
Non-Fungible Mutable Tokens for Flexible Choreography
Roles and Ownership
Francesco Donini1,2,3, Alessandro Marcelletti1, Andrea Morichetta1,* and Andrea Polini1

1University of Camerino, Via Madonna delle Carceri 7, Camerino, 62032, Italy
2University of Pisa, Largo Bruno Pontecorvo 3, Pisa, 56127, Italy
3Institute of Informatics and Telematics CNR of Pisa, Via Giuseppe Moruzzi 1, Pisa, 56124, Italy

Abstract
Inter-organizational business processes involve distributed participants collaborating to achieve shared goals.
Blockchain technology has emerged to support the decentralized execution of such processes, ensuring transparent
and immutable tracks of participant duties and their roles within the process. These aspects are indeed crucial in
a process as they provide accountability and proof of compliance with standards and regulations. To represent
inter-organizational processes, Business Process Model and Notation choreographies have been widely adopted, as
they specify distributed interactions between business participants. However, while they have found in blockchain
a prominent solution for their implementation and execution, current solutions overlook the certification of
participants’ roles and ownership. An additional challenge is posed by the dynamism of business scenarios, where
the introduction of new legislation or stakeholders requires flexible process management. This work proposes a
novel framework and architecture leveraging Non-Fungible Mutable Tokens (NMTs) to manage ownership of
participants and their roles in choreographies. NMTs dynamically represent participants and processes, allowing
runtime updates while ensuring ownership and reproducibility. A canteen scenario was used to evaluate the
feasibility of this approach.

Keywords
Blockchain, NMT, Choreography, Ownership, NFT, BPMN

1. Introduction

Inter-organizational business processes define interactions among distributed participants, willing
to collaborate to reach a common goal [1, 2, 3]. In this context, blockchain emerged as an enabling
technology to support inter-organizational processes over their lifecycle [4]. Blockchain enables a
decentralized execution of the interactions, by enforcing business logic and providing a secure proof of
executed activities, enhancing the trustworthiness of the process. This allows for monitoring activities
[5, 6], relying on blockchain as a certified source about the behavior of the process and its participants.
Having a clear and certified assignment of roles and operations within a business process is indeed
essential for ensuring accountability, traceability, and effective governance [7, 8]. Trusted evidence of
the actors involved, their rights over specific tasks, or of the process itself, supports not only operational
transparency but also compliance with legal and industry standards. Certified participants with attested
responsibilities simplify audit activities, making them more efficient and reliable. Furthermore, as
processes evolve, knowing precisely who owns each part of the process becomes critical for managing
change, allocating resources, and maintaining continuity. Governance is a critical factor in the success
of a process [9], and they are particularly challenging in inter-organizational contexts where there is
usually no explicit agreement [10]. This complexity is even more due to the various factors affecting
business scenarios, leading to high dynamism and demand for runtime changes. Indeed, internal or
external factors could lead to new situations, such as new regulations or agreements, requiring new
stakeholders to join the process or to change the party covering a specific role. In this setting is essential
to support the transfer of rights and roles, with the consequent transfer of tasks and duties. Over the

DLT2025: 7th Distributed Ledger Technology Workshop, June, 12-14 2025 - Pizzo, Italy
*Corresponding author.
$ francesco.donini@unicam.it (F. Donini); alessand.marcelletti@unicam.it (A. Marcelletti); andrea.morichetta@unicam.it
(A. Morichetta); andrea.polini@unicam.it (A. Polini)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-24

mailto:francesco.donini@unicam.it
mailto:alessand.marcelletti@unicam.it
mailto:andrea.morichetta@unicam.it
mailto:andrea.polini@unicam.it
https://creativecommons.org/licenses/by/4.0/deed.en

years, choreographies have been widely adopted to specify inter-organizational processes thanks to
their ability to represent the interactions between business participants without exposing their internal
behavior. In particular, the Business Process Management and Notation (BPMN) [11] is one of the most
established standards enabling the design of choreographies. These kinds of models have also been
integrated by blockchain-based solutions, taking choreography as a process specification and encoding
it into a smart contract [12, 13]. Specifically, current solutions mainly enforce choreographies by means
of smart contracts, used to encode aspects such as involved users, data to exchange, activities to execute,
and constraints.

However, despite the integration of blockchain for implementing choreographies, the comprehensive
management of participants and their roles has not gained as much attention. Indeed, while these
solutions include the notion of participants and actions they have to perform, there are no solutions
specifically aimed at handling process or role certification. This lack is even more notable when dealing
with runtime changes and the need for flexibility arises, advocating for update capabilities. It is therefore
crucial to have a solution that permits the certification participants and their roles while dealing with
the need for flexibility.

