost, and reliability. Their work indicates



that while absolute and relative temporal constraints can be implemented in blockchain, they require
careful consideration of the underlying time measure used. For more complex time-based applications,
Chae et al. [13] propose a "time-release blockchain" that integrates time-release cryptography with
blockchain’s proof-of-work mechanism. Their approach automatically adjusts for changes in network
computing power over time and eliminates the need for trusted third parties in time-release applications.
This enables practical implementation of systems where information must remain encrypted until a
predetermined future time, with applications in areas such as electronic voting and sealed-bid auctions.
These approaches demonstrate that while implementing time constraints in blockchain systems remains
challenging, multiple viable methods exist with different trade-offs in terms of accuracy, security, and
efficiency. The choice of approach depends on the specific requirements of the application and the
characteristics of the underlying blockchain platform.

2.3. Operation Classification for Multi-Layer Execution

Several research efforts have explored the use of blockchain in multi-party processes, each contributing
complementary insights into how operations can be classified and distributed across architectural layers
for decentralized execution.

Argento et al. [14] introduce ID-Service, a blockchain-based accountability platform for cross-
organizational workflows (COWs). The architecture relies on a two-module division: the Accountability
Certification layer integrates identity management via eIDAS-compliant digital identities, while the
Accountability Workflow layer handles the orchestration of inter-organizational processes using smart
contracts. Each operational action is anchored to an authenticated identity and recorded immutably,
enforcing non-repudiation. Notably, the synchronization points in workflows are modeled as critical
transitions between actors, preserving causal ordering and traceability. This layered architecture
effectively separates the tasks of identity anchoring and process execution, laying the groundwork for
classifying blockchain operations according to system responsibility and trust boundaries.

A complementary perspective is proposed by Alfarisy [15], which addresses data collection and
validation in a resource governance scenario. Here, a service-oriented architecture is used to develop
an IoT-integrated blockchain platform for fishing quota enforcement. The system architecture spans
four layers—device, network, service, and application—each abstracting a specific operational domain.
Transactional data such as timestamps and fish weights are recorded via IoT devices and pushed through
the service layers to the blockchain. The study provides quantitative assessments of cohesion, coupling,
and reusability, showing that well-separated services with low interdependency are preferable for
repeatability and maintainability. These principles validate the need for classifying operations based on
abstraction and coordination layer, particularly in high-volume data acquisition scenarios.

Further abstraction is explored by Pirani et al. [16], where blockchain is embedded into a cyber-
systemic methodology for governing hybrid reality (HyR) phenomena. Rather than focusing on domain-
specific implementations, the paper proposes a formal framework that positions blockchain as a systemic
trust infrastructure. The authors present a cybernetic modeling approach grounded in system dynamics
and Ashby’s Law of Requisite Variety, in which blockchain acts as a regulatory mechanism enforcing
control loops between human and machine agents. The operations here are not merely transaction-
level interactions, but control-oriented interventions across dynamically defined roles and states. This
systemic framing introduces a new axis of operation classification—governance and adaptation—which
complements traditional task-level distinctions.

Finally, the work in [17] presents a visual, reuse-oriented code generator for smart contracts, based
on BPMN models. Their generator employs a multi-layer library that separates generic logic, domain-
specific functions, and composable workflow templates. Each layer corresponds to different granularity
and specialization of contract logic, enabling domain experts to reuse tested modules without extensive
programming knowledge. Code generation, compilation, and deployment are integrated in a single
toolchain, streamlining smart contract creation for multi-party interactions. This approach highlights
the value of classifying blockchain operations by reusability and modularity, with particular emphasis
on how different layers facilitate efficient development and clearer separation of concerns.



Together, these studies affirm the importance of categorizing blockchain-enabled operations not
only by their functional scope, but also by their positioning across trust, orchestration, and abstraction
layers. This classification is important for enabling scalable and maintainable process execution in
decentralized environments.

3. Methodology

Our research methodology combines BPMN process modeling with blockchain implementation on
both Layer 1 and Layer 2 networks, focusing on secure and efficient timer event handling. This section
details our approach to process modeling, smart contract generation, security verification, and cost
analysis.

3.1. BPMN Process Modeling

We created three representative BPMN collaboration diagrams using Camunda Modeler, each featuring
different timer event patterns and multi-participant interactions. The first case study is a citizen-
municipality interaction for a document request process with 30-day and 15-day processing deadlines.
The second one is a policyholder-insurer application workflow with 5-day and 7-day decision deadlines.
The third application is a three-party (professor-student-secretary) workflow with 15-day evaluation
and 7-day decision deadlines. Each process was designed to capture common time-constrained business
scenarios while providing sufficient complexity to validate our approach across various timer patterns
and participant configurations.

