
Smart Contract Visualization: Solutions and Challenges
Emanuele Antonio Napoli1,*, Ivan Spada2, Noemi Romani1, Valentina Gatteschi1 and
Claudio Schifanella2

1Politecnico di Torino, Corso Duca degli Abruzzi, 24, Turin, 10129, Italy
2Università degli Studi di Torino, Via Verdi, 8, Turin, 10124, Italy

Abstract
The advent of distributed ledger technology across various sectors highlighted its potential to revolutionize
conventional processes and systems. In particular, smart contracts emerged as disruptive innovation, automating
legal contract clauses between parties. However, smart contract development is not an easy task and raises
nontrivial challenges to non-programmers since they need to have specialized programming skills and deep
understanding of blockchain technology. These challenges reduce user engagement and increase the possibility
of introducing bugs and vulnerabilities that can lead to huge financial loss. To address these complexities, visual
programming has emerged as the main solution among researchers since it is a well-proven methodology to
improve and lower the learning curve of a new programming language and create a working piece of code in a user-
friendly way. This paper aims to assess the visual formalism and representation that have been used in academia
to represent smart contracts in an easy-to-understand manner. The findings show a clear evolution in visualization
approaches, with Business Process Model Notation (BPMN) emerging as the dominant methodology (35%) in
recent years. Behavioral visualizations (52.5%) have increasingly replaced structural representations (37.5%) as the
field matures, whereas evolution-focused approaches remain underexplored (10%). Despite balanced accessibility
requirements across user expertise levels, only 20% of studies incorporate formal UX testing, suggesting significant
opportunities to improve user-centered design in the visualization of smart contracts.

Keywords
Smart Contract, Visualization, Graphical Representation, Smart Contract Visualization, Blockly, UML, BPMN

1. Introduction

Distributed ledger technology represents a major shift in data management field such as transactions,
or file documents, since the information is shared across decentralized networks instead of persisting
on one (or few) centralized repositories. Since every peer in the network has all the data, the distributed
ledger enables levels of transparency, immutability, and consensus-driven validation without relying on
third parties. Blockchain technology is an example of distributed ledger which uses cryptography to
ensure that once the data are committed together, they remain unmodifiable or tamper-resistant, thereby
making a chronological record that all participants can independently verify. Due to the distributed
nature of the system, blockchain is remarkably resistant against single-point of failure and censorship
attempts since the data exist simultaneously on multiple computational nodes. These characteristics
are enforced by the so-called “blocks” of transactions, the most common data on blockchain, linked
together through cryptographic hashing. This particular technology enables the execution of smart
contracts, pieces of code that run on top of the blockchain which model business logic into code that can
be triggered by user transactions. Since the data on the blockchain are publicly available and cannot be
modified once included in a block, smart contracts are extremely reliable because, once the authenticity
of the code is verified, anyone can trust it knowing that no one can modify it. However, the immutability
properties of blockchain technology, while beneficial for trust, introduce significant challenges. Indeed,
deployed smart contracts cannot be patched if bugs or vulnerabilities are detected, potentially leading

DLT2025: 7th Distributed Ledger Technology Workshop, June, 12-14 2025 - Pizzo, Italy
*Corresponding author.
$ emanuele.napoli@polito.it (E. A. Napoli); ivan.spada@unito.it (I. Spada); noemi.romani@polito.it (N. Romani);
valentina.gatteschi@polito.it (V. Gatteschi); claudio.schifanella@unito.it (C. Schifanella)
� 0009-0006-5221-8070 (E. A. Napoli); 0000-0001-7116-9338 (I. Spada); 0009-0004-3725-8002 (N. Romani);
0000-0001-6075-6430 (V. Gatteschi); 0000-0001-7449-6529 (C. Schifanella)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-24

mailto:emanuele.napoli@polito.it
mailto:ivan.spada@unito.it
mailto:noemi.romani@polito.it
mailto:valentina.gatteschi@polito.it
mailto:claudio.schifanella@unito.it
https://orcid.org/0009-0006-5221-8070
https://orcid.org/0000-0001-7116-9338
https://orcid.org/0009-0004-3725-8002
https://orcid.org/0000-0001-6075-6430
https://orcid.org/0000-0001-7449-6529
https://creativecommons.org/licenses/by/4.0/deed.en


to huge financial losses. This has promoted extensive research efforts to develop vulnerability detection
methods before deployment [1]. As blockchain technology gained popularity, many newcomers began
deploying smart contracts by simply copying code from established entities [2], often without proper
verification. This practice emerged because many blockchain enthusiasts lack development expertise,
and even those with programming experience face the dual challenge of understanding blockchain’s
complex principles while simultaneously learning specialized programming languages like Solidity.
Visual programming tools have historically proven effective for teaching complex technical concepts
by allowing learners to focus on core logic rather than syntax details. These tools can significantly
flatten the learning curve by providing intuitive representations of abstract concepts. Despite the
evident need for accessible development tools, a comprehensive overview of existing approaches to
visual representation of smart contracts is currently lacking. This paper systematically maps efforts to
represent smart contracts through visual formalisms, analyzing proposed visual methods to understand
their strengths, limitations, and underlying design philosophies. This analysis helps identify which
visualization techniques best support different aspects of smart contract development—from initial
learning to security analysis to collaborative design. While the blockchain ecosystem continues its
rapid growth, the barrier to entry remains substantial due to specialized programming languages and
complex execution models. Visual representations could democratize access to this technology while
promoting best practices, but first requires understanding what approaches have been attempted, what
works effectively, and what gaps persist. This mapping study establishes a foundation for developers
and researchers to build enhanced visual tools that make smart contract development more accessible
without compromising essential capabilities or security considerations.

The paper is organized as follows. In Section 2 a useful key aspect is provided to introduce the context
and rationale behind this work. Section 3 provides the research methodology used to carry out the
analysis. The main categories of smart contract visualization identified from the analysis of the selected
articles are presented in Section 4 while the mapping and analysis of the selected papers are presented
in Section 5. Finally, conclusions are reported in Section 6.

2. Background

Understanding complex software systems requires effective methods to clearly represent how they
operate. Visualization approaches in software engineering have been widely adopted to support this
need. In parallel, the emergence of smart contracts has introduced new programming paradigms
that demand both security and formal correctness. These contracts are typically developed using
specialized programming languages such as Solidity, the most widely used language for Ethereum, as
well as Vyper and Rust (commonly used on platforms like Solana and NEAR). Although these languages
emphasize determinism and transparency, their syntactic and semantic complexity can pose significant
challenges for novice developers. The integration of visual programming and visualization techniques
into smart contract development offers promising potential to improve accessibility, comprehension,
and reliability. The following section provides an overview of both software visualization techniques
and the programming languages used to develop smart contracts, in order to clarify the rationale behind
the design choices made in proposing a visual programming solution in literature for smart contract
development.

