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Abstract
Blockchain technology is set to transform economics and finance by enabling secure, transparent, and decentralized
transactions. Some significant examples in this sense are cryptocurrencies and decentralized finance, which leverage
blockchain technology to provide fast, low-cost financial services without a central authority, as well as the tokeniza-
tion of finance, already forecast by Larry Fink, CEO of BlackRock. As crypto economies and blockchain applications
gain global relevance, the need to measure and assess their efficiency is becoming increasingly important. While
blockchain efficiency is often evaluated in terms of transactions per second or energy consumption, cryptocurrency
efficiency is implicitly assessed through various indexes, such as capitalization, price trends, average transaction
value, mining profitability, and others. What is lacking is an index capable of comprehensively and coherently de-
scribing the actual functioning of a crypto economic system, accounting for its key economic characteristics – such
as supply mechanisms and token distribution – and the level of user participation within the specific crypto economy.

In this study, we introduce a new theoretical framework based on Shannon entropy to assess the economic
efficiency of a cryptocurrency through the Entropy Balance index (EB-index). Our approach integrates on-chain
parameters – sourced from Coin Metrics® – by mapping them to economic quality attributes. To illustrate how
our entropy-based approach works, we apply it to two distinct sets of attributes across six leading cryptocurrencies
by market capitalization and use-case diversity: Bitcoin, Ethereum, Ripple, USD Coin, Dogecoin, and Cardano. For
either set of attributes, the six EB-index values provide us with a comprehensive way of comparing the considered
cryptocurrencies from an economic efficiency viewpoint. Our approach is fully customizable with respect to
the selection of attributes as well as their weights.
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1. Introduction

Internet is transforming economics and finance, with blockchain raising as a key technology with
its secure, transparent, and immutable distributed ledger [1]. Cryptocurrencies like Bitcoin [2],
Ethereum [3], and Ripple [4] have emerged from blockchain innovation [5], enabling secure peer-to-peer
transactions [6] and inclusive decentralized financial services (DeFi [7]). Their global relevance
continues to grow [8], marked by milestones such as (𝑖) the 2024 approval by the Securities and
Exchange Commission (SEC) of Bitcoin and Ethereum Exchange-Traded Funds (ETFs) [9], pushing
Bitcoin to 100,000 USD [10], (𝑖𝑖) the recent statements by Larry Fink, CEO of BlackRock, in his 2025
annual letter to investors, in which he says “What exactly is tokenization? It is turning real-world
assets – stocks, bonds, real estate – into digital tokens tradable online” [11], and (𝑖𝑖𝑖) the anticipated use
of stablecoins backed by the US dollar (USDC, USDT, etc.) as the digital version of the US dollar itself,
which can play the role of a central bank digital currency [12]. As of April 2025, over 1,000 blockchains,
17,000 coins, and a 2.6 trillion USD market cap [13] rival tech giants like Google and Amazon.

With the expansion of applications of cryptocurrencies and blockchains, attention has increasingly
turned to assessing their properties, especially in terms of efficiency. Despite the various possible
interpretations of this word – such as performance efficiency based on transactions per second [14, 15],
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Table (1)
Wealth concentration, engagement, and asset dormancy of major cryptoassets from July 2010 up to April 2025. For
wealth concentration we use a Gini coefficient adapted to average balances over class intervals. Engagement is
defined as the share of addresses with positive balance over the total. Asset dormancy is calculated as one minus
the ratio of active supply to circulating supply. Source: Coin Metrics.

Asset Wealth Concetration Engagement Asset Dormancy
(Gini coeff.) (%) (%)

Min Max Min Max Min Max

Bitcoin (BTC) [2] 0.31 0.97 0.33 24.73 84.69 99.56
Ethereum (ETH) [3] 0.84 0.89 0.41 30.49 63.03 98.32
Ripple (XRP) [4] 0.94 0.98 0.08 4.40 36.74 99.79
USD Coin (USDC) [26] 0.93 0.99 0.86 90.34 5.21 89.29
Dogecoin (DOGE) [27] 0.82 0.98 0.70 90.78 64.78 99.54
Cardano (ADA) [28] 0.46 0.97 0.07 29.07 78.03 98.25

energy consumption in blockchain networks [16, 17], or price trends in crypto markets [18] – its use in
the realm of cryptocurrencies introduces new dimensions. This is due to the unique features associated
with blockchain technology, characterized by decentralized governance, peer-to-peer interactions,
and a heterogeneous structure and range of use cases for digital assets. For instance, to the best
of our knowledge, no study has thoroughly explored the economic efficiency of cryptocurrencies by
considering key factors such as supply distribution, user participation, and exchange activity; all
of these are dimensions in which wealth concentration [19, 20], low engagement [21, 22], and asset
dormancy [23, 24, 25] can undermine network economic vitality. Table 1 shows these issues with
regard to various cryptocurrencies up to April 2025. Notably, Bitcoin has a high asset dormancy (up
to 99.56%), while Ripple exhibits a low engagement (4.4%). Moreover, the lack of a clear conceptual
framework for analyzing economic efficiency in this context underscores the need to define it through
measurable links between network behavior and core economic indicators.