To address these needs, in this work we propose the ChorNMT architecture to certify choreogra-
phy participants and their role. Furthermore, we deal with flexibility needs by providing a dynamic
architecture supporting runtime updates and transfer of roles and their rights. To this purpose, we
leverage Non-Fungible Mutable Tokens (NMTs) for the representation of choreographies and business
participants. NMTs are an advanced type of Non-Fungible Tokens (NFTs) designed to represent and
manage digital assets dynamically whose state can evolve according to predefined rules. In this work,
we specify choreographies and participants as NMTs, which are owned by organizations responsible
for their respective duties and which can be updated at runtime. In this way, we decouple the ini-
tial specification of choreography from its execution, focusing on participants’ certification. Indeed,
NMTs provide digital proof of ownership, certifying each participant’s role within the choreography.
Furthermore, the same roles can be reused across different instances of the same or even entirely
different choreographies, significantly enhancing the reproducibility and scalability of our proposal. To
demonstrate the feasibility of the implemented architecture, we executed the various functionalities on
an exemplificative canteen scenario, evaluating its performance. The rest of the paper is structured as
follows. Section 2 introduces background concepts and Section 3 reports the state of the art. Section 4
provides an overview of the proposed architecture, its actors, components, and functionalities. Section
5 describes the implemented architecture while Section 6 evaluates its performance on the canteen case
study. Finally, Section 7 concludes the work, touching up on future directions.

2. Background

Non-Fungible Mutable Tokens NMTs [14] represent an advanced extension of traditional Non-
Fungible Tokens (NFTs), addressing challenges related to asset mutability, dynamic updates and changes
regulated by policies. As defined by the ERC-721 standard [15], NFTs are designed primarily to track
ownership of static digital assets. Each NFT comprises essentially two primary elements, tokenId, a
unique reference to the digital asset and the owner’s identifier, a blockchain address uniquely identifying
the token holder. Furthermore, each NTF is associated, via the tokenURI parameter, with a cryptographic
hash of the asset’s representation or the asset descriptor, both typically stored through IPFS 1 as off-chain
resources. The asset descriptor, commonly referred to as metadata [16], may include the cryptographic
hash of the asset’s representation and provides detailed information about the asset’s characteristics.

NMTs overcome the limitations of hash commitment inherited by the NFT standard, enabling dynamic
updates of the asset’s descriptor stored on-chain throughout its lifecycle without compromising its
cryptographic hash integrity. Specifically, an NMT comprises a series of smart contracts defining its
main components associated with a pair of actors. An NMT (Figure 1) can be seen essentially as an NFT,
which has the ability to generate a new asset, called Mutable Asset, with each minting operation. This

1https://ipfs.tech/

https://ipfs.tech/

 +

 + setAttribute_n

Descriptor

Policy evaluation

 attribute_n: foo

attribute_1
attribute_2

Creator
Smart Policy

………………

Denied

 setAttribute_n(bar)

Public methods

Mutable Asset

User

0x71C7656EC7ab88b098d
efB751B7401F5f6d8976B Denied

Holder
Smart Policy

 + setAttribute_n

Descriptor

 attribute_n: bar

attribute_1
attribute_2
………………

Public methods

NMT

0xAb5801a7D3..
Mutable Asset

0xAb5801a7D3..

Allowed Allowed

Update

Creator Holder

TokenId Holder

0xAb5801a7D3..
0xDEADbEEFD.. 0x742d35Cc663..

0x90f8bf6A479..

................

0x90f8bf6A479..0x529084000..

Evaluate Evaluate

Ownership table

Public methods
 + mint
 + transferFrom
 +

Mint

 +

 mint()

Figure 1: NMT overview.

asset represents a specific type defined by the NMT itself and is tracked along with its ownership within
a logical table embedded in the smart contract. Also, the Mutable Asset is, in turn, a smart contract,
from which its tokenId is derived based on its address. A Mutable Asset enables modifications through
dedicated asset updater functions. The NMT manages the creation, ownership, and possible property
transfer of the associated NMT-specific Mutable Asset. The pair of actors involved in this structure is:
the Creator, who designs and defines the Mutable Asset and its NMT, and the Holder, who holds an
instance of the Mutable Asset. The Holder can change over time following a transferFrom operation, as
any NFT asset.

Access Control Systems (ACS) are designed to protect digital resources by ensuring only authorized
users can access them. One of the most widely used models for managing access rights is Attribute-Based
Access Control (ABAC). In ABAC, access decisions are based on attributes linked to:

• the subject (S) (e.g., their job role, department, or assigned projects).
• the resource (R) being accessed (e.g., file type or project association).
• the environment (E) (e.g., time of access or location).

For example, a policy might state: "A subject S can access a file R only if it belongs to a project that has
been assigned to S."

To implement ABAC policies, many organizations use XACML (eXtensible Access Control Markup
Language) [17], a standardized language that defines access rules in a structured way. XACML policies
define targets that specify which requests the rule applies to. Conditions within the rules evaluate logical
comparisons between attributes (for example, checking whether the user’s department matches the
file’s owner). Each rule then enforces an effect, either permitting or denying access. Since real-world
scenarios often involve overlapping rules, XACML includes conflict-resolution methods. For example,
if one policy allows managers to edit a document but another restricts edits during an audit, the system
uses predefined logic to determine which rule takes priority.