2.1. Code Visualization

Three main categories have been identified in general software visualization: structure, evolution, and
behavior [3, 4]. Structure visualization focuses on analyzing information such as source code [5], library
dependencies [6], and control flow graph [7]. Evolution visualizations focus on code change history to
illustrate how a software system evolves over time [8]. Finally, behavior visualization uses data collected
from program execution, such as function calls [9], to support tasks like performance optimization [10],
and anomaly detection [11]. Existing behavior visualizations often present data as time series [12] or
domain-specific event sequences [10]. Visual programming environments primarily emphasize the



visualization of code structure, aiming to abstract away complex textual syntax and enable learners
to focus more on programming logic rather than syntactic details. This abstraction is particularly
valuable in educational contexts, where novice programmers struggle with the intricacies of traditional
text-based programming languages [13]. The visual programming approach has significant implications
for both improving programming skills and managing cognitive load. Regarding programming skill
improvement, block-based visual programming languages and platforms effectively teach fundamental
computer science concepts by facilitating comprehension and algorithm implementation through
visual interfaces and immediate program state visibility. Platforms like Scratch and Blockly have
proven helpful for learning text-based programming and developing computational thinking [14]. Their
visual nature reduces syntax errors and makes programming concepts more accessible to beginners.
Research indicates that integrating block programming with interactive physical objects, such as in
smart home applications, positively impacts programming skills and student confidence by creating
tangible learning artifacts [15]. Recent literature has introduced several notable block-based visual
programming platforms. Algot, based on programming by demonstration, improves understanding of
complex concepts such as recursion among high school students and improves task performance for
university students compared to text-based languages like Python [16]. Similarly, NextBlock – integrated
into Moodle – enables educators to create personalized exercises and promote collaborative learning,
while adapting activities to specific student needs [14]. Concerning cognitive load management, visual
programming offers several burden-reducing mechanisms. A study using eye tracking and galvanic skin
response found a lower cognitive load for university students performing simple tasks in Algot compared
to Python. However, a subsequent EEG study showed similar levels of cognitive load for recursion-based
tasks, despite better performance in Algot [17]. The authors suggest that improved performance with
similar cognitive demands indicates Algot’s utility for beginners. Block-based programming generally
reduces cognitive load by breaking complex constructs into visual blocks and decreasing the information
processed simultaneously. The drag-and-drop interface and the prevention of syntax errors create
a less frustrating programming environment for novices. Inspired by the principles of “Learnable
Programming”, Algot maintains the visibility of the continuous state of the program and allows direct
interaction, simplifying learning by clarifying the meaning of the program [18]. Similarly, NextBlocks
reduces the cognitive load by eliminating syntax memorization requirements, allowing students to
focus on programming logic [14].

2.2. Smart Contract Programming Language

Smart contracts are executable rules that can be triggered by the users with transactions. Smart
contract programming languages enable developers to create self-executing agreements on blockchain
platforms. These languages vary significantly in their programming paradigms, type systems, and state
management approaches, reflecting the diverse architectural choices of their respective blockchain
platforms. Rust serves as Solana’s primary smart contract language, implementing a stateless account-
based model where procedures operate on separate data accounts. The Anchor framework helps abstract
away some of Rust’s complexity in the blockchain context. Aiken, a functional language for Cardano,
works with the extended UTXO model, requiring developers to specify transaction validation conditions
rather than procedural state changes. Move, embedded in platforms like Aptos, features linear types
to ensure that tokens cannot be replicated or lost. PyTEAL provides Python bindings for Algorand’s
TEAL bytecode, while SmartPy offers meta-programming capabilities for Tezos. Each language makes
different trade-offs in terms of expressiveness, safety, and abstraction level. Last but not least, Solidity,
developed in 2014, remains the dominant high-level language for Ethereum Virtual Machine (EVM)
compatible blockchains including Ethereum, Avalanche C-Chain, and Hedera. Using a JavaScript-like
syntax with object-oriented features, Solidity follows an account-based stateful model where contracts
act like classes with methods and storage. Despite its accessibility, Solidity has design quirks that can
lead to security vulnerabilities in decentralized applications. Most of the works present in the literature
target the visual representation of smart contract that are then translated in Solidity since it is the most
widely spread smart contract programming language [19].



2.3. Motivations

Despite some relevant work in the literature, there remains a significant need to comprehensively
map and analyze visual formalisms for smart contracts. Vieira and Vilain [20] demonstrated that state
diagrams can effectively visualize smart contracts, improving comprehension and development accuracy.
Their research identified visualization techniques including finite-state machines, UML state machine
diagrams, Business Process Model Notation (BPMN), and Petri Nets, with experiments showing that
state diagrams significantly reduced comprehension time compared to natural language descriptions
alone. Their approach bridged the semantic gap between legal contracts and technical implementations
while making smart contracts more accessible to non-technical stakeholders. Furthermore, Curty et
al. [21] highlight that the creation of blockchain-based software applications requires considerable
technical knowledge, particularly in software design and programming. This is regarded a major barrier
to adopting this technology in business and making it accessible to a wider audience. As a solution,
low-code and no-code approaches have been proposed that require only little or no programming
knowledge to create full-fledged software applications. Their review of academic approaches from
the discipline of model-driven engineering, as well as industrial low-code and no-code development
platforms for blockchains, includes a content-based, computational analysis of relevant academic papers
and the derivation of major topics.

Our work aims to map and analyze the visual formalisms proposed in literature to represent smart
contracts in terms of source code, interaction, or state evolution. As demonstrated in Section 2.1, visual
approaches can significantly improve the comprehension of source code and reduce the cognitive
workload of users. By systematically investigating the various visualization techniques employed across
different smart contract platforms and programming languages, this work aims to identify effective
representation patterns, uncover gaps in existing approaches, and propose standardized visualization
practices that could enhance both educational results and professional development workflows in the
smart contract ecosystem.

3. Research methodology

To achieve the objectives of this study, an initial search was performed using the SCOPUS search
engine to establish familiarity with the existing literature on the subject matter. SCOPUS includes
scientific databases including ACM Digital Library, IEEE Xplore, Elsevier, Wiley, and Springer. The
search used multiple strings: (“smart contrac”) AND ((“visualization” OR “representation”) OR (“visual”
AND “abstraction”) OR (“visual” AND “representation”) OR (“visual” AND “programming”)).