This study examines the concept of economic efficiency for the class of cryptocurrencies that
use public distributed ledgers to record transfers, offer accessible data, and leverage blockchain
for transparency, traceability, and consistency [29, 30]. It is worth noting that similar analyses in
traditional economies are hindered by limited access to raw data – controlled by centralized authorities
– and inconsistencies in reporting across sources, such as variable monetary aggregates calculated
by central banks [31]. Since data accessibility is ensured within blockchains, the problem to tackle is
the lack of a unifying index expressing economic efficiency that enables a comprehensive comparison
of cryptocurrencies instead of proceeding parameter by parameter.

We propose a theoretical framework that uses Shannon entropy [32] – a foundational concept in
information theory, originally introduced by Claude Shannon in 1948 [32] – to define the Entropy
Balance index (EB-index), an economic index capable of aggregating a set of parameters describing
economic qualities of a cryptocurrency. Our method follows these guiding principles: (𝑖) rest on a solid
theoretical foundation, (𝑖𝑖) remain adaptable to changes in parameters, (𝑖𝑖𝑖) reward cryptocurrencies
exhibiting well-balanced values for the chosen parameters, and (𝑖𝑣) support parameter weighting
without compromising the theoretical foundation.

Claude Shannon’s seminal paper “A Mathematical Theory of Communication” [32] introduced a rigor-
ous, axiomatic framework for quantifying information in communication systems. Entropy has subse-
quently found extensive use across diverse fields – from linguistics and neurobiology to machine learning
and medical diagnostics – underscoring its flexible role as an index of information exchanged, the degree
of fragmentation of a set, or the balance in the distribution of resources in both natural and engineered
systems [33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Its role as a measure of economic (in-)equality was already
formalized by Theil [43], who proposed entropy-based and divergence-based indices as alternatives to
the Gini index, highlighting their decomposability across population subgroups. There are some applica-
tions also in the context of blockchain, for example to quantify the degrees of decentralization [44, 45], to



measure the stability in blockchain consensus dynamics [46], and to express portfolio diversification [47].
To illustrate the robustness of our approach, we apply the entropy framework by using two distinct

sets of economic qualities, Set1 and Set2, each representing structural and behavioral aspects of
cryptocurrency economies. Set1 focuses on a minimal combination of basic financial activity metrics,
while Set2 adopts a richer, more granular perspective on network dynamics and internal economic
organization. These attributes guide the selection of corresponding on-chain parameters, which we
retrieve from the Coin Metrics® platform [48], ensuring an empirical and data-driven rooting. The
entropy based on these two sets of features is then employed to evaluate six major cryptocurrencies
with high market capitalization, spanning various economic roles and use cases (payments, smart
contracts, stablecoins, and memecoins): Bitcoin (BTC) [2], Ethereum (ETH) [3], Ripple (XRP) [4], USD
Coin (USDC) [26], Dogecoin (DOGE) [27], Cardano (ADA) [28].

This study paves the way to a foundational and flexible methodology for evaluating economic
efficiency in cryptoassets and offering insights to investors, policymakers, and researchers navigating
the evolving landscape of blockchain-based economies. As part of this work, we release our refined
dataset (available at https://doi.org/10.5281/zenodo.15221823) for result reproducibility as well as
independent analysis execution.
Roadmap. §2 surveys existing literature and related works. §3 outlines the conceptual study for

an entropy-based economic framework. §4 shows an illustrative example. Finally, §5 concludes the
paper and discusses future works.

2. Efficiency of Cryptocurrencies: A Literature Review

Blockchain is a decentralized digital ledger technology that securely records transactions across a net-
work of nodes. Each block of data is linked to the previous one, forming a chain that is tamper-proof and
transparent [1]. Cryptocurrencies, like Bitcoin [2] and Ethereum [3], are digital assets built on blockchain
technology. They facilitate direct peer-to-peer transactions, eliminating the need for intermediaries such
as banks. Thanks to blockchain, transactions are secured through cryptographic methods and accompa-
nied by the management of new unit creation. Together, blockchain and cryptocurrencies offer a new
paradigm for financial systems and applications, promoting transparency, security, and decentralization.

The literature review reveals the absence of a universally accepted definition of efficiency in this
setting. Among the various interpretations, some focus on energy consumption and expenditure [17],
while others emphasize market price trends by analyzing fluctuations in cryptocurrency prices and
their implications for economic stability and efficiency [18]. Still others assess efficiency based on the
production objectives of the considered economy, including the presence or absence of technological
components [49]. In [50], the discussion centers on technical and scale efficiency, which differ in scope.
The former measures how effectively resources are allocated to maximize output, so as to ensure the
optimal utilization of inputs, while the latter examines the relationship between input growth and
output expansion, in order to identify whether economies of scale are being achieved [50]. Additionally,
in [50], efficiency is evaluated both qualitatively – by comparing actual delivery times with planned
schedules – and quantitatively – by analyzing the ratio of actual versus expected outputs relative to
expenditures. In traditional economies, metrics like the Gini coefficient [19, 51] – which quantifies
wealth distribution – and Pareto efficiency [52] – which describes an optimal allocation of resources
where no individual’s well-being can improve without negatively affecting another – are used to
identify economic inefficiencies and potential resource underutilization. Furthermore, it is interesting
that resource allocation analyses often incorporate concepts such as the cost of unused capacity [53].

As for the research gap in relation to economic efficiency within blockchain and cryptocurrency
ecosystems, we identify numerous studies that examine supply distribution, active user participation,
and idle resources within these ecosystems.