3.2. Smart Contract Generation

We developed an automated BPMN-to-Solidity transformation tool that generates blockchain-executable
smart contracts from BPMN diagrams. Our transformation approach employs a block-based timer
implementation. Rather than using timestamp-based mechanisms, our approach converts ISO duration
formats (e.g., "P30D" for 30 days) into block numbers. According to Ethereum network statistics !, since
October 2022, the daily average block time has maintained a consistent 12-second interval, providing
a stable foundation for our time calculations. This stability allows us to reliably estimate that one
day corresponds to approximately 7200 blocks (24 hours * 3600 seconds / 12 seconds per block). This
conversion uses the formula:

blocks
day

blockEstimate = days * 7200

Arbitrum does not maintain a fixed block time like Ethereum. However, according to Offchain Labs,
the average latency of Arbitrum One blocks is around 250 milliseconds * °.

This approach provides resistance to miner manipulation of timestamps, a deterministic execution
without relying on external time oracles, and a consistent timing across network conditions.

The generated contracts implement a state machine that tracks each BPMN element’s lifecycle
through three states: DISABLED, ENABLED, and DONE. Element dependencies are enforced through
state checks, ensuring process integrity.

Moreover, each function includes participant validation based on Ethereum addresses mapped to
BPMN participants, ensuring that only authorized participants can execute their designated tasks.

Finally the generated contracts incorporate OpenZeppelin’s security patterns, including Reentrancy-
Guard, Ownable, and Pausable, providing protection against common attack vectors and administrative
control mechanisms.

'https://etherscan.io/chart/blocktime
*https://research.arbitrum.io/t/the-power-of-faster-blocks/9609
*https://arbiscan.io/blocks



3.3. Security Analysis

We implemented a two-stage security verification process. First, each generated contract underwent
automated vulnerability detection using Slither [18], a static analysis framework that identifies common
smart contract vulnerabilities including reentrancy, integer overflow/underflow, and access control
issues. Then we supplemented the Slither analysis with custom checks specifically designed for timer-
based operations, including verification of proper access controls for timer functions, analysis of block
number manipulation risks, assessment of dependency enforcement mechanisms and validation of
participant address handling.

These security measures ensured that the generated contracts maintained process integrity while
addressing blockchain-specific vulnerabilities. All contracts passed both the Slither analysis and our
custom security checks with zero critical vulnerabilities detected.

3.4. Deployment and Cost Analysis

We deployed each smart contract on both Ethereum Sepolia Testnet (Layer 1) and Arbitrum Sepolia Testnet
(Layer 2) using Remix IDE and MetaMask. For each contract, we executed the complete process flow,
recording gas consumption for every operation. To provide a realistic cost assessment, we collected daily
gas price data from Etherscan® and Arbiscan®, along with cryptocurrency price data from CoinGecko®’,
over a one-month period (March 14 - April 13, 2025). We then calculated median gas price and the
median cryptocurrency price and the standard deviation. We found for Ethereum 0.6350 £ 1.1438 Gwei
and $1,887.76 & 167.64, instead for Arbitrum 0.0174 + 0.1042 Gwei and $0.33397 4+ 0.03893.

This methodology provides a robust cost estimation that accounts for market fluctuations while
avoiding outlier-driven distortions. By using median values rather than means, we established a realistic
operational cost baseline for blockchain-based process execution across different layers.

4. Implementation and Results

This section presents our implementation of three case studies and the comparative cost analysis
between Layer 1 and Layer 2 blockchain networks. The BPMN codes of the case studies, the Java code
of the automatic translator and the translated three smart contracts are available at this link.

4.1. Case Study Implementation

We implemented three distinct BPMN processes, each selected to represent different timer event patterns
and multi-participant scenarios common in real-world applications.

The first case study in Figure 1 implements a municipal document request process between a citizen
and municipality. This process includes a 30-day primary processing window and a 15-day extension
period when additional processing time is needed. The workflow begins with a completeness check that
creates an initial decision point, followed by document processing with enforced regulatory deadlines.
This case study demonstrates how timer events ensure compliance with administrative procedures and
service level agreements.