After the initial collection, 421 papers were screened first by title and then by abstract to determine
relevance. For a paper to be included in the final review, it needed to meet the following criteria:

• be written in English;
• be available in full text online;
• offer a clear visual representation of smart contracts in at least one of the following aspects:

structure of the source code, business interactions between parties, or evolution of the transition
states of the smart contract.

A significant number of papers were excluded because they focused on graph neural networks or merely
presented their findings in a visual way rather than offering visual representations of the smart contracts
themselves. Articles that did not meet these criteria were excluded from further analysis. Following
the collection of initial resources, the search was expanded to include relevant articles resulting from
strings “smart contract” AND (“no-code” OR “low-code” OR “bpmn” OR “mda” or “uml”) which led to
the selection of 119 articles. A secondary search was conducted through the citations and references
identified during the primary search process.

The investigation yielded 40 scholarly articles relevant to the research focus after the screening phase
and the elimination of duplicates. Informed conclusions regarding the current state of the field were



derived through in-depth examination of these papers, and potential avenues for future enhancement
within this domain were identified.

4. Smart Contract Visualization Approaches

The following section provides a summary of various approaches to visual representation of smart
contracts proposed by academia. To facilitate a clearer understanding, the approaches are categorized
in Block-based, Model-Driven, and Custom visualization approaches. The proposed visual solutions are
presented in Table 1 reporting visual methodology, visual category (as explained in Section 2.1), public
availability of the tool, presented use case, target user, and whether the usability of the proposed tool
has been tested.

4.1. Block-based Visualization Approach

Several researchers have adapted UML for smart contract visualization. Marchesi et al. [22] extended
traditional UML diagrams with specialized formalisms for Solidity constructs and enhanced sequence
diagrams with blockchain-specific stereotypes. Garamvolgyi et al. [23] employed UML statecharts
to model cyber-physical systems, capturing complex interactions between physical devices and their
blockchain representations. Pierro [24] developed Smart-Graph to generate augmented UML class
diagrams that include Solidity-specific constructs absent from traditional UML standards. Heckel et
al. [25] created a visualization framework using UML-inspired class diagrams enriched with domain-
specific stereotypes for DAML templates. Jurgelaitis et al. [26] proposed MDAsmartCD, a comprehensive
UML-based framework that spans the entire model-driven architecture lifecycle with blockchain-specific
extensions. Ghaffari Saadat [27] presented a unique approach using symbolic attributed graph grammars
to visualize smart contracts through typed graphs with color-coded transformation rules.

A significant research trend employs block-based visual programming to make smart contract devel-
opment accessible. Weingärtner et al. [28] introduced a modular Blockly framework that organizes
blocks into types, delivery options, and contractual options. Guida and Daniel [29] developed Solidi-
tyEditor with more than 70 custom blocks for Solidity constructs. Mao et al. [30] combined Blockly
with neural code generation to produce function templates encapsulated in visual blocks. Merlec et
al. [31] presented SmartBuilder, organizing blocks into functional domains while providing natural
language summaries. Trestioreanu et al. [32] created Blockly2Hooks for XRP Ledger development
with an end-to-end pipeline from visual programming to deployment. Gomez et al. [33] introduced
SmaCly with predefined ERC-standard templates and semantic compatibility enforcement. Tsai et al.
[34] developed an educational framework extending Blockly for blockchain education among K-12
students.

These visualization methodologies share several key objectives regardless of their underlying for-
malism. All approaches aim to abstract programming complexity and enforce structural correctness.
UML-based approaches excel at modeling system architecture and behavioral semantics, while block-
based systems focus on executable code generation and practical development.

Most frameworks provide immediate feedback loops between visual representation and generated
code. Several techniques incorporate domain-specific extensions to capture blockchain-specific concepts
missing in standard modeling notation. There is also a consistent emphasis on lowering technical
barriers for non-experts while preserving the semantic richness required for blockchain applications.



N
o.

Ye
ar

R
ef
er
en

ce
V
is
ua

lA
pp

ro
ac
h

V
is
ua

liz
at
io
n

C
at
eg

or
y

A
va

ila
bl
e

O
nl
in
e

U
se

ca
se

A
cc
es
si
bi
lit

y
R
eq

ui
re
m
en

ts
U
X
te
st
in
g

1
20

18
[3

5]

JS
O

N
H

T
M

L
RE

ST
Ph

ar
o

U
I

Be
ha

vi
or

Ye
s

Po
ol

Ba
si

c
N

o

2
20

18
[2

8]
Bl

oc
kl

y
St

ru
ct

ur
e

N
o

In
du

st
ri

al
co

nt
ra

ct
s

fo
r

m
ac

hi
ne

ry
Ba

si
c

N
o

3
20

18
[2

2]
U

M
L

St
ru

ct
ur

e
N

o
Vo

tin
g

sy
st

em
Ba

si
c

N
o

4
20

18
[2

3]
U

M
L

Ev
ol

ut
io

n
Ye

s
D

oo
r

co
nt

ro
lm

ec
ha

ni
sm

In
te

rm
ed

ia
te

N
o

5
20

19
[2

9]
Bl

oc
kl

y
St

ru
ct

ur
e

Ye
s

Tr
ai

n
In

su
ra

nc
e

In
te

rm
ed

ia
te

N
o

6
20

19
[3

0]
Bl

oc
kl

y
St

ru
ct

ur
e

N
o

Su
pp

ly
C

ha
in

Ba
si

c
N

o

7
20

19
[3

6]
BP

M
N

Be
ha

vi
or

Ye
s

In
vo

ic
in

g
Su

pp
ly

ch
ai

n
In

ci
de

nt
m

an
ag

em
en

t
In

su
ra

nc
e

cl
ai

m

In
te

rm
ed

ia
te

N
o

8
20

20
[2

7]
U

M
L

St
ru

ct
ur

e
N

o
Es

cr
ow

A
dv

an
ce

d
N

o
9

20
20

[3
7]

A
ct

io
n

gr
ap

h
of

no
de

s
St

ru
ct

ur
e

Ye
s

Vo
tin

g
sy

st
em

Ba
si

c
N

o
10

20
20

[3
8]

U
M

L
Be

ha
vi

or
Ye

s
Re

al
Es

ta
te

M
or

ta
ge

ca
se

Ba
si

c
N

o
11

20
21

[2
4]

U
M

L
St

ru
ct

ur
e

Ye
s

So
lid

ity
Li

br
ar

y
“O

w
ne

r”
A

dv
an

ce
d

N
o

12
20

21
[2

0]
U

M
L

St
ru

ct
ur

e
N

o
Pu

rc
ha

se
of

pa
pe

r
sh

ee
ts

Ba
si

c
6

us
er

s
13

20
21

[3
9]