Supply distribution impacts fairness, decentralization, and network stability [20]. Consensus
mechanisms and other aspects impact cryptocurrency distribution, where wealth concentration can
affect security, and exchange rates [54, 19]. Actually, cryptocurrencies exhibit high inequality patterns
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similar to traditional economies (e.g., DOGE [27] Gini coefficient – 0.82 – is similar to US one – 0.84 [19]).
User participation affects liquidity and network value. In [21], an improved version of the PageRank

algorithm – a Google technology for ranking web pages based on their importance – is used to evaluate
Bitcoin user participation by taking into account both the consistency and the variability of transaction
patterns. Key metrics like active addresses, transaction volume, and circulation frequency strongly
correlate with price trends and economic activity [55, 22, 56].

Idle assets signal inefficiencies in resource use [23, 24, 25]. A key metric here is “Bitcoin Days
Destroyed”, which measures transaction volume while accounting for how long bitcoins have remained
unused – highlighting the economic impact of previously dormant coins becoming active again [23].
Another useful metric is average dormancy, which tracks the duration that bitcoins remain inactive
before reuse thus providing insights into circulation patterns, although it does not directly measure
monetary velocity or account for the full money supply and price levels [24, 25].

Together, these elements highlight the need for an integrated framework to evaluate uniformly
economic efficiency in blockchain systems [57].

3. The Quest for an Aggregated Economic Efficiency Index

A possible way to address the divergent interpretations of economic efficiency recalled in §2 is to
define this concept in cryptocurrencies by linking transfer dynamics with basic economic parameters,
thus enabling a more structured and comprehensive analysis. In particular, it is necessary to aggregate
parameters in a coherent way, with an index able to satisfy the guiding principles mentioned in §1. We
propose using Shannon entropy to define a theoretical framework that measures economic efficiency
in cryptocurrency ecosystems through the Entropy Balance index (EB-index), aligning with established
standards for reliability [58, 59, 60] and leveraging the transparency of blockchain data. Starting from
a probability distribution associated with a set of events or parameters chosen to represent the qualities
that determine the economic efficiency of a cryptocurrency, we employ Shannon entropy to measure
how good the balance is within this set. The EB-index captures the complex internal structure of
cryptoassets without relying on arbitrary single metrics. By aggregating heterogeneous dimensions
– such as user activity, transactions, and supply – it reveals patterns that univariate analyses may miss.

In this section we recall the basics of the entropy measure (§3.1) and then we discuss a number of
economic parameters among which to select the ones to be used in the entropy formula (§3.2).

3.1. The Entropy Measure

Let 𝑞1,𝑞2,...,𝑞𝑘 be a set of 𝑘 quality parameters, with 𝑙𝑖≤𝑞𝑖≤𝑢𝑖, where 𝑙𝑖 and 𝑢𝑖 represent, respectively,
the lower and upper bounds of the interval of variability for the corresponding parameter. The idea
behind our economic efficiency index for a cryptocurrency is to combine these parameters in a way that
rewards cryptocurrencies exhibiting a well-balanced set of parameters with good performance, which
leads to a wealthy economic development of the corresponding cryptocurrency. This composition
must allow for changes in the number of parameters without affecting the nature or compromising
the coherence of the index.

The first step is to normalize each 𝑞𝑖 within the interval [0, 1], thereby obtaining the set
𝑅 = {𝑟1,𝑟2,...,𝑟𝑘} with 0 ≤ 𝑟𝑖 ≤ 1. This normalization is necessary because we cannot compare
quantities with different scales, e.g., one parameter varying within [0,1] and another varying within
[0,𝑢], where 𝑢 is an unbounded real number.

The economic efficiency index should intuitively reach its maximum value when all 𝑟𝑖 attain the
upper bound of the interval [0,1], i.e., when they are all equal to 1. When 𝑟𝑖=1, we can assume the
maximum economic efficiency for the single parameter 𝑖, as opposed to an economic inefficiency of 0.
Conversely, as 𝑟𝑖 approaches 0, it is customary to assume that inefficiency grows to infinity. From



this perspective, we need to introduce an analytic function1 ℐ satisfying the following constraints:

when 𝑟𝑖=1 we have ℐ(𝑟𝑖)=0
when 𝑟𝑖→0 we have ℐ(𝑟𝑖)→+∞ (1)

It is well known that there exist infinitely many functions satisfying these constraints; among all the
possible ones, we choose:

ℐ(𝑟𝑖)=−log𝑏𝑟𝑖 (2)

This choice immediately leads to the Shannon entropy defined by using base-2 logarithm [32]:

𝐻2(𝑃 )=−
𝑘∑︁

𝑖=1

𝑝𝑖log2 𝑝𝑖 (3)

after the normalization:
𝑝𝑖=

𝑟𝑖∑︀𝑘
𝑖=1𝑟𝑖

(4)

so as to derive a probability distribution (p.d.) 𝑃 = {𝑝1,𝑝2,...,𝑝𝑘} from the set 𝑅= {𝑟1,𝑟2,...,𝑟𝑘} of
parameters in the interval [0,1]. Recall that:

0≤𝐻2(𝑃 )≤ log2𝑘 where 𝐻2(𝑃 )=

{︂
0 iff 𝑃 is degenerate
log2𝑘 iff 𝑃 is uniform (5)

𝑃 degenerate means it is in the form 0,...,1,...,0, while 𝑃 uniform corresponds to 𝑝𝑖=1/𝑘∀𝑖 [32, 61].
By taking the logarithms to the base 𝑘, we obtain a normalization of the entropy:

0≤𝐻(𝑃 )≤1 (6)

The motivation for choosing the Shannon entropy lies in the fact that it can be proven, through a
theorem, that Shannon entropy is the unique function, among infinitely many possible ones, that
satisfies a specific set of postulates outlining the natural properties an information measure should
reasonably possess [32, 62, 63].