In NMTs, all the possible updates are securely regulated through an ABAC mechanism [18] which
enforces dedicated policies, called Smart Policies, defined by the asset Creator, the original minter of the
asset, and the current asset’s Holder. These policies are implemented as smart contracts and govern the
dynamic behavior of the asset, regulating how internal attributes can be modified. They are defined at
two levels: the Creator Smart Policy and the Holder Smart Policy. The first, defined by the asset’s creator,
specifies the fundamental rules that determine which changes are allowed and under what conditions

Figure 2: Public school canteen choreography.

they may occur. The second one is instead defined by the asset’s holder which expresses additional
preferences or constraints, as long as they remain consistent with the creator’s original policy. Policies
not only specify which changes are technically allowed but can also define who is authorized to make
these changes and under which contextual or environmental conditions (e.g., external events, time
constraints, or environmental factors). This layered policy model allows for a controlled but flexible
approach to asset evolution, balancing authority between the creator and holder of the NMT. To define
and express asset policies, NMTs rely on XACML, enabling Creators and Holders to work with familiar
policy editor tools and avoid learning new languages. These XACML-based policies are automatically
translated by the Smart Policy framework into executable smart contracts, following the methodology
described in [19]. This process enables the dynamic generation of customized Access Control Systems,
where each policy is translated into a dedicated contract that enforces the corresponding access control
rules on-chain. Each Smart Policy has an evaluate method that takes three parameters as input:
subject, resource, and environment. Based on these variables, the method assesses the conditions
defined by the creator or the owner.

BPMN Choreographies BPMN choreographies represent how business participants interact in
terms of the exchange of messages. These models provide a global view of the interaction coordination
and can be seen as a sort of business contract. The most relevant elements used in choreography
diagrams can be divided into control flow and communication. Typically, a choreography model is
composed of different types of elements. Events represent the start and end of a choreography while
sequence flows describe the control flow with gateways specifying alternative and/or parallel paths.
Tasks define the interactions between participants and the related exchange of messages. They are
represented as rectangles divided into three bands: the central one contains the task’s name, while
the others contain the initiator and recipient participants. Messages can be sent either by one party
(One-Way tasks) or by both parties (Two-Way tasks).

To show an example of a choreography, we introduce the public school canteen scenario. The
considered choreography is depicted in Figure 2 and represents the interactions for the supplying
management of the canteen of a public school between the canteen management and a supplier. The
process simply depicts the canteen sending the order of certain food raw materials to the supplier which
responds with the receipt. At this point, the supplier sends the materials to the canteen which confirms
the arrival. In this inter-organizational scenario, the involved actors require a reliable way to define
and enforce their participation and duties within the procedure. As a public procedure, it is essential
to maintain transparency, allowing all parties to demonstrate their participation and adherence to the
process in a verifiable manner. Additionally, the procedure must be adaptable to changes, such as the
replacement of a supplier due to the end of a contract or the inclusion of new messages due to a change
in public regulation.

Choreography
Mutable Asset 1

Choreography
Mutable Asset n

mint

Choreography
NMT 1

Choreography
Creator 1

Choreography
NMT n

Choreography
Creator n

Choreography
Holder n

Participant
Mutable Asset 1

Participant
Mutable Asset n

Participant
NMT 1

Participant
Creator 1

Participant
Holder 1

Participant
NMT n

Participant
Creator n

Participant
Holder n

mint

Choreography
Holder 1

Creator
smart

policy 1

Holder
smart

policy 1

Creator
smart

policy n

Holder
smart

policy n

Creator
smart

policy 1

Holder
smart

policy 1

Creator
smart

policy n

Holder
smart

policy n

Figure 3: Actors and components of the ChorNMT architecture

3. State of the art

Blockchain has been widely used to support business processes, especially with the employment of smart
contracts encoding and enforcing their execution [20, 21]. To create blockchain-based applications, the
development has found model-driven engineering a prominent solution, relying on abstract models
to reduce the complexity in the development and automate code generation [13]. Specifically, many
works addressed the practical implementation of blockchain-based applications by means of the BPMN
notation [13, 12]. Such solutions are implemented through smart contracts, the business logic and
the exchange of information conceived as executable functions. These also enforce constraints about
the sequence of actions to perform and the users in charge of them. During the process design, tools
are typically used to manage participants and translate them into blockchain users, enabling them to
interact only where they have responsibilities, thanks to role-based access control mechanisms. Over
the years, these works have supported diverse approaches to participant and role management, also
considering runtime changes [22]. The aforementioned works focus on the enactment of processes,
including role management and support for runtime modifications. However, these solutions remain
primarily focused on the execution phase, providing ad hoc solutions for participant management,
mainly for access control.

In contrast, our work aims to decouple the design and definition phase of the choreography, including
participants, their roles, and rights. Specifically, our approach does not cover the execution phase,
which is out of the scope of this work. Instead, we aim to provide a dedicated solution for participant
management. Our proposal includes an initial setup of the choreography and its roles, followed by
runtime updates or role transfers. This is achieved through the use of NMT, which enables participants
to hold ownership of NMT and assets associated with specific roles in various choreographies.

4. The ChorNMT Architecture

In this section we introduced the proposed architecture and its various elements to represent BPMN
choreographies and participants.

4.1. Components

Figure 3 depicts the architecture, showing the key actors and components, which are divided into
two entities: choreographies and participants. Each entity in the architecture, i.e., choreography and
participant, is structured around two key smart contracts: an NMT smart contract, which defines the
template, minting logic, and management operations; and a Mutable Asset smart contract, representing
a specific instance derived from the NMT. These smart contracts are associated with the two specific

technical roles intrinsic to the NMT model itself: the Creator, who designs and deploys the NMT smart
contract, and the Holder, who owns and manages a specific instance of the mutable asset.
Choregraphy entity - defines the general BPMN model that serves as a reusable blueprint for

instantiating multiple instances of a specific process, each with its own lifecycle and set of participants.
For example, the public school canteen procedure in Figure 2, managed at a regional level, represents a
general choreography from which individual schools instantiate local versions tailored to their specific
context.