BP
M

N
Be

ha
vi

or
Ye

s
M

or
tg

ag
e

ca
se

Ba
si

c
N

o

14
20

21
[4

0]
EF

SM
M

od
el

Ev
ol

ut
io

n
N

o

A
ir

lin
e

de
la

y
in

su
ra

nc
e

Be
tt

in
g

tr
an

sa
ct

io
ns

A
uc

tio
n

Ba
gg

ag
e

in
su

ra
nc

e
C

om
bi

ne
d

co
nt

ra
ct

In
te

rm
ed

ia
te

N
o

15
20

21
[3

1]
Bl

oc
kl

y
St

ru
ct

ur
e

Ye
s

Pa
ym

en
ts

ys
te

m
Ba

si
c

N
o

16
20

21
[4

1]
BP

M
N

Be
ha

vi
or

N
o

Pa
ym

en
ti

n
co

ns
tr

uc
tio

n
w

or
k

Ba
si

c
N

o
17

20
22

[4
2]

A
ns

w
er

Se
tP

ro
gr

am
m

in
g

(c
us

to
m

)
St

ru
ct

ur
e

N
o

Re
al

Es
ta

te
A

dv
an

ce
d

N
o

18
20

22
[4

3]
Fl

ow
-b

as
ed

pr
og

ra
m

m
in

g
(c

us
to

m
)

Ev
ol

ut
io

n
N

o
6

sm
ar

tc
on

tr
ac

ts
ce

na
ri

os
(N

ot
sp

ec
ifi

ed
)

Ba
si

c
58

st
ud

en
ts

19
20

22
[2

5]
U

M
L

St
ru

ct
ur

e
N

o
Vo

tin
g

sy
st

em
In

te
rm

ed
ia

te
N

o
20

20
22

[4
4]

D
SL

Be
ha

vi
or

N
o

Su
pp

ly
C

ha
in

Ba
si

c
N

o
21

20
22

[4
5]

N
od

e-
RE

D
Be

ha
vi

or
N

o
Te

m
pe

ra
tu

re
Tr

ac
ki

ng
of

va
cc

in
es

In
te

rm
ed

ia
te

N
o

22
20

23
[4

6]
D

C
R

gr
ap

hs
St

ru
ct

ur
e

Ye
s

C
as

in
o

ex
am

pl
e

In
te

rm
ed

ia
te

N
o

23
20

23
[3

2]
Bl

oc
kl

y
St

ru
ct

ur
e

Ye
s

C
ar

bo
n

O
ffs

et
H

oo
k

Ba
si

c
N

o

24
20

23
[4

7]
BP

M
N

Be
ha

vi
or

N
o

Su
pp

ly
C

ha
in

O
rd

er
Pr

oc
es

s
Tr

ad
e

A
dv

an
ce

d
N

o

25
20

23
[4

8]
BP

M
N

Be
ha

vi
or

Ye
s

X
-r

ay
s

ex
am

pr
oc

es
s

A
dv

an
ce

d
N

o



N
o.

Ye
ar

R
ef
er
en

ce
in

bi
bt
ex

t
V
is
ua

lA
pp

ro
ac
h

V
is
ua

liz
at
io
n

C
at
eg

or
y

A
va

ila
bl
e

O
nl
in
e

U
se

ca
se

A
cc
es
si
bi
lit

y
R
eq

ui
re
m
en

ts
U
X
te
st
in
g

26
20

23
[4

9]
BP

M
N

Be
ha

vi
or

Ye
s

Fl
ig

ht
de

la
y

in
su

ra
nc

e
Vo

tin
g

an
d

El
ec

tio
n

Vo
tin

g
Re

su
lt

N
ot

ifi
ca

tio
n

C
ro

w
df

un
di

ng
Su

pp
ly

C
ha

in
Bu

yi
ng

an
d

Se
lli

ng

Ba
si

c
N

o

27
20

23
[5

0]
BP

M
N

Be
ha

vi
or

Ye
s

M
an

ag
em

en
to

fb
ir

th
ce

rt
ifi

ca
te

s
m

un
ic

ip
al

ity
V

is
it

of
pe

di
at

ri
c

pa
tie

nt
ho

sp
ita

l
Te

le
co

ns
ul

ta
tio

n
be

tw
ee

n
ho

sp
ita

ls
Ro

ad
m

is
co

ns
tr

uc
tio

n

A
dv

an
ce

d
42

us
er

s

28
20

23
[2

6]
U

M
L

Be
ha

vi
or

Ye
s

C
er

tifi
ca

te
is

su
an

ce
In

te
rm

ed
ia

te
N

o

29
20

24
[5

1]
N

et
w

or
k

of
T

im
ed

A
ut

om
at

a
Be

ha
vi

or
N

o

Ph
D

re
gu

la
tio

ns
Bu

si
ne

ss
G

oo
gl

e
T

ik
To

k

A
dv

an
ce

d
N

o

30
20

24
[5

2]
BP

M
N

Ev
ol

ut
io

n
Ye

s
O

ffi
ce

bu
ild

in
g

co
ns

tr
uc

tio
n

In
te

rm
ed

ia
te

9
us

er
s

31
20

24
[5

3]
C

on
tr

ol
Fl

ow
G

ra
ph

Be
ha

vi
or

N
o

Po
nz

is
ch

em
e

de
te

ct
io

n
A

dv
an

ce
d

12
us

er
s

32
20

24
[3

4]
Bl

oc
kl

y
St

ru
ct

ur
e

N
o

N
FT

m
et

ad
at

a
up

lo
ad

Ba
si

c
17

st
ud

en
ts

33
20

24
[3

3]
Bl

oc
kl

y
St

ru
ct

ur
e

Ye
s

Le
ar

ni
ng

sm
ar

tc
on

tr
ac

t’s
co

di
ng

Ba
si

c
N

/A
34

20
24

[5
4]

BP
M

N
Be

ha
vi

or
N

o
Ba

nk
lo

an
as

se
ss

m
en

t
In

te
rm

ed
ia

te
N

o
35

20
24

[5
5]