The distinguishing postulate is the so-called branching property, expressed as follows in the case
of 𝑘 events:

𝐻(𝑝1,𝑝2,...,𝑝𝑘)=𝐻(𝑝1+𝑝2,𝑝3,...,𝑝𝑘)+(𝑝1+𝑝2)𝐻

(︂
𝑝1

𝑝1+𝑝2
,

𝑝2
𝑝1+𝑝2

)︂
(7)

that describes how entropy behaves when a p.d. is broken down into successive steps. The relation
expresses the average information loss incurred when two events are grouped together and made
indistinguishable; this loss is given by the entropy of the two events, weighted by the sum of their
probabilities. Furthermore, it should be noted that this branching property can be generalized to a
partition { 𝒥𝑖 |1≤ 𝑖≤𝑚 }, 𝑚<𝑘, of {1,2,...,𝑘} with p.d. 𝑆={𝑠1,𝑠2,...,𝑠𝑚}:

𝐻(𝑝1,𝑝2,...,𝑝𝑘
)=𝐻(𝑠1,𝑠2,...,𝑠𝑚)+

𝑚∑︁
𝑖=1

𝑠𝑖𝐻
(𝑖) (8)

where 𝐻(𝑖)=−
∑︀

𝑗∈𝒥𝑖

(︁
𝑝𝑗
𝑠𝑖

)︁
log

(︁
𝑝𝑗
𝑠𝑖

)︁
is the entropy associated with 𝒥𝑖 and

∑︀
𝑗∈𝒥𝑖

𝑝𝑗
𝑠𝑖
=1 so that 𝑝𝑗/𝑠𝑖

is effectively a p.d. In this last case, the relation expresses the average information loss incurred when
some subsets of events are grouped together and made indistinguishable; this loss is given by the sum
of the entropies related to the subsets, weighted by their probabilities [62]. These equations provide
the theoretical foundation underpinning entropy and our approach.
1An analytic function is a function that (𝑖) is locally representable by a convergent power series, hence it can be expressed as a
sum of terms based on powers of the variable, and (𝑖𝑖) is differentiable at every point in its domain.



Another important advantage of the Shannon entropy is that it is possible to associate a set of
weights or utilities with the p.d. 𝑃 , say 𝒲 = {𝑤1,𝑤2,...,𝑤𝑘},𝑤𝑖 ≥ 0, without losing the branching
property. This leads to the definition of the Beliş-Guiaşu weighted entropy [64]

ℋ(𝑃 ;𝒲)=−
𝑘∑︁

𝑖=1

𝑤𝑖 ·𝑝𝑖log2 𝑝𝑖 (9)

It is simple to check that the branching property still holds as soon as we correctly define the weight
of the composition of two events 𝑒1 and 𝑒2 as a weighted sum of the utilities of the single events:

Weight(𝑒1,𝑒2)=𝑤12=
𝑝1

𝑝1+𝑝2
𝑤1+

𝑝2
𝑝1+𝑝2

𝑤2 (10)

The branching property can then be expressed in the following way (𝑝12=𝑝1+𝑝2):

ℋ(𝑝1,...,𝑝𝑘;𝑤1,...,𝑤𝑘)=ℋ(𝑝12,𝑝3,...,𝑝𝑘;𝑤12,𝑤3,...,𝑤𝑘)+𝑝12 ·ℋ
(︂

𝑝1
𝑝12

,
𝑝2
𝑝12

;𝑤1,𝑤2

)︂
(11)

The presence of the weights 𝑤𝑖 in the weighted entropy (9) causes the function to be zero when 𝑤𝑖=0,
for all 𝑖. Moreover, it is also reduced to zero when the useful events are impossible or the possible
events are useless. The last case occurs also when 𝑃 is degenerate.

3.2. Economic Parameters

Among the most commonly used methods to measure complex socio-economic phenomena – such
as Gross Domestic Product (GDP) or Human Poverty Index (HPI) – composite indices play a central role.
They are widely used due to their adherence to established theoretical and functional requirements
that ensure their reliability [58, 59]. According to [59, 58, 60], guidelines and steps to summarize a
set of economic indicators and construct a composite index are the following:

1. Phenomenon definition, i.e., the theoretical framework to achieve a clear conceptualization of
what is being measured and establish selection criteria for determining whether an indicator
should be included.

2. Data modeling, i.e., the selection of relevant, timely, and accessible data sources, considering
their correlation to minimize redundancy.

3. Data processing, composed by (𝑖) normalization, which ensures comparability between indicators,
(𝑖𝑖) weighting, which assigns priority to indicators based on their relevance, and (𝑖𝑖𝑖) aggregation,
which combines the normalized indicators into a unified framework.