In the proposed architecture, this general model is represented by a Choreography NMT , deployed on
the blockchain and acting as a registry and controller for Choreography Mutable Asset ownership, in
line with NFT but with mutable capabilities. This NMT supports the minting of Choreography Mutable
Assets, each corresponding to a specific instance of the process (e.g., the canteen procedure in a school).
The NMT structure enables evolution over time, including modifications to the BPMN model itself
or to its associated BPMN roles, such as adding or removing participants to reflect organizational or
regulatory changes.

Each Choreography NMT is created by a Choreography Creator , such as a central education agency in
our example, who is responsible for defining the choreography logic and its governance policies. These
policies, embedded in Creator Smart Policy and Holder Smart Policy, regulate asset-level changes. For
instance, only designated school or central education agency offices might be authorized to update the
local canteen procedure. Ownership of each Choreography Mutable Asset is assigned to a Choreography
Holder , e.g., the Cyberville School, which is responsible for managing its local implementation.

This structure allows schools to customize their canteen procedures while maintaining a link to the
general model. The mutability of the asset ensures that updates like introducing new supplier roles
or adapting the model to nutritional policy changes can be applied without redeploying a new smart
contract.
Participant entity - defines a generic participant type involved in a choreography and is used to

represent specific actor roles within a choreography, such as a food supplier or a canteen management,
as shown in Figure 2. In the proposed architecture, each Participant NMT acts as a reusable template
for generating Participant Mutable Asset of the same type, for example, a food supplier, and each asset
corresponds to a real-world organization fulfilling that BPMN role within a specific choreography
instance.

The Participant NMT is defined by a Participant Creator , which could coincide with the entity respon-
sible for the choreography. The creator specifies structural properties and access policies governing
the evolution of the participant role. Once minted, Participant Mutable Asset are linked to one or more
choreography instances (Choreography Mutable Assets) and associated with real-world organizations
acting as Participant Holder . For example, the food supplier role in the school canteen procedure may
be represented by an asset held by "Supplier Company A", denoting its active assignment to that role.
The asset includes the BPMN role definition, name, description, and other important details, and its
related interactions.

Holding a Participant Mutable Asset represents the operational responsibility, and may be interpreted
as evidence of an active engagement, even in the absence of an explicit legal contract. When the
assignment ends or is reassigned (e.g., due to supplier turnover), the asset can be transferred to a new
holder without altering the underlying choreography structure.

Participant Mutable Assets also support mutability: specific fields such as the supplier’s name, service
description or related interactions, can be proposed for update by any actor. However, a modification is
applied only if both the proposed value and the identity of the requester satisfy the constraints defined
by both the Participant Creator and Participant Holder . For instance, a company undergoing rebranding
may adjust its metadata accordingly, provided the change is authorized by the Holder Smart Policy in
accordance with the Participant Creator .

As with choreography assets, Participant Smart Policies (for both creator and holder) regulate
lifecycle transitions and modifications, enabling secure and adaptable participant management across
choreography instances.

Participant
Mutable Asset

Choreography
Holder

Choreography
Mutable Asset

Participant
Mutable Asset

Participant
Holder

Participant
Holder

Participant
Mutable Asset

Choreography
Holder

Choreography
Mutable Asset

Participant
Mutable Asset

Participant
Holder

Participant
Holder

Participant
Mutable Asset

Participant
Holder

Participant
Mutable Asset

Choreography
Holder

Choreography
Mutable Asset

Participant
Mutable Asset

Participant
Holder

Participant
Holder

Setup Transfer

Update

smart policies choreography messages

Figure 4: The ChorNMT functionalities

4.2. Functionalities

Here we outline the ChorNMT functionalities. In particular, we focus on the choreography and
participant mutable assets, as they represent the core components of the architecture. Figure 4 shows
the three main functionalities of the ChorNMT, respectively set up, update, and transfer.

Set up is the first functionality, where the Choreography and Participant Creators mint the corre-
sponding Choreography and Participant NMTs according to the structure introduced in Section 4. As
a result, the Choreography Mutable Asset and Participant Mutable Asset become available, represent-
ing the choreography instances and actual participants. In the public school canteen procedure, this
functionality corresponds to the deployment and minting of the various NMTs and assets needed.

Transfer This functionality permits the transfer of ownership for the Choreography and Participant
Mutable Assets. By inheriting NFT characteristics, the transfer enables the holders of assets to be
changed. Considering the canteen procedure, at the participant level, the transfer can refer to the
change in a supplier company due to the end of a contract. This leads to the transfer of the responsibility
of the food supplier role, passing from Supplier Company A to Supplier Company B. At the choreography
level, another transfer can refer to the management of the canteen procedure, passing from the Central
Agency School to a municipality. To regulate such changes, the NFT approval mechanism specifies
whenever the transfer of ownership can take place. If approved, the ownership transfer is authorized,
and the corresponding operation is done on such an asset; otherwise, this possibility is denied.