BP
M

N
Be

ha
vi

or
N

o
C

er
tifi

ca
te

m
an

ag
em

en
ts

ys
te

m
In

te
rm

ed
ia

te
N

o

36
20

24
[5

6]
BP

M
N

Be
ha

vi
or

Ye
s

Pi
zz

a
or

de
r

Pu
rc

ha
se

M
an

ag
em

en
ts

ys
te

m
Re

nt
al

cl
ai

m
M

an
uf

ac
to

ry
Su

pp
ly

ch
ai

n
In

ci
de

nt
m

an
ag

em
en

t
Bl

oo
d

A
na

ly
si

s
Bi

ke
Re

nt
al

C
off

ee
M

ac
hi

ne
Ex

am
Pr

oc
ed

ur
e

H
ot

el
Bo

ok
in

g

A
dv

an
ce

d
N

o

37
20

24
[5

7]
BP

M
N

Be
ha

vi
or

N
o

M
ul

tip
le

-C
ho

ic
e

Q
ue

st
io

ns
ex

am
m

an
ag

em
en

t
In

te
rm

ed
ia

te
N

o

38
20

25
[5

8]
A

D
O

xx
Be

ha
vi

or
Ye

s
O

nt
ol

og
y

at
te

st
at

io
n

D
ec

en
tr

al
iz

ed
au

ct
io

ns
In

te
rm

ed
ia

te
N

o



N
o.

Ye
ar

R
ef
er
en

ce
in

bi
bt
ex

t
V
is
ua

lA
pp

ro
ac
h

V
is
ua

liz
at
io
n

C
at
eg

or
y

A
va

ila
bl
e

O
nl
in
e

U
se

ca
se

A
cc
es
si
bi
lit

y
R
eq

ui
re
m
en

ts
U
X
te
st
in
g

39
20

25
[5

9]
BP

M
N

Be
ha

vi
or

Ye
s

La
nd

le
as

in
g

A
dv

an
ce

d
7

st
ud

en
ts

40
20

25
[6

0]
BP

M
N

Be
ha

vi
or

N
o

Vo
tin

g
Se

rv
ic

es
Le

nd
in

g
Sa

le
s

A
uc

tio
ns

Pu
rc

ha
se

s
Le

as
es

A
dv

an
ce

d
N

o

Ta
bl

e
1:

Se
le

ct
ed

pa
pe

rs
in

ch
ro

no
lo

gi
ca

lo
rd

er
of

pu
bl

ic
at

io
n.



4.2. Model Driven Visualization Approach

BPMN has emerged as the dominant visualization framework for model-driven smart contract de-
velopment, with researchers adapting its notation for blockchain contexts in various ways. Several
approaches focus on choreography and multi-party collaboration. López-Pintado et al. [36] introduced
Caterpillar, which uses single-pool BPMN models in which stakeholders appear as lanes, replacing
message-based coordination with sequence flows to represent blockchain as a unified coordination
mechanism. Similarly, Shen et al. [56] used BPMN choreography diagrams to visualize collaborative
processes through message exchanges, with participant bands distinguishing initiators from recipients.
Samanipour et al. [59] selected choreography diagrams for their MDAPW3 framework specifically
to represent peer-to-peer interactions in decentralized applications. Security and flexibility concerns
have been addressed through specialized BPMN extensions. Kopke et al. [50] improved BPMN with
blockchain-specific annotations including train symbols for enforceability and chain symbols for on-
chain execution. Corradini et al. [48] developed FlexChain, using BPMN choreography diagrams
to address the tension between blockchain immutability and business process flexibility. Several re-
searchers have explored transformation methodologies from BPMN to smart contract code. El Abidi et al.
[55, 57] developed systematic approaches to translate BPMN elements into Solidity constructs through
ranking processes and meta-model integration. Jin et al. [54] employed a two-step transformation
process that converts BPMN models into Prolog statements for validation before generating Go language
smart contracts. Gao et al. [60] introduced BPMN-LLM, using large language models to transform
BPMN diagrams into smart contracts, where swimlanes denote parties and gateway types capture
conditional logic. Some approaches combine BPMN with other visualization techniques. Shen et al.
[49] integrated customized BPMN modeling with Google Blockly’s visual programming environment,
distinguishing between participant actions and smart contract operations through specialized swimlanes.
Ye et al. [52] developed a three-tier visual framework mapping BPMN tasks to smart contract functions
with color-coded indicators reflecting execution states. Alternative state-based approaches include
Meng et al.’s [40] EFSMSolid framework, which employs Extended Finite State Machines to represent
contractual phases and transitions. Ye and Konig [41] selected YAWL (Yet Another Workflow Language)
for its formal semantics while supporting practical control-flow patterns that construction professionals
could understand. Industry-specific implementations such as Rosa-Bilbao et al. [45]propose EDALoCo
which extends Node-RED to create a modular low-code framework with blockchain-oriented nodes
classified by functionality, while Bodorik et al. [47] transformed BPMN through an intermediate Event-
Hierarchical State Machine representation to identify patterns for sidechain deployment. Collectively,
these BPMN-based approaches demonstrate the notation’s versatility in representing smart contract
elements – participants, roles, actions, obligations, and constraints – while providing visual abstractions
accessible to both technical and non-technical stakeholders.

4.3. Custom Visualization Approach

Several researchers have developed specialized visualization techniques specifically design for smart
contracts. Bragagnolo et al. [35] created SmartInspect, which uses a mirror-based reflection system to
visualize the contract state through hierarchical tree structures, making complex data interpretable
without redeployment. Rather than using standard frameworks, they developed a custom decompilation
technique for dynamic representation of contract data.

Node-based interfaces have emerged as a popular approach. Tan et al. [37] introduced LATTE,
which represents contract elements as interconnected nodes in action graphs with semantic parsing
capabilities. Similarly, Hdhili et al. [43] employed flow-based programming to depict smart contracts
as executable graphs of modular boxes showing input-output relationships, demonstrating improved
comprehension among non-experts.

Several frameworks target domain experts through specialized visual languages. Bistarelli et al.
[44] developed a DSL for supply chain contracts where assets, operations, containers, and roles are
represented through standardized graphical components. Curty and Fill [58] proposed SmartCML, using



decorated circles for actions and explicit relations to distinguish between read and write operations on
the contract state.

For formal modeling, researchers have explored various notations. Prunell and Schwitter [42]
created a Smart Document Editor using color-coded bars and distinctive icons aligned with Answer Set
Programming. Eshgie et al. [46] used DCR graphs with styled arrows representing different constraints,
while Qin et al. [51] used state transition diagrams to capture contract clauses as networks of states
with annotated edges.

Some approaches integrate multiple visualization techniques. Skotnica et al. [38] proposed a meta-
model decomposing contract logic into interrelated diagrams, including a Contract Action Model using
Google Blockly for executable logic. In subsequent work [39], they introduced DasContract, combining
data models, process models, and form models to generate Solidity code. Wen et al. [53] developed
a hierarchical visualization system that transforms bytecode into semantic action sequences, using
color-coded charts, parallel sequences, and node-link diagrams with specialized iconography.