As discussed in §3.1, our entropy-based approach adheres to all these phases, providing a solid
foundation for evaluations. In the following, we illustrate how each phase contributes to the
construction of our framework for assessing economic efficiency.

Phenomenon Definition. The economic efficiency analysis we aim to conduct goes beyond purely
economic parameters measured in some currency. It also considers additional aspects, such as the
intensity and frequency of transfers, as well as user participation. To establish a solid foundation for
this study on economic efficiency, we introduce in Table 2 several basic cryptocurrency parameters.
We use these basic parameters to clearly define and formalize the set of key economic quality attributes
that characterize these digital economic systems. In particular, we identify primitive quality (PQ)
attributes, which are defined by a single parameter, and derived quality (DQ) attributes, which result
from a mathematical combination of multiple PQs. These are presented in Table 3 along with their
definitions, formulas, units, and range intervals. When applicable, we explicitly indicate the use of
the native cryptocurrency unit (marked as "Ntv") rather than USD.



Table (2)
Basic parameters.

Attribute Acronym Definition

Digital Asset Supply 𝑆 The total amount of a digital asset (coin or token) available within the tokenomics of a cryptocurrency.

Current Supply 𝑆current The number of coins or tokens that have been minted or mined to date.

Transfer Set 𝑇 The set of all transfers 𝑡 executed within the network during a given period.

Transfer 𝑡 A single movement of digital assets between two addresses.

Sender of a Transfer sender(𝑡) The sender of a transfer 𝑡.

Receiver of a Transfer receiver(𝑡) The receiver of a transfer 𝑡.

Transfer Amount amount(𝑡) The value in coins or tokens associated with a transfer 𝑡.

Address Set 𝐴 The set of all addresses 𝑎.

Funded Address Set 𝐴funded The set of addresses holding at least 1 USD during a given period.

Active Address Sent Set 𝐴active The set of unique addresses, counted only once, that are involved in sending transfers over a given
period. It refers to all activities leading to a change in the ledger, excluding the null address used for
issuance purposes.

Address 𝑎 Unique identifier for sending or receiving digital assets.

Address Balance balance(𝑎) The value in coins or tokens associated with the address 𝑎.

Address Sent sent(𝑎,𝑡) The value in coins or tokens sent from address 𝑎 during a transfer 𝑡.

Table (3)
Key economic quality attributes.

Economic Attribute Acronym Definition Formula Unit Interval

PQ1 - Transferred Value 𝑇value The total Ntv value exchanged within the system over
a given period, excluding issuance account transfers,
which record asset creation (e.g., Bitcoin coinbase
transactions).

𝑇value=
∑︀

𝑡∈𝑇 amount(𝑡) Ntv [0,+∞)

PQ2 - Transfer Count 𝑇count The total number of transfers 𝑡 executed within the
network during a given period.

𝑇count= |𝑇 | Count [0,+∞)

PQ3 - Number of Funded Addresses NAfunded The number of addresses continuously holding at least
1 USD during a given period.

NAfunded= |𝐴funded| Count [0,+∞)

PQ4 - Number of Active Addresses Sent NAactive The total number of unique addresses, counted only
once, that are involved in sending transfers over a
given period.

NAactive= |𝐴active| Count [0,+∞)

PQ5 - Active Supply 𝑆active The amount of coins/tokens that have been moved
at least once within a given time period, excluding
double counting of the same units being recycled.

Ntv [0,+∞)

PQ6 - Daily Digital Asset to USD Price Rate USDprice The price in USD per native unit of the coin or token
at the close of the day.

USD (0,+∞)

PQ7 - Market Capitalization Cap The total value of a cryptocurrency in USD, calculated
by multiplying its current price by the total circulating
supply of coins.

Cap=𝑆 ·USDprice USD (0,+∞)

DQ1 - Participation 𝐴participation The proportion of active addresses relative to the total
addresses holding at least 1 USD. A higher ratio sug-
gests a more engaged user base and a healthy level of
participation within the cryptocurrency ecosystem.

𝐴participation=NAactive/NAfunded Count [0,1]

DQ2 - Mean Transfer Size MTS The mean size of a transfer, measured in Ntv. It is
calculated by dividing the total value transferred by
the number of transfers between distinct addresses
during a given period.

MTS=𝑇value/𝑇count Ntv [0,+∞)

DQ3 - Mean Transfers per Active Address MTAactive The mean number of transfers per active address. It is
calculated by dividing the total number of transfers
by the number of active addresses during a given pe-
riod. This metric provides insights into the intensity
of usage per user.

MTAactive=𝑇count/NAactive Count [0,+∞)

DQ4 - Active Supply Turnover Rate TR The ratio between the total value transferred and the
active supply over a given period. A higher TR in-
dicates more frequent economic activity and greater
liquidity.

TR=𝑇value/𝑆active Count [0,+∞)

DQ5 - Active Supply Ratio ASR The proportion of the current supply that is actively
participating in transactions. A higher ASR signifies
that a larger portion of the available cryptocurrency
is being used rather than held passively.

ASR=𝑆active/𝑆current Count [0,1]

DQ6 - Wealth Distribution WD The degree to which wealth is distributed across
the network participants, where: 𝐼 is a set of bal-
ance intervals each of which represents a range
of account balances; NAfunded(𝑖) is the number
of accounts whose balance falls within interval 𝑖;
𝑆current(𝑖) is the total supply in interval 𝑖; avgbal(𝑖)=
𝑆current(𝑖)/NAfunded(𝑖) is the average balance per ad-
dress in interval 𝑖.