Update the last functionality permits the update of the choreography at runtime, allowing for dealing
with changes in the collaborative scenario. This is possible thanks to the mutable characteristic of
the NMT. In this case, two different updates are possible. In the first one, a new Participant Mutable
Asset can be included and linked to the Choreography Mutable Asset. In the second one, an already
existing Participant Mutable Asset can be updated by adding or removing messages to exchange. In
both cases, the ABAC mechanism is used to check whether the policies are satisfied, authorizing or not
the operations. For example, an update could be about the inclusion of a new supplier participant for a
specific raw material, leading to an update in the message exchange of the canteen management.

NMT

Creator SP

Holder SP

Token URI

Linked

Asset Descriptor
Participant

BPMN

NMT

Creator SP

Holder SP

Token URI

Linked

Asset Descriptor
Participant Role

Messages

BPMN

Choreography
Mutable Asset

Participant
Mutable Asset

Description

Figure 5: Structure of the Choreography Mutable Asset and Participant Mutable Asset .

5. NMT implementation

In this section, we describe the implementation details of the architecture we propose in 4 to represent
choreography and its participants. The full code of smart contracts is accessible in the online repository2.
The structure of NMTs and their assets is based on the implementation presented in [14], from which
the base classes were reused and appropriately extended to include specific mutable attributes related
to the mutable assets of the choreography and its participants.

Starting with the Choreography NMT and Participant NMT , these only contain general metadata
and functionalities to mint related assets, keeping a reference to the different holders. For this reason,
in this work, we focus on the Choreography Mutable Asset and the Participant Mutable Asset, whose
structures are depicted in Fig. 5. In the following, we provide a general overview of the common
structure, focusing on the Asset Descriptor, while all the other aspects can be found in detail in [14].

These assets share a core structure and main attributes:

• NMT: stores the address of the original NMT from which the asset is minted;
• CreatorSmartPolicy: stores the address of the smart contract containing the smart policy

defined by the asset’s creator;
• HolderSmartPolicy stores the address of the smart contract containing the smart policy defined

by the asset’s current holder;
• TokenURI: is the reference to the asset’s off-chain metadata;
• Linked: when this asset is associated with another mutable asset, this variable stores the address

of that asset’s smart contract, which is linked to.

The Asset Descriptor contains specific updatable metadata for a particular asset, a specialization of
a Mutable Asset, and can be customized for different NMTs and needs. For the choreography asset,
standard content is represented by the following attributes, having corresponding set and get functions:

• Participant: is the list of the Participant Mutable Assets’ tokenId (i.e., addresses), linking the
choreography to the involved participants;

• BPMN: contains the XML representation of the BPMN choreography directly or through an
external reference (e.g., IPFS link).

2https://github.com/d0na/BPMN-NMT-Roles

https://github.com/d0na/BPMN-NMT-Roles

The Participant Mutable Asset is instead characterized by the following default attributes, having the
corresponding set and get functions:

• Name: is the name of the participant role in the choreography;
• BPMN: contains the XML representation of the participant element in the BPMN model directly

or through an external reference (e.g., IPFS link);
• Messages: is the list of messages that the participant is responsible for;
• Description: is the participant description, such as company name or additional data.

Listing 1 shows an excerpt of the Choreography Mutable Asset. The first element is the descriptor (Lines
1-4), which describes the content of the Choreography Mutable Asset. This includes the list of participants’
addresses (Line 2) and the BPMN field (Line 3), which holds the IPFS URL of the BPMN model. The
BPMN model is stored off-chain for convenience, allowing for efficient referencing without increasing
the on-chain data size. Each attribute of the descriptor is provided with a dedicated setter method (Lines
6-9 and Lines 11-14) that protects its modification through the evaluatedBySmartPolicies modifier
(Lines 6,11 and Listing 2). In case the policy is correctly evaluated, the setter function is allowed to
update the associated attribute (Lines 7, 12) in the descriptor and emits an event (Lines 8, 13) to notify
the state change within the mutable asset.
1 s t ruc t D e s c r i p t o r {
2 address [] p a r t i c i p a n t s ;
3 s t r ing bpmn ;
4 }
5

6 function s e t P a r t i c i p a n t s (address [] memory _ p a r t i c i p a n t s) public e v a l u a t e d B y S m a r t P o l i c i e s (
msg . sender , a b i . e n c o d e W i t h S i g n a t u r e ("setParticipants(address[])" , _ p a r t i c i p a n t s) ,
address (th i s)) {

7 d e s c r i p t o r . p a r t i c i p a n t s = _ p a r t i c i p a n t s ;
8 emit Sta teChanged (d e s c r i p t o r) ;
9 }

10

11 function setBpmn (s t r ing memory _bpmn) public e v a l u a t e d B y S m a r t P o l i c i e s (msg . sender , a b i .
e n c o d e W i t h S i g n a t u r e ("setBpmn(string,string)" , _bpmn) , address (th i s)) {

12 d e s c r i p t o r . bpmn = _bpmn ;
13 emit Sta teChanged (d e s c r i p t o r) ;
14 }
15