These custom approaches collectively demonstrate diverse strategies for visualizing smart contracts,
emphasizing relationships between parties, representing execution paths, modeling state changes, and
abstracting complex programming constructs for improved usability and understanding.

5. Analysis

The analysis of the selected work on smart contract visualization from 2018 to 2025 reveals distinct
patterns in the adoption of visualization methodology.

As shown in Figure 1a BPMN represents 35% (14 papers) of the studies, making it the most popular
methodology. Blockly and UML follow closely with 17.5% (7 papers) and 20% (8 papers) respectively. The
remaining 27.5% (11 papers) utilize various visualization approaches, including DCR graphs, Answer Set
Programming, Network of Timed Automata, Flow-based programming, EFSM Model, DSL, Node-RED,
JSON/HTML/REST interfaces, and ADOxx.

5.1. Temporal Analysis

The temporal distribution of these methodologies, depicted in Figure 1b, reveals a significant evolution
in the field. From 2018 to 2020, approaches were dominated by more general-purpose visualization
languages such as UML and Blockly, which were favored for their accessibility and familiarity to
software developers. This period established the foundational visualization approaches in the emerging
field of smart contract visualization. The years 2021-2022 marked a transition period characterized
by methodological diversity. Researchers began exploring specialized approaches such as EFSM, DCR
graphs, and custom visualizations tailored to the unique requirements of blockchain environments.
This diversification signaled a maturing understanding of the specific challenges in visualizing smart
contracts. Most notably, from 2023 to 2025, a pronounced shift toward BPMN is observed as the
dominant methodology. Of the 14 BPMN-based studies, 11 were published during this recent period. This
convergence suggests an emerging consensus around BPMN’s suitability for modeling the procedural
nature and complex interactions of smart contracts. The standardization around BPMN may also reflect
a move toward industry adoption, as BPMN is widely used in business contexts.

5.2. Visualization Types Analysis

The conducted analysis categorizes the visualizations into three distinct types. Taking as reference the
Figure 1c, there is the following distribution:

• Structure (15 studies, 37.5%): focusing on compositional aspect of smart contract source code;
• Behavior (21 studies, 52.5%): emphasizing the dynamic execution and interaction patterns of

smart contracts;
• Evolution (4 studies, 10%): addressing the temporal dimension and smart contract modifications.



(a) Distribution of Visual Approaches (b) Papers by Year and Visual Approach

(c) Distribution of Visualization Categories (d) Papers by Year and Visualization Category

(e) Distribution of Accessibility Requirements (f) Cumulative Papers by Year

Figure 1: Comprehensive visualization of research trends: (a) illustrates the distribution of visual approaches
with BPMN (35%) being most prevalent; (b) displays visualization categories with behavior (52.5%) as the
dominant focus; (c) shows accessibility requirements distribution across basic (40%), intermediate (32.5%), and
advanced (27.5%) categories; (d) presents the cumulative growth of papers from 2018 to 2025; (e) details the
yearly breakdown of papers by visual approach type; and (f) presents the distribution of visualization categories
over time, showing an increasing focus on behavior visualization in recent years.

The distribution in Figure 1d shows a progressive shift from structural representations toward
behavioral ones. Early research (2018-2021) predominantly focused on structural visualization (11 out
of 15 structure-focused papers are published in this period), which addresses the fundamental question
of how smart contracts are composed. As the field matured, particularly from 2022 onward, behavioral
visualizations gained prominence (16 out of 21 behavior-focused papers published in this period),



reflecting an increased interest in how contracts execute and interact with users and other contracts.
This transition aligns with the natural progression of the field: researchers first needed to establish
how to represent what smart contracts are before moving on to visualizing how they behave. The
limited number of evolution-focused visualizations (10%) suggests an opportunity for future research,
particularly as contract upgradability and adaptation become more critical in production environments.

5.3. Accessibility Requirements Analysis

The distribution of accessibility requirements in the studies depicted in Figure 1e reveals a balanced
approach to user expertise:

• Basic: 16 studies (40%);
• Intermediate: 13 studies (32.5%);
• Advanced: 11 studies (27.5%).

This relatively uniform distribution suggests that researchers are considering various user profiles,
from novices to experienced developers. In particular, block-based visualizations predominantly target
basic accessibility levels, making them suitable for educational purposes and newcomers to smart
contract development. In contrast, BPMN-based approaches tend toward intermediate and advanced
requirements, reflecting their use in more complex scenarios. The analysis revealed a concerning gap
in user experience validation. As Table 1 highlights, only 8 out of 40 studies (20%) incorporated formal
UX testing, most of which involve relatively small sample sizes (6-17 participants). Notable exceptions
include studies by Hdhili et al. [43] and Kopke et al. [50], with 58 and 42 participants, respectively. This
limited focus on user experience suggests that smart contract visualization remains primarily in the
technical development phase, with insufficient attention to end-user needs and usability. However, we
observe a positive trend in recent years (2023-2025), where 6 of the 8 studies with UX testing were
published, indicating a growing recognition of user-centered design principles.

5.4. Use Case Analysis

The use cases that span the 40 studies demonstrate remarkable diversity, as reported in Table 1, including:

• Financial Services: voting systems, auctions, lending platforms, insurance claims;
• Supply Chain Management: product tracking, trade verification, manufacturing processes;
• Real Estate: property transactions, mortgage processing, leasing agreements;
• Healthcare: patient records, hospital procedures, tele-consultation;
• Education: certificate issuance, exam management;
• General Business Processes: payment systems, purchasing workflows.

This broad application spectrum indicates that smart contract visualization is being explored across
multiple domains rather than being confined to specific industries. The diversity of use cases underscores
the versatile applicability of smart contracts and the universal need for effective visualization regardless
of the application domain.

5.5. General Trends

In general, looking the Figure 1f showing cumulative papers by year, a steady growth in research
publications proposing visual methods for smart contract source code representation can be observed.
Starting with just 4 papers in 2018, the field has shown consistent annual growth, with particularly
strong publication increases in 2021 (+6 papers), 2023 (+7 papers), and 2024 (+9 papers). By 2025, the
cumulative total reaches 40 publications, representing a ten-fold increase from the initial baseline. This
growth pattern suggests increasing research interest in visual representations of smart contracts, likely
driven by the expanding adoption of blockchain technologies and the need for more accessible ways to
understand and verify complex smart contract code. The acceleration in publications from 2021 onward



may reflect the maturation of the field as researchers build upon earlier visualization approaches and
address more sophisticated representation challenges. The consistent year-over-year increases, rather
than sporadic jumps, indicate sustained interest rather than temporary research trends, suggesting that
this is becoming an established research domain within the broader fields of software visualization and
blockchain technology.