WD=
∑︀

𝑘∈I

∑︀
ℎ∈INAfunded(𝑘)·NAfunded(ℎ)·|avgbal(𝑘)−avgbal(ℎ)|

2·NAfunded·
∑︀

𝑖∈IScurrent(𝑖)
Count [0,1]

DQ7 - Mean Transfer per Market Cap MTMC The mean size of a transfer over a specific period rela-
tive to the cryptocurrency’s market capitalization.

MTMC =(𝑇value ·USDprice)/Cap USD [0,+∞)



Table (4)
Blockchain data intelligence platforms comparison.

Name Assets and Protocols API Access Metrics

Bitquery [65] 40+ 3-months as researcher Blocks and transactions related

Glassnode [66] 600+ Limited free plan 400+

Blockdaemon [67] 23+ Limited free plan Balances, blocks, fee estimator, transactions

Blockchair [68] 14 1-year 100K requests as student Raw stats metrics per blockchain

Coin Metrics [48] 200+ 2-year as researcher ∼300

Table (5)
Coin Metrics parameters selection.

PQ Coin Metrics Parameter Description Unit

PQ1 Xfer’d Val The sum of Ntv transferred (i.e., the aggregate "size" of all transfers) in a given period. Ntv

PQ2 Xfer Cnt The count of transfers in a given period, including all user-initiated actions recorded on the chain,
excluding protocol-mandated changes like coinbase transactions or new issuance.

Count

PQ3 Addresses Count with Balance ≥ 1 USD The total count of unique addresses holding at least 1 USD by the end of a given period. Count

PQ4 Active Addresses (Sent) The total count of unique sending addresses active in the network in a given period, excluding
duplicates from previous activity.

Count

PQ5 1-Day Active Supply The sum of unique native units that transacted at least once within a single day. Native units that
transacted more than once are only counted once.

Ntv

PQ6 USD Denominated Closing Price The price of the asset denominated in USD. USD

PQ7 Market Cap The value of the current supply in USD. Also referred to as network value or market capitalization. USD

- Current Supply The sum of all native units ever created and currently visible on the ledger (i.e., issued) in a given
period.

Ntv

- Val in Addrs w/ Bal ≥ X Ntv The total of native units held in addresses with a balance of X Ntv or more at the end of a given period,
excluding non-native tokens.

Ntv

Data Modeling. Having properly defined the quality attributes, we can now identify the on-chain
parameters to be measured for each quality, based on a selection criterion that reflects their relevance to
the corresponding attribute. To achieve this, we can exploit blockchain data intelligence platforms that
provide several on-chain data in user-friendly formats. Table 4 compares some of these platforms with
respect to the available metrics, the number of accessible assets and protocols, and the type of API access.

We rely on Coin Metrics [48] as its indicators categorization aids us in identifying both blockchain
and cryptocurrency components from economic and technological perspectives. Additionally, it offers
a wide range of protocols and provides researchers with the opportunity to access premium data for
free up to 2 years (upon request). In Table 5 we present the on-chain parameters from Coin Metrics
that best represent the previously defined quality attributes, enabling a comprehensive study focused
on economic efficiency within cryptocurrency networks [57, 55]. We use Coin Metrics to download
this data with a daily granularity.

Data Processing. The data processing stage is essential to ensure that economic efficiency is
grounded in solid theoretical principles. To meet the methodological requirements of normalization,
weighting, and aggregation, we adopt the rigorous framework of Shannon entropy [32].

After downloading the relevant metrics from Coin Metrics, we align all datasets to a common
time reference, using the earliest available timestamp (2010-07-18) for PQ6 as the baseline (USD
Denominated Closing Price). Next, we convert into USD all metrics originally expressed in native units.
This applies to the following metrics from Table 5: Xfer’d_Val (PQ1), 1-Day_Active_Supply (PQ5),
Current_Supply, Val_in_Addrs_w/Bal≥X_Ntv. Particular attention should be paid to the calculation
of DQ6 (Wealth Distribution), which considers balance class intervals rather than individual address bal-
ances as in the original Gini formula. These intervals range from 0.001 units of the native currency up to
100K. Furthermore, since a user may control multiple wallets, we focus on the address-level granularity
provided by Coin Metrics, which allows us to distinguish between wallets and individual addresses.



Table (6)
Selected cryptocurrencies and their financial and technical characteristics as of April 2025.
Source: Coin Metrics.

Asset Category Coin Metrics Capitalization Max Supply Avg. Network Size Underlying Blockchain Consensus Mechanism

Bitcoin (BTC) [2] Payment $1,653.3 billions 21 millions BTC 21.886 [69] Bitcoin PoW

Ethereum (ETH) [3] Smart Contract $217.6 billions No fixed supply 13.347 [70] Ethereum PoS

Ripple (XRP) [4] Payment $214 billions 100 billions XRP 150+ [71] XRP Ledger Consensus Protocol

USD Coin (USDC) [26] Stablecoin $40 billions No fixed supply Depends on the blockchain Operates on multiple blockchains Depends on the blockchain

Dogecoin (DOGE) [27] Memecoin/Payment $25.1 billions No fixed supply 315 [72] Dogecoin PoW