16 function g e t P a r t i c i p a n t s () public view returns (address [] memory) {
17 return d e s c r i p t o r . p a r t i c i p a n t s ;
18 }

Listing 1: Excerpt showing the Choreography Mutable Asset Descriptor and some of its getter and setter

The conditions defined in the smart contracts regulate the asset changes, as determined by both the
Creator and the Holder, and are initially expressed using XACML. These XACML-based policies are then
translated into smart policies through a dedicated translation mechanism that follows a similar method-
ology to the one described in [18]. The resulting smart policies are deployed as fully functional smart
contracts (Smart Policy), as also described in [14]. Listing 2 shows the evaluatedBySmartPolicies
modifier, which acts as a protection mechanism for setter methods. It is based on the evaluation
process of a given action, executed in this case by both the Creator’s and the Holder’s Smart Policy.
The action is considered authorized only if both policies return a positive evaluation (Lines 20, 24).
The evaluation method is the public entry point exposed by each Smart Policy to assess whether a
given action can be executed. This method takes as input three parameters (Lines 19): the resource,
representing the address of the actor invoking the action; the action, expressed in encoded form using
abi.encodeWithSignature (e.g., "setParticipants(address[])"); and the address of the re-
source involved. Internally, the evaluation method verifies whether the action requested by the subject
on the specified resource satisfies all the constraints and rules defined within the policy.
19 modifier e v a l u a t e d B y S m a r t P o l i c i e s (address _ s u b j e c t , bytes memory _ a c t i o n , address _ r e s o u r c e

) {
20 require (S m a r t P o l i c y (c r e a t o r S m a r t P o l i c y) . e v a l u a t e (_ s u b j e c t , _ a c t i o n , _ r e s o u r c e) == true

, "Operation DENIED by CREATOR policy") ;

Actor Action Role

Central Agency
School
(CAS)

Designs the general choreography model for the school canteen proce-
dure.

Choreography
creator

Initially owns the instance of the choreography mutable asset, acting
as Choreography Mutable Asset holder.

Cyberville School
(CS)

Adopts the choreography model, receiving the ownership of the model
instance after winning a public call. Acts as Choreography Mutable
Asset holder after the transfer.

Canteen
management

Is the organization holding the Participant Mutable Asset of the corre-
sponding role.
Manages the choreography instance because authorized by the CAS
for updating the model.

Supplier Company A

Supplier Company B

External companies that provide meals or necessary materials for the
canteen. Food supplier
Is the organization holding the Participant Mutable Asset corresponding
to the role.
Food Supplier A is replaced with Food Supplier B, simulating supplier
changes, transferring the Participant Mutable Asset ownership.

Table 1
Actors of the public school canteen scenario and their actions.

21 i f (h o l d e r S m a r t P o l i c y == address (0)) {
22 rever t ("Operation DENIED by HOLDER policy set to DENY_ALL") ;
23 } e l se {
24 require (S m a r t P o l i c y (h o l d e r S m a r t P o l i c y) . e v a l u a t e (_ s u b j e c t , _ a c t i o n , _ r e s o u r c e) ==

true , "Operation DENIED by HOLDER policy") ;
25 _ ;
26 }
27 }

Listing 2: Modifier of Mutable Asset allowing Creator and Holder actor policies to be evaluated

6. Evaluation

To show the feasibility of the proposed architecture, we executed the implemented solution, evaluating
its costs. To test the architecture, we simulated the adoption of the choreography model for managing a
school canteen (described in Section 2), designed by the Central Agency School (CAS). The Table 1 lists
all the actors and participants involved in the test, specifying their roles and the actions they perform.

In this context, the Cyberville School (CS), after winning a public call, is associated with an instance
of a Choreography Mutable Asset via a dedicated Choreography NMT , handled by CAS. The ownership
of this instance is then transferred from the CAS, the creator and previous holder, to the CS. From
this moment, only the CS and the CAS have the authority to update the BPMN model of this instance,
as stated by the Smart Policies. We tested the various functionalities of the system setup, ownership
transfer, and update to evaluate the dynamics and costs of the architecture. In particular, we simulated
the transfer in terms of participant Role change, such as the supplier company (e.g., replacing Food
Supplier A with Food Supplier B), and in terms of administrative control over the choreography itself
(e.g., transferring control from CAS to a CS). Updates of both Choreography Mutable Asset and Participant
Mutable Asset were also tested by including a new dish supplier and modifying the BPMN process to
adapt requests for dishes.

Table 2
Gas used analysis for canteen scenario.

Func. Executed operation AVG
gas used

Total average
gas used

Setup

Deploy SupplierNMT 5318860

28294841

mint 2785951
SupplierMutableAsset
setMessages 125905
setDescriptor 86686
Deploy CanteenNMT 5319006
mint 2785951
CanteenMutableAsset
setDescriptor 86674
setMessages 125905
Deploy ChoreographyNMT 4775577
mint 2276921
ChoreographyMutableAsset
setParticipants 116893
setBpmn 89796
canteenManagement - CreatorSmartPolicy 914259
canteenManagement - HolderSmartPolicy 752221
choreography - CreatorSmartPolicy 542094
choreography - HolderSmartPolicy 525662
supplier - CreatorSmartPolicy 914259
supplier - HolderSmartPolicy 752221