6. Conclusions

The analysis carried out aims to map the visualization formalisms and techniques presented so far by
the academia to represent smart contracts, self-executing pieces of code that run on the blockchain.
After a search phase on the Scopus database, 40 papers have been taken into account to perform
the analysis, revealing a clear evolutionary trajectory in smart contract visualization from 2018 to
2025. The field has progressed from structure-focused to behavior-focused visualizations, with an
emerging convergence around BPMN as a preferred methodology. Despite this maturation, significant
opportunities remain for improving user experience evaluation and developing visualizations that
address contract evolution. These findings suggest that while the technical foundations of smart
contract visualization are becoming well-established, additional research is needed to bridge the gap
between technical capability and practical usability. The balanced distribution across accessibility levels
indicates awareness of diverse user needs, but the limited UX testing highlights the need for greater
emphasis on user-centered design approaches as these visualization methodologies transition from
academic exploration to practical industry adoption.

Acknowledgments

The work discussed in this paper has been supported by the B4A - Blockchain for All project
(https://www.blockchain4all.it/), ref. no. 20225MN5K3. This project has been funded with support
from the Ministry of Education, University and Research. This document reflects the views only of the
authors, and the Ministry of Education, University and Research cannot be held responsible for any use
which may be made of the information contained therein.

Declaration on Generative AI

During the preparation of this work, the author(s) used Claude-3.7-Sonnet and Deepl to perform
grammar and spelling checks. After using these tools, the authors reviewed and edited the content as
needed and assumed full responsibility for the content of the publication.

References

[1] Z. A. Khan, A. S. Namin, A survey of vulnerability detection techniques by smart contract tools,
IEEE Access 12 (2024) 70870–70910. doi:10.1109/ACCESS.2024.3401623.

[2] N. He, L. Wu, H. Wang, Y. Guo, X. Jiang, Characterizing Code Clones in the Ethereum Smart
Contract Ecosystem, in: J. Bonneau, N. Heninger (Eds.), Financial Cryptography and Data Security,
Springer International Publishing, Cham, 2020, pp. 654–675.

[3] S. Diehl, Software Visualization: Visualizing the Structure, Behaviour, and Evolution of Software,
Springer Berlin Heidelberg, 2007. URL: https://books.google.it/books?id=8OADPxGJOa8C.

[4] N. Chotisarn, L. Merino, X. Zheng, S. Lonapalawong, T. Zhang, M. Xu, W. Chen, A systematic
literature review of modern software visualization, Journal of Visualization 23 (2020) 539–558.
URL: https://doi.org/10.1007/s12650-020-00647-w. doi:10.1007/s12650-020-00647-w.

[5] D. Hayatpur, D. Wigdor, H. Xia, Crosscode: Multi-level visualization of program execution, in:
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI ’23,

https://www.blockchain4all.it/
http://dx.doi.org/10.1109/ACCESS.2024.3401623
https://books.google.it/books?id=8OADPxGJOa8C
https://doi.org/10.1007/s12650-020-00647-w
http://dx.doi.org/10.1007/s12650-020-00647-w


Association for Computing Machinery, New York, NY, USA, 2023. URL: https://doi.org/10.1145/
3544548.3581390. doi:10.1145/3544548.3581390.

[6] K. E. Isaacs, T. Gamblin, Preserving command line workflow for a package management system
using ascii dag visualization, IEEE Transactions on Visualization and Computer Graphics 25 (2019)
2804–2820. doi:10.1109/TVCG.2018.2859974.

[7] S. Devkota, K. E. Isaacs, CFGExplorer: Designing a Visual Control Flow Analytics Sys-
tem around Basic Program Analysis Operations, Computer Graphics Forum 37 (2018) 453–
464. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13433. doi:10.1111/cgf.13433,
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13433.

[8] Y. Yoon, B. A. Myers, S. Koo, Visualization of fine-grained code change history, in: 2013 IEEE
Symposium on Visual Languages and Human Centric Computing, 2013, pp. 119–126. doi:10.
1109/VLHCC.2013.6645254.

[9] F. Zhou, Y. Fan, S. Lv, L. Jiang, Z. Chen, J. Yuan, F. Han, H. Jiang, G. Bai, Y. Zhao, Fctree: Visualization
of function calls in execution, Inf. Softw. Technol. 175 (2024). URL: https://doi.org/10.1016/j.infsof.
2024.107545. doi:10.1016/j.infsof.2024.107545.

[10] K. E. Isaacs, P.-T. Bremer, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, Combing the com-
munication hairball: Visualizing parallel execution traces using logical time, IEEE Transactions on
Visualization and Computer Graphics 20 (2014) 2349–2358. doi:10.1109/TVCG.2014.2346456.

[11] K. Xu, Y. Wang, L. Yang, Y. Wang, B. Qiao, S. Qin, Y. Xu, H. Zhang, H. Qu, Clouddet: Interactive
visual analysis of anomalous performances in cloud computing systems, IEEE Transactions on
Visualization and Computer Graphics 26 (2020) 1107–1117. doi:10.1109/TVCG.2019.2934613.

[12] Y. Sun, Y. Zhang, A. Mosallaei, M. D. Shah, C. Dunne, D. Kaeli, Daisen: A Framework for
Visualizing Detailed GPU Execution, Computer Graphics Forum 40 (2021) 239–250. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14303. doi:10.1111/cgf.14303, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14303.

[13] Q. Yu, K. Yu, B. Li, Effects of Block-Based Visual Programming on K-12 Students’ Learning
Outcomes, Journal of Educational Computing Research 63 (2025) 64–98. URL: https://doi.org/10.
1177/07356331241293163. doi:10.1177/07356331241293163, publisher: SAGE Publications Inc.

[14] D. Pereira, F. Barbosa, C. Morgado, NextBlocks: An Interactive Block Programming Platform,
in: Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1,
ITiCSE 2024, Association for Computing Machinery, New York, NY, USA, 2024, pp. 590–596. URL:
https://dl.acm.org/doi/10.1145/3649217.3653609. doi:10.1145/3649217.3653609.

[15] M. Seraj, M. Verano Merino, E. Rahimi, L. Ochoa Venegas, Programming smart objects: How young
learners’ programming skills, attitudes, and perception are influenced, in: Proceedings of the 2024
ACM SIGPLAN International Symposium on SPLASH-E, SPLASH-E ’24, Association for Computing
Machinery, New York, NY, USA, 2024, p. 45–55. URL: https://doi.org/10.1145/3689493.3689982.
doi:10.1145/3689493.3689982.