Cardano (ADA) [28] Payment/Smart Contract $23.3 billions 45 billions ADA N.A. Cardano PoS

We then normalize the data. Normalization ensures that each metric contributes equally, independent
of scale differences (e.g., market cap or address count). While metrics may reflect protocol-specific
factors, the entropy-based approach remains agnostic to context, focusing on internal distributions. For
fairer comparisons, assets should ideally belong to the same category. For each metric and asset (except
PQ7), we use min-max normalization [59, 58, 60] based on the individual asset’s range, taken within the
entire lifetime of the cryptocurrency. For PQ7 (Market Capitalization), we apply a global normalization
by using the min and max values across all assets to preserve comparability. To handle DQ6 (WD),
where lower values indicate greater efficiency, we use the specific transformation 1−𝑛𝑜𝑟𝑚_𝑣𝑎𝑙 to
reflect this inverse relationship. This adjustment ensures that all metrics behave consistently – higher
normalized values always reflect greater economic efficiency – while remaining within the [0,1] range.

Finally, we compute the EB-index derived from the chosen parameters for an illustrative example by
using both the standard formulation (3) and its weighted variant (9). Our analysis, encompassing all data
and resulting output, is conducted on a daily granularity. The corresponding results are presented in §4.

4. An Illustrative Example

In this section, we present a case study to illustrate the application of our EB-index to evaluate
economic efficiency in cryptocurrencies. Our intention is not to provide any conclusive assessment
of the performance or quality of the selected cryptocurrencies, but rather to demonstrate the practical
implementation of the proposed theoretical framework within a real-world financial context.

We conduct a comparative analysis of the entropies obtained by the six major cryptocurrencies
cited in §1 – BTC, ETH, XRP, USDC, DOGE, and ADA – over the period from 2010 to 2025; their
main financial and technical characteristics, such as capitalization, max supply, underlying blockchain,
and consensus mechanism, are briefly summarized in Table 6. The choice of the aforementioned
cryptocurrencies also takes into account the fact that not all cryptocurrencies have the desired
parameters available on Coin Metrics.

The analysis is based on two distinct sets of derived quality attributes, constructed from selected
parameters available on Coin Metrics (see §3.2): Set1 and Set2, each designed to capture different layers
of cryptocurrency economic behavior. Set1 is composed of a minimal combination of fundamental
financial activity metrics – such as market capitalization – primarily reflecting broader macroeconomic
sentiment. In contrast, Set2 offers a more granular view, incorporating a richer selection of attributes
that describe structural network dynamics and internal economic organization, thereby capturing
slower-moving, user-driven behavioral trends. The composition of these two sets is detailed in Table 7.

4.1. EB-Index Based on Unweighted Entropy: Good Balance

The entropy variations for the chosen cryptocurrencies, computed by using the standard formula (3),
are illustrated in Figure 1. The comparison across different attribute sets highlights how the selection
of metrics can substantially affect the observed performance and behavior of cryptoassets.

In Set1, which combines user activity with financial metrics, most assets exhibit a gradual growth with
peak values between 0.85 and 0.9 – particularly DOGE, ADA and ETH, which display the highest levels
of entropy for the entire period. This suggests a peak in homogeneity and well-balanced development



Table (7)
Derived quality attributes chosen for the two sets Set1 and Set2.

Set Qualities Description

Set1 It combines user activity metrics with market financial indicators.

DQ1 Participation (𝐴participation)
DQ3 Mean Transfers per Active Address (MTAactive)
DQ7 Mean Transfer per Market Cap (MTMC )
PQ7 Market Capitalization (Cap)

Set2 It comprises six dynamic qualities, with a focus on user engagement, transaction
characteristics, and the distribution of wealth within the network.

DQ1 Participation (𝐴participation)
DQ2 Mean Transfer Size (MTS )
DQ3 Mean Transfers per Active Address (MTAactive)
DQ4 Active Supply Turnover Rate (TR)
DQ5 Active Supply Ratio (ASR)
DQ6 Wealth Distribution (WD )
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(b) Weighted entropy variations for Set1
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(d) Weighted entropy variations for Set2

Figure (1): Comparison between unweighted and weighted entropy for (a-b) Set1 (DQ1, DQ3, DQ7, PQ7) and
(c-d) Set2 (DQ1, DQ2, DQ3, DQ4, DQ5, DQ6). For the weighted entropy the chosen weights are 𝑤𝑖=𝑟𝑖.

during that period. After 2020, ETH stabilizes and becomes the most consistent asset across the entire set,
maintaining values steadily above 0.6 – a sign of structural resilience. BTC, on the other hand, undergoes
a temporary recovery between 2022 and 2023, followed by another sharp decline. The dynamics of the en-
tropy values are generally well pronounced (0.25–0.9), with a lot of sharp peaks and bottoms, highlighting
that the index is capable of capturing key aspects associated with variations in the economic parameters.

Set2, built on dynamic, interaction-based features such as transaction size, turnover rate, and wealth
distribution, reveals higher and less dispersed values, with only the period of time from 2023 to mid
2024 characterized by some steep declines in value.



Ethereum consistently exhibits the highest entropy, reflecting a well-balanced and resilient ecosystem,
especially during market stress. As represented in Figure 2, in Set1 a drop in DQ3 offset by rising Market
Cap preserved balance, while in Set2 opposing shifts in DQ5 and DQ6 had a compensatory effect.