The second case study in Figure 2 models an insurance policy application process between a pol-
icyholder and an insurance company. This workflow includes two timer events: a 7-day proposal
deadline for the insurance company to prepare a policy proposal and a 5-day decision deadline for
the policyholder to sign the policy. The process includes decision points that create alternative paths
depending on the completeness of the application and the policyholder’s acceptance decision. This case
study demonstrates timer events that govern both organizational and customer-facing deadlines.

*https://etherscan.io/gasTracker#chart_gasprice

*https://arbiscan.io/chart/gasprice
Shttps://www.coingecko.com/it/monete/ethereum/historical_data?start=2025-03-13&end=2025-04-12
"https://www.coingecko.com/en/coins/arbitrum/historical_data?start=2025-03-12&end=2025-04-14
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Figure 3: BPMN Diagram Student, Professor and Secretary case study

Finally, the third case study in Figure 3 represents an academic examination process involving three
participants: professor, student, and secretary. This complex workflow features multiple timer events,
including a 7-day registration period, a 15-day deadline for professors to evaluate exams, and a 7-day
deadline for students to accept or reject their grades. The process also includes an auto-acceptance
mechanism if no decision is made within the specified timeframe. This case study demonstrates how
timer events can coordinate activities among multiple participants with interdependent responsibilities.

Each BPMN model was transformed into a Solidity smart contract using our automated conversion
tool. The transformation process preserved the timer event semantics by implementing them as block-
number-based mechanisms rather than traditional timestamp approaches. The generated smart contracts
included security features from OpenZeppelin, participant role management, and comprehensive audit
logging to track process execution.



4.2. Deployment and Gas Analysis

We deployed each smart contract on both Ethereum Sepolia Testnet (Layer 1) and Arbitrum Sepolia
Testnet (Layer 2) to analyze performance and cost differences.

# Function/Action Gas Used ETH Cost (USD) ARB Cost (USD)
1 Contract Creation 4,918,636 $5.90 $0.02860
2 startEvent () 147,921 $0.18 $0.00086
3 sendRequestToMunicipality() 155,448 $0.19 $0.00090
4 receiveRequest () 130,843 $0.16 $0.00076
5 gatewayAction("CheckRequest") 149,728 $0.18 $0.00087
6 elaborateRequest () 133,311 $0.16 $0.00078
7  f30DaysDeadlineForDocumentDelivery() 133,288 $0.16 $0.00078
8 gatewayAction("CheckDocuments") 149,579 $0.18 $0.00087
9 sendDocuments () 135,784 $0.16 $0.00079
10 documentsReceived () 130,800 $0.16 $0.00076
11 sendFeedback () 133,291 $0.16 $0.00078
Table 1

Approx. USD cost per transaction on Ethereum vs Arbitrum (14 Mar-13 Apr 2025). Ethereum: median gas
price 0.635 Gwei, ETH $1,887.76. Arbitrum: median gas price 0.0174 Gwei, ARB $0.33397.

Table 1 presents the gas consumption and approximate USD cost for each operation in the municipal
document request process. The contract deployment required approximately 4.9 million gas units,
translating to $5.90 on Ethereum and just $0.0286 on Arbitrum. Individual operations like submitting a
request consumed between 130,000-185,000 gas units, corresponding to $0.16-$0.19 on Ethereum but
only $0.00076-$0.00090 on Arbitrum. Notably, timer event functions that implement the 30-day and
15-day deadlines consumed similar gas amounts to standard operations (approximately 133,000 gas

units).

# Function/Action Gas Used ETH Cost (USD) ARB Cost (USD)
1 Contract Creation 5,197,620 $6.24 $0.03020
2 startEvent () 147,965 $0.18 $0.00086
3 submitInsurancePolicyRequest () 133,289 $0.16 $0.00078
4 receiveRequest () 130,843 $0.16 $0.00076
5 gatewayAction("Gateway_CheckRequest", true) 149,646 $0.18 $0.00087
6 preparePolicyProposal() 133,291 $0.16 $0.00078
7 f7DaysProposalDeadline() 133,334 $0.16 $0.00078
8 sendPolicyProposal() 133,288 $0.16 $0.00078
9 receiveProposal() 130,822 $0.16 $0.00076
10 f5DaysSignDeadline () 133,290 $0.16 $0.00078
11 gatewayAction("Gateway_CheckSign", true) 149,670 $0.18 $0.00087
12 sendPolicySigned() 133,289 $0.16 $0.00078
13 receivePolicySigned() 130,821 $0.16 $0.00076
Table 2

Approx. USD cost per transaction on Ethereum vs Arbitrum (14 Mar-13 Apr 2025). Ethereum: median gas

price 0.635 Gwei, ETH $1,887.76. Arbitrum: median gas price 0.0174 Gwei, ARB $0.33397.