[16] S. Thorgeirsson, T. B. Weidmann, K.-H. Weidmann, Z. Su, Comparing cognitive load among
undergraduate students programming in python and the visual language algot, in: Proceedings
of the 55th ACM Technical Symposium on Computer Science Education V. 1, SIGCSE 2024,
Association for Computing Machinery, New York, NY, USA, 2024, p. 1328–1334. URL: https:
//doi.org/10.1145/3626252.3630808. doi:10.1145/3626252.3630808.

[17] S. Thorgeirsson, C. Zhang, T. B. Weidmann, K.-H. Weidmann, Z. Su, An Electroencephalography
Study on Cognitive Load in Visual and Textual Programming, in: Proceedings of the 2024 ACM
Conference on International Computing Education Research - Volume 1, ACM, Melbourne VIC
Australia, 2024, pp. 280–292. URL: https://dl.acm.org/doi/10.1145/3632620.3671124. doi:10.1145/
3632620.3671124.

[18] S. Thorgeirsson, O. Graf, Explaining Algorithms with the Visual Programming Language Algot,
in: Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 2,
ITiCSE 2024, Association for Computing Machinery, New York, NY, USA, 2024, pp. 783–784. URL:
https://dl.acm.org/doi/10.1145/3649405.3659520. doi:10.1145/3649405.3659520.

[19] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart contracts smarter, in: Proceedings

https://doi.org/10.1145/3544548.3581390
https://doi.org/10.1145/3544548.3581390
http://dx.doi.org/10.1145/3544548.3581390
http://dx.doi.org/10.1109/TVCG.2018.2859974
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13433
http://dx.doi.org/10.1111/cgf.13433
http://dx.doi.org/10.1109/VLHCC.2013.6645254
http://dx.doi.org/10.1109/VLHCC.2013.6645254
https://doi.org/10.1016/j.infsof.2024.107545
https://doi.org/10.1016/j.infsof.2024.107545
http://dx.doi.org/10.1016/j.infsof.2024.107545
http://dx.doi.org/10.1109/TVCG.2014.2346456
http://dx.doi.org/10.1109/TVCG.2019.2934613
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14303
http://dx.doi.org/10.1111/cgf.14303
https://doi.org/10.1177/07356331241293163
https://doi.org/10.1177/07356331241293163
http://dx.doi.org/10.1177/07356331241293163
https://dl.acm.org/doi/10.1145/3649217.3653609
http://dx.doi.org/10.1145/3649217.3653609
https://doi.org/10.1145/3689493.3689982
http://dx.doi.org/10.1145/3689493.3689982
https://doi.org/10.1145/3626252.3630808
https://doi.org/10.1145/3626252.3630808
http://dx.doi.org/10.1145/3626252.3630808
https://dl.acm.org/doi/10.1145/3632620.3671124
http://dx.doi.org/10.1145/3632620.3671124
http://dx.doi.org/10.1145/3632620.3671124
https://dl.acm.org/doi/10.1145/3649405.3659520
http://dx.doi.org/10.1145/3649405.3659520


of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16,
Association for Computing Machinery, New York, NY, USA, 2016, p. 254–269. URL: https://doi.org/
10.1145/2976749.2978309. doi:10.1145/2976749.2978309.

[20] M. L. L. Vieira, P. Vilain, Representation of smart contracts as state diagrams, in: 2021 IEEE/ACS
18th International Conference on Computer Systems and Applications (AICCSA), 2021, pp. 1–8.
doi:10.1109/AICCSA53542.2021.9686862.

[21] S. Curty, F. Härer, H. Fill, Design of blockchain-based applications using model-driven engineering
and low-code/no-code platforms: a structured literature review, Softw. Syst. Model. 22 (2023) 1857–
1895. URL: https://doi.org/10.1007/s10270-023-01109-1. doi:10.1007/S10270-023-01109-1.

[22] M. Marchesi, L. Marchesi, R. Tonelli, An agile software engineering method to design blockchain
applications, in: Proceedings of the 14th Central and Eastern European Software Engineering
Conference Russia, CEE-SECR ’18, Association for Computing Machinery, New York, NY, USA,
2018. URL: https://doi.org/10.1145/3290621.3290627. doi:10.1145/3290621.3290627.

[23] P. Garamvölgyi, I. Kocsis, B. Gehl, A. Klenik, Towards model-driven engineering of smart con-
tracts for cyber-physical systems, in: 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), 2018, pp. 134–139. doi:10.1109/DSN-W.
2018.00052.

[24] G. A. Pierro, Smart-graph: Graphical representations for smart contract on the ethereum
blockchain, in: 2021 IEEE International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), 2021, pp. 708–714. doi:10.1109/SANER50967.2021.00090.

[25] R. Heckel, Z. Erum, N. Rahmi, A. Pul, Visual smart contracts for daml, in: N. Behr, D. Strüber
(Eds.), Graph Transformation, Springer International Publishing, Cham, 2022, pp. 137–154.

[26] M. Jurgelaitis, L. Čeponienė, K. Butkus, R. Butkienė, V. Drungilas, Mda-based approach for
blockchain smart contract development, Applied Sciences 13 (2023). URL: https://www.mdpi.com/
2076-3417/13/1/487. doi:10.3390/app13010487.

[27] M. Ghaffari Saadat, R. Heckel, F. Orejas, Unfolding symbolic attributed graph grammars, in:
F. Gadducci, T. Kehrer (Eds.), Graph Transformation, Springer International Publishing, Cham,
2020, pp. 75–90.

[28] T. Weingaertner, R. Rao, J. Ettlin, P. Suter, P. Dublanc, Smart Contracts Using Blockly: Represent-
ing a Purchase Agreement Using a Graphical Programming Language, in: 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT), 2018, pp. 55–64. URL: https://ieeexplore.ieee.org/
document/8525393. doi:10.1109/CVCBT.2018.00012.

[29] L. Guida, F. Daniel, Supporting reuse of smart contracts through service orientation and as-
sisted development, in: 2019 IEEE International Conference on Decentralized Applications and
Infrastructures (DAPPCON), 2019, pp. 59–68. doi:10.1109/DAPPCON.2019.00017.

[30] D. Mao, F. Wang, Y. Wang, Z. Hao, Visual and User-Defined Smart Contract Designing System
Based on Automatic Coding, IEEE Access 7 (2019) 73131–73143. URL: https://ieeexplore.ieee.org/
document/8730359. doi:10.