It is worth noting that some assets can perform differently when using different sets of parameters.
For example XRP consistently ranks as the least efficient asset in Set2, with values averaging near 0.6 for
the majority of the period, reflecting poorer distribution and transactional engagement. On the contrary,
it can be considered average compared to the others in Set1. This underlines again the importance of
carefully selecting parameters based on the characteristics of the cryptocurrency one aims to highlight.

While some global events – such as market crashes, regulatory changes, or liquidity shocks – may
coincide with entropy shifts, their causal impact on the distributional structure of the parameters is
not addressed in this work. Our primary goal remains the introduction of a well-founded economic
index, flexible in both composition and number of parameters, capable of expressing the balanced
integration of economic qualities as an indicator of systemic efficiency – irrespective of exogenous
causes. It remains the responsibility of the researcher to choose the set of parameters and economic
qualities that best suit her/his research.

4.2. EB-Index Based on Weighted Entropy: Performance or Importance

The proposed EB-index assumes equal relevance for all selected economic qualities. However, this
approach has a limitation: it rewards only the good balance among qualities, regardless of their absolute
value. As an example, consider two cryptocurrencies: the first one with all normalized qualities reaching
the maximum value 𝑟𝑖=1,∀𝑖; the second one with 𝑟𝑖=0.5,∀𝑖. From (4) it is clear that both the two
corresponding p.d.’s are uniform and correspond to the maximum value of normalized entropy, i.e.,
𝐻(𝑃 )=1 with 𝑘 the base of the logarithm. But the first cryptocurrency has all absolute values greater
than that of the second one. To overcome this limitation we can use the weighted entropy (9) and set𝑤𝑖=
𝑟𝑖, so each quality contributes proportionally to its normalized absolute value. In this way the entropy
metric becomes sensitive not only to a good balance of the qualities, but also to the absolute performance
of the system, thus better capturing the economic efficiency of the evaluated blockchain protocol. Note,
however, that when we use the term "absolute", we are always comparing the value of the given quality
to its own highest value over the historical series, within the context of the same cryptocurrency.

In Figure 1, the unweighted entropy calculation is shown alongside its weighted counterpart with
𝑤𝑖=𝑟𝑖 for each quality 𝑞𝑖. This highlights a significant shift in the interpretation of the results, particu-
larly for Set2, where interestingly the USDC stablecoin emerges as the most balanced and highly entropic
representation. Moreover, it is worth noting that the entropy score drops significantly below 0.3, indicat-
ing that a full balance among the selected economic features has not yet been achieved within the sets.

Another possibility offered by the weighted entropy is that of increasing the importance of some
qualities to the detriment of others, by assigning 𝑤𝑖=𝑢𝑖, where 𝑢𝑖 is the utility (upper bound) of the
corresponding quality. Note that in any case we can consider the last two weighting principles in a joint
manner by setting 𝑤𝑖=𝑟𝑖 ·𝑢𝑖, without losing the formal properties satisfied by the Shannon entropy.

5. Conclusions and Future Work

The EB-index adopted in this study offers a novel perspective on assessing economic efficiency in
cryptoassets. The key idea is the introduction of Shannon entropy as a global metric, capable of
expressing good performance and balance among several economic parameters of a cryptocurrency.
This is accomplished in a rigorous axiomatic framework, which ensures the coherent behavior of the
index when changing the number of parameters and/or the weights associated with them, without
compromising the theoretical foundation. In other words, our entropy-based approach offers a way to
evaluate the harmonious development of the analyzed cryptocurrency, in the sense of a global, healthy,
and well-balanced improvement of all of its parameters.

By analyzing multiple sets of attributes over time, one could identify how structural and valuation-
driven components influence the internal systemic behavior of these assets. Future work may explore
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Figure (2): Probability distribution of the selected attributes within each set, computed per asset.

causal methods to better assess the link between external shocks and systemic dynamics.
The quality and completeness of the analysis are directly influenced by the availability and

granularity of on-chain data. Similarly, the Gini-based Wealth Distribution (DQ6) had to be computed
by using balance class intervals between 0.001 units of the native currency up to 100,000, as this range
best matched the practical constraints of the available dataset.

The framework currently assumes equal relevance for all selected attributes, which may not



align with their actual economic significance. In this regard, we have proposed the adoption of the
weighted entropy formulation by Beliş and Guiaşu [64], to better reflect the different importance of
each parameter by attributing a specific weight to it, without losing the axiomatic coherence of the
index. Future work will explore weighted formulations based on domain-specific criteria, data-driven
methods, or expert input. The proposed methodology remains flexible and adaptable to various
research objectives and data analysis strategies.

The EB-index flexibly assesses structural balance by employing user-defined parameters. We do
not seek an optimal metric set, as efficiency is context-dependent. Changes in the index resulting from
adding or removing metrics are context-specific and not generalizable. A sensitivity analysis, which
is beyond the scope of this work, is left for future investigation.

Another consideration involves the treatment of certain on-chain metrics. For example, Active
Addresses Sent aggregates various activities that result in a ledger change, not exclusively economic
transfers. While this metric is broadly representative of network usage, it may introduce noise in
contexts where distinguishing between economic and non-economic activity is crucial.

We recall that the study datasets are available at https://doi.org/10.5281/zenodo.15221823
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