Similar patterns emerged in the insurance policy application process (Table 2), where contract
deployment required 5.2 million gas units ($6.24 on Ethereum, $0.0302 on Arbitrum). The timer
functions for the 7-day proposal deadline and 5-day sign deadline consumed approximately 133,300 gas

units each, equivalent to $0.16 on Ethereum and $0.00078 on Arbitrum.

The academic examination process, with its increased complexity and participant count, showed
comparable per-operation gas consumption (Table 3) but higher cumulative costs due to the greater



number of process steps. Contract deployment required 5.0 million gas units ($6.04 on Ethereum, $0.029
on Arbitrum), while individual operations ranged from 111,000 to 176,000 gas units.

# Function/Action Gas Used ETH Cost (USD) ARB Cost (USD)
1 Contract Creation 5,030,195 $6.04 $0.02900
2 startEvent () 146,589 $0.18 $0.00085
3 fixExamDate () 176,404 $0.21 $0.00103
4 secretaryReceiveExamDate () 129,595 $0.16 $0.00075
5 studentReceiveExamDate () 129,638 $0.16 $0.00075
6 openRegistration() 131,849 $0.16 $0.00077
7 f7DaysPeriod() 131,904 $0.16 $0.00077
8 closeRegistration() 112,119 $0.13 $0.00065
9 listStudentRegistered() 131,922 $0.16 $0.00077
10 sendStudentList () 111,927 $0.13 $0.00065
11 receiveStudentList () 131,880 $0.16 $0.00077
12 registerForExam() 154,087 $0.18 $0.00090
13 receiveExamRegistration() 129,604 $0.16 $0.00075
14 addStudentList () 131,971 $0.16 $0.00077
15 takeExam() 134,204 $0.16 $0.00078
16 evaluateExams () 131,825 $0.16 $0.00077
17 f15DaysDeadline() 131,843 $0.16 $0.00077
18 sendScores () 131,776 $0.16 $0.00077
19 receiveScores() 129,578 $0.16 $0.00075
20 informStudents () 134,206 $0.16 $0.00078
21 receiveScore() 131,796 $0.16 $0.00077
22 f7DaysDeadline () 131,753 $0.16 $0.00077
23 gatewayAction("Gateway_ScoreDecision") 147,271 $0.18 $0.00086
24 sendAcceptance() 111,919 $0.13 $0.00065
25 receiveDecision() 131,769 $0.16 $0.00077
26 registerFinalScore() 131,834 $0.16 $0.00077
Table 3

Approx. USD cost per function on Ethereum vs Arbitrum (Ethereum: median gas price 0.635 Gwei, ETH=$1,887.76;
Arbitrum: median gas price 0.0174 Gwei, ARB=$0.33397).

4.3. Layer 1 vs Layer 2 Cost Comparison

Our analysis reveals that Arbitrum’s Layer 2 implementation reduces operational costs compared to
Ethereum’s Layer 1. This dramatic cost reduction maintains the same functional capabilities and security
properties while providing significantly better economic feasibility for complex business processes.
The cost difference is primarily attributable to two factors: lower gas prices on Arbitrum (median
0.0174 Gwei vs. 0.635 Gwei on Ethereum) and the lower native token value ($0.33397 for ARB vs.
$1,887.76 for ETH). While both factors contribute to cost reduction, the gas price difference represents
the architectural efficiency of Layer 2 solutions, while token value differences reflect market conditions.
The median operation cost on Ethereum ($0.16-$0.18) would become prohibitive for complex processes
with many participants and operations, potentially costing hundreds of dollars for complete process
execution. In contrast, the same operations on Arbitrum cost fractions of a cent ($0.00076-$0.00090),
making even complex processes economically viable.

4.4. Timer Event Performance

Our block-number-based timer implementation demonstrated consistent and predictable behavior
across both networks. By converting time durations to block numbers (7,200 blocks per day, assuming
12-second block times), the system created a reliable execution framework that avoided timestamp
manipulation vulnerabilities. The gas consumption for timer-related functions remained consistent



with other operations, indicating no significant performance penalty for implementing time constraints.
This consistency suggests that complex time-dependent business processes can be implemented without
disproportionate cost increases for timer management. Security analysis confirmed that our block-
based approach successfully prevented common time-based vulnerabilities. Both automated Slither
analysis and custom security checks verified the integrity of the timer implementation, with no critical
vulnerabilities detected.