Transfer

ChoreographyNMT

196694
transferFrom 95182
SupplierNMT
transferFrom 101512

Update

Deploy ParticipantNMT 5318920

8495657

mint 2785963
ParticipantMutableAsset
setMessages 125905
ChoreographyMutableAsset
setParticipants 84200
setBpmn 87623
SupplierMutableAsset
setMessages 93046

6.1. Cost evaluation

The blockchain platform used to validate this implementation is a local Hardhat3 Ethereum-based
node with all smart contracts developed in Solidity. To perform the experimentation, we created
one Choreography NMT and one Participant NMT representing, respectively, the choreography of the
canteen procedure and the participant roles. These were then minted to obtain one Choreography
Mutable Asset and three Participant Mutable Asset representing the instance of the canteen procedure for
a particular school and the actual involved organizations. As previously mentioned, the choreography
is intended to represent the collaborative process of canteen management, while the three participants
correspond to the actors involved in this collaboration. As shown in Figure 2, two participants represent
the Canteen Management and the Food Supplier, respectively, while the third is introduced to associate
with a new task related to the provision of dishes.

Table 2 shows the experimentation results highlighting the executed operations in the various
functionalities during the execution of the canteen scenario. Figure 6 depicts instead the obtained results.
Analyzing the result, the setup is the first functionality and consists of deploying the choreography and

3https://hardhat.org/

https://hardhat.org/

Setup Transfer Update
Functionality

0.00M

5.00M

10.00M

15.00M

20.00M

25.00M
To

ta
l G

as
 U

se
d

Total Gas Usage by Functionality

Figure 6: Gas used by executing functionalities on the canteen scenario.

participant NMTs, minting related mutable assets and setting the various data. This step consumed
a total of 28294841 units of gas, with the deployments being the most expensive operations. Indeed,
deployment and mining operations are certainly the most expensive operations, but are executed once
and generate persistent artifacts. In fact, after being deployed, NMTs persist over time and can be
minted multiple times to create different choreography instances. Other operations related to the
initialization of asset data are instead cheap. Regarding the transfer functionality, it consumes a total
of 196695 units of gas. In this case, the multiple transfers refer to the ownership change in both the
Choreography and Participant Mutable Assets. As a result, this functionality is the simplest one and it
does not show a relevant impact on the overall cost. Lastly, the update functionality consists of the
minting for the new joining participant, its settings and the update in the already existing choreography
and participants. This step does not include any new operation, but it foresees the execution of already
existing ones, with the difference that those can be done at runtime. In the considered case study, the
update consumed a total of 8495657 units of gas due to the execution of a mint operation.

In order to assess the economic sustainability of the proposed system, a cost analysis was performed
considering the total gas consumption for contract deployment (setup), asset transfers, and subsequent
updates. To translate these values into monetary costs, the average gas price recorded on the Polygon
network in March 2025 was taken as a reference. According to publicly available data [23], the average
gas price for that period was about 101 Gwei and approximately $0.23 per 1 POL. We can so derive the
following estimated costs: $0.64405 for the setup functionality, $0.00045 for the transfer, and $0.193381
for the update. This analysis provides a quantitative basis for comparing the operational costs under
the different interaction scenarios, highlighting the overall economic feasibility of the solution.

7. Conclusions and Future Works

Inter-organizational business processes involve multiple distributed participants collaborating toward
shared goals. Certification and rights are crucial in this context, as they provide the foundation for
accountability, traceability, and effective governance, especially when dealing with dynamic environ-
ments where roles and responsibilities may evolve over time. Blockchain has emerged as an enabling

technology, providing decentralization, trust, and auditability guarantees thanks to its transparency
and immutability characteristics. In particular, BPMN choreographies have been used to describe the
interactions among process participants, translated then into smart contracts. However, while existing
blockchain-based approaches enforce inter-organizational process logic through smart contracts, they
often overlook critical aspects such as role certification, rights, and runtime flexibility.

In this work, we proposed the ChorNMT architecture to certify choreography participants on the
blockchain and manage their roles. We introduced the use of NMTs to represent both the choreography
specification and the associated participants. NMTs provide verifiable digital ownership and can be
updated dynamically, supporting runtime changes such as role transfers or attribute updates. By
modeling both choreographies and participants as NMTs owned by responsible organizations, we
provide a certified role attribution. Furthermore, roles and choreography components can be used across
different process instances, supporting interoperability. To evaluate our proposal, we implemented
the ChorNMT architecture and demonstrated its core functionalities using an exemplificative canteen
scenario, evaluating its performance and showcasing the effectiveness of NMT-based choreography
certification.

Future works relate to the implementation of the ChorNMT application supporting participants in
the guided creation of NMTs and mutable assets. We also plan to extend the evaluation of the ChorNMT
and perform scalability experiments to assess the performance under different scenarios.

Acknowledgment

This work was partially supported by project SERICS (PE00000014) under the MUR National Recovery
and Resilience Plan funded by the European Union - NextGenerationEU

Declaration on Generative AI
During the preparation of this work, the author(s) used ChatGPT in order to: Grammar and spelling
check, Paraphrase and reword. After using this service, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s content.

References

[1] H. Bala, V. Venkatesh, Assimilation of interorganizational business process standards, Information
Systems Research 18 (2007) 340 – 362.