5. Proposed Hybrid Layer 1-Layer 2 Architecture

Our comparative analysis of Layer 1 and Layer 2 execution costs reveals a compelling economic case
for implementing BPMN processes on Layer 2 networks. However, certain operations may benefit
from the stronger security guarantees of Layer 1. This section introduces a systematic framework for
distributing process operations between Layer 1 and Layer 2 based on security requirements, economic
considerations, and operational characteristics.

5.1. Operation Classification Framework

We propose a classification framework that categorizes BPMN operations based on three dimensions:
security criticality, execution frequency, and data persistence requirements. This framework provides a
structured approach to determining the most suitable execution layer for each operation.

Security Criticality Assessment: Each operation is evaluated on a security criticality scale based on
Table 4.

Financial impact Operations that directly influence financial transactions or asset transfers require
the highest security guarantees
Legal significance Operations that create legally binding commitments or satisfy regulatory require-

ments demand strong immutability guarantees
Trust requirements | Operations involving multiple participants with limited trust relationships benefit

from Layer 1’s stronger consensus mechanisms

Table 4
Operations Security Criticality Assessment Framework

Execution Frequency Analysis: Operations are classified by their expected execution frequency
according with Table 5.

Initialization operations | One-time setup operations that establish the process framework

Decision points Gateway operations that determine process flow direction
Routine operations Regular tasks performed throughout the process lifecycle
Timeout operations Timer-triggered operations that occur after specific periods

Table 5
Operations Execution Frequency Analysis Framework

Data Persistence Requirements: Operations are categorized based on their data persistence needs
following Table 6.

Critical state transitions Major state changes that fundamentally alter process status

Intermediate state updates | Incremental changes that track process progression

Audit information Supportive data primarily used for verification and transparency
Table 6

Operations Data Persistence Requirements Framework



5.2. Layer Assignment Algorithm

Based on the classification framework, Layer 1 primary candidates are process initialization operations
that establish core parameters, operations with high financial impact (<$1000 value transfer), final
commitment operations with legal significance and major state transitions that fundamentally alter
process status. Layer 2 primary candidates are routine operations with moderate security requirements,
frequent status update operations, operations with minimal financial impact and intermediate data
collection activities. Borderline cases can be timer events that enforce critical deadlines but have no
direct financial impact, decision gateways that influence but don’t directly control asset transfers and
operations with moderate legal significance. For borderline cases, we recommend additional assessment
of the relative cost differential between Layer 1 and Layer 2 implementation, the specific security
guarantees required by stakeholders and the potential impact of a security compromise.

5.3. Implementation Architecture

Our conceptual architecture proposes a multi-contract approach with Layer 1 serving as the authoritative
system of record while Layer 2 handles routine operations.

The Layer 1 contract serves as the process anchor, maintaining core process parameters and participant
information, critical state variables that define process status, authorization controls for cross-layer
synchronization and final state commitments and financial settlements.

The Layer 2 contract handles daily operations, including routine task execution and status track-
ing, intermediate state updates, timer event monitoring, gateway decision processing and audit trail
maintenance.

To maintain process integrity across layers, our framework would require a secure synchronization
mechanism. Even if we do not implement this component in the current work, several established
approaches from literature could be adapted for this purpose. The events-based architecture described by
Bigiotti et al. [19] provides a promising foundation, where watchtowers monitor events from interface
smart contracts to coordinate state changes across chains. Their protocol demonstrates how two
transactions (one on each chain) can successfully complete cross-chain operations using standardized
JSON message formats for event semantics.

Other potential approaches include Merkle-root state commitments for periodic validation [20],
message passing protocols like LayerZero [21], and cryptographic proof validation [22] systems similar
to those used in optimistic rollups.

The practical implementation of such synchronization mechanisms represents an important direction
for future work, as our current focus is on the operation classification framework and on the economic
analysis of hybrid approaches.

5.4. Case Study Application

Applying our framework to the municipal document request process in Figure 1.

Layer 1 Operations Layer 2 Operations

Process initialization (contract deployment) Request submission and reception
Final document delivery confirmation Request elaboration tasks

30-15 days deadline start and end Intermediate status updates

Gateway decisions (request completeness verification) | Timer event triggers and tracking
New operator assignment
Feedback collection

Table 7
Layer 1 vs. Layer 2 operations for the citizen and municipality case study.

This distribution in Table 7 reduces the total process execution cost compared to a pure Layer 1
implementation while maintaining appropriate security guarantees for critical operations. Similar



patterns emerge in the insurance application and academic examination processes, with operations
involving financial commitments, legal obligations, or final state determinations assigned to Layer 1,
while routine coordination activities migrate to Layer 2.

5.5. Security and Cost Analysis

The proposed solution can balance security and cost considerations through strategic operation place-
ment. By executing only the most critical operations on Layer 1, we maintain strong security guarantees
where needed while leveraging Layer 2’s cost efficiency for routine operations. For a typical process
execution in our municipal document request case study, the hybrid approach reduces costs of a pure
Layer 1 implementation while maintaining Layer 1 security for critical operations. This represents
a balanced trade-off between the complete security of Layer 1 and the full economy of Layer 2. The
architecture’s security properties derive from Ethereum’s underlying consensus mechanism for critical
operations, while accepting Arbitrum’s security model for non-critical activities. This tiered approach
ensures that operations receive security guarantees proportional to their criticality.

6. Assumptions and Limitations

6.1. Explicit Assumptions

Implementing the three case studies, we made the following assumptions:

Block-time model - Ethereum average of 12 s; Arbitrum latency 250 ms.
Consensus security — honest-majority assumption for both layers.
Gas-price window — median prices 14 Mar—13 Apr 2025 (see 3.4).

We acknowledge these assumptions, which were selected empirically at the time of the study and can
be adjusted in future replications.

6.2. Limitations and Threats to Validity

While our approach demonstrates promising results in addressing time-constrained execution in
blockchain-based workflows, several limitations remain that warrant further attention. However,
some important considerations must be acknowledged when interpreting our findings. Our case studies,
while diverse, may not represent the full spectrum of business processes and timer event patterns.
Additional validation across a broader range of process types and industry domains would strengthen
the generalizability of our findings. The block-number-based time conversion assumes a relatively stable
block time (12 seconds for Ethereum); however, actual block times can vary due to network conditions,
potentially affecting the precision of timer events. Long-term monitoring of timer accuracy across
network conditions would provide additional validation. Our cost analysis used median gas prices over a
one-month period to provide a realistic baseline. However, gas prices can be highly volatile, particularly
during network congestion periods. Cost projections should account for this potential variability. While
our synchronization mechanism was conceptually described, a complete implementation and validation
of cross-layer communication remains to be developed. The practical reliability of maintaining consis-
tent state across layers requires further empirical validation. The security guarantees of our hybrid
architecture rely on the underlying security models of both Ethereum and Arbitrum. Changes to these
platforms or their security properties could impact the overall security of the implementation.

7. Conclusion and Future Work

This paper presented Block-Timer, an end-to-end evaluation of block-number timers for implementing
BPMN process execution with time constraints on blockchain. Our implementation of block-number-
based for timer events ensures secure, manipulation-resistant time tracking without relying on external



time services, and the hybrid proposed solution can strategically distributes process operations between
Layer 1 and Layer 2 blockchains based on security requirements and cost considerations. Our empirical
analysis across three case studies demonstrated that Arbitrum’s Layer 2 implementation reduces
operational costs compared to Ethereum’s Layer 1, while maintaining the same functional capabilities.
The gas consumption for timer event operations remained comparable to other process operations
(approximately 133,000 gas units), indicating no significant performance penalty for implementing
time constraints. Although the hybrid architecture is not yet fully implemented, our preliminary
evaluation suggests that it strikes a favorable balance between security and cost-efficiency by executing
only the most critical operations (process initialization, major state transitions, and legally significant
commitments) on Layer 1, while delegating routine operations (status updates, data collection, and
timer tracking) to Layer 2. This approach ensures appropriate security guarantees for operations based
on their criticality while significantly reducing overall execution costs. Our security analysis confirmed
the integrity of the block-number-based timer implementation, with no critical vulnerabilities detected
through automated and custom security checks. By converting time durations to block numbers (7,200
blocks per day), our approach provides resilience against timestamp manipulation attacks while creating
a deterministic execution framework.

Several promising directions for future research emerge from this work. Implementing and evaluat-
ing a synchronization mechanisms between Layer 1 and Layer 2 deserves particular attention, with
emphasis on optimizing the balance between security guarantees and operational costs. Extending the
block-number-based approach to support more complex timer patterns represents another important
direction. This includes recurring timers, calendrical expressions (e.g., "every Monday"), and business
day calculations that account for holidays and working hours. By addressing these challenges, future
research can further enhance the efficiency, security, and practicality of blockchain-based business
process execution, particularly for time-sensitive multi-party workflows where trust and accountability
are essential.
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