[2] V. Venkatesh, H. Bala, Adoption and impacts of interorganizational business process standards:
Role of partnering synergy, Inf. Syst. Res. 23 (2012) 1131–1157.

[3] K. Bouchbout, Z. Alimazighi, Inter-organizational business processes modelling framework, in:
ADBIS 2011, Research Communications, Proceedings II of the 15th East-European Conference
on Advances in Databases and Information Systems, volume 789 of CEUR Workshop Proceedings,
CEUR-WS.org, 2011, pp. 45–54.

[4] J. Mendling, I. Weber, et al., Blockchains for business process management - challenges and
opportunities, ACM Transactions on Management Information Systems 9 (2018) 1–16.

[5] C. D. Ciccio, G. Meroni, P. Plebani, Business process monitoring on blockchains: Potentials and
challenges, in: Enterprise, Business-Process and Information Systems Modeling, volume 387 of
LNBIP, Springer, 2020, pp. 36–51.

[6] C. D. Ciccio, G. Meroni, P. Plebani, On the adoption of blockchain for business process monitoring,
Software and Systems Modeling 21 (2022) 915–937. doi:10.1007/S10270-021-00959-X.

[7] J. Vom Brocke, M. Rosemann, Handbook on business process management 2, Springer, 2010.
[8] M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers, et al., Fundamentals of business process

management, volume 1, Springer, 2013.

http://dx.doi.org/10.1007/S10270-021-00959-X

[9] K. B. Danilova, Process owners in business process management: a systematic literature review,
Business Process Management Journal 25 (2019) 1377–1412.

[10] M. H. Larsen, R. Klischewski, Process ownership challenges in it-enabled transformation of
interorganizational business processes, in: 37th Annual Hawaii International Conference on
System Sciences, 2004. Proceedings of the, IEEE, 2004, pp. 11–pp.

[11] OMG, Business Process Model and Notation (BPMN V 2.0), 2011.
[12] F. Stiehle, I. Weber, Blockchain for business process enactment: a taxonomy and systematic

literature review, in: International Conference on Business Process Management, Springer, 2022,
pp. 5–20.

[13] S. Curty, F. Härer, H.-G. Fill, Design of blockchain-based applications using model-driven engi-
neering and low-code/no-code platforms: a structured literature review, Software and Systems
Modeling 22 (2023) 1857–1895.

[14] D. D. F. Maesa, F. Donini, P. Mori, L. Ricci, Protecting non fungible mutable tokens: an application
in the metaverse, in: 2024 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), 2024, pp. 443–451. doi:10.1109/ICBC59979.2024.10634340.

[15] ERC-721 - OpenZeppelin Docs, https://docs.openzeppelin.com/contracts/5.x/erc721, 2025. Ac-
cessed: 2025-03-11.

[16] Metadata Standards, https://docs.opensea.io/docs/metadata-standards, 2025. Accessed: 2025-03-11.
[17] OASIS, extensible access control markup language (XACML) version 3.0. (OASIS XACML

TC,2013,1), https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf, 2013. [Online]
Accessed: 2025-03-11.

[18] D. D. F. Maesa, P. Mori, L. Ricci, A blockchain based approach for the definition of auditable
access control systems, Computers & Security 84 (2019) 93–119. URL: https://www.sciencedirect.
com/science/article/pii/S0167404818309398. doi:https://doi.org/10.1016/j.cose.2019.
03.016.

[19] D. Di Francesco Maesa, P. Mori, L. Ricci, Blockchain based access control services, in: 2018
IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), 2018, pp. 1379–1386. doi:10.1109/Cybermatics_2018.2018.00237.

[20] W. Viriyasitavat, L. Da Xu, G. Dhiman, Z. Bi, Blockchain-as-a-service for business process
management: Survey and challenges, IEEE Transactions on Services Computing 16 (2022) 2299–
2314.

[21] W. Viriyasitavat, L. Da Xu, D. Niyato, Z. Bi, D. Hoonsopon, Applications of blockchain in business
processes: A comprehensive review, IEEE Access 10 (2022) 118900–118925.

[22] T. Lichtenstein, H. Atwi, M. Weske, C. Pautasso, Loose collaborations on the blockchain: Survey
and challenges, in: International Conference on Business Process Management, Springer, 2023, pp.
21–35.

[23] Polygonscan, Ethereum gas price, https://polygonscan.com/charts, 2025. [Online] Accessed: 2025-
03-11.

http://dx.doi.org/10.1109/ICBC59979.2024.10634340
https://docs.openzeppelin.com/contracts/5.x/erc721
https://docs.opensea.io/docs/metadata-standards
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
https://www.sciencedirect.com/science/article/pii/S0167404818309398
https://www.sciencedirect.com/science/article/pii/S0167404818309398
http://dx.doi.org/https://doi.org/10.1016/j.cose.2019.03.016
http://dx.doi.org/https://doi.org/10.1016/j.cose.2019.03.016
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00237
https://polygonscan.com/charts

	1 Introduction
	2 Background
	3 State of the art
	4 The ChorNMT Architecture
	4.1 Components
	4.2 Functionalities

	5 NMT implementation
	6 Evaluation
	6.1 Cost evaluation

	7 Conclusions and Future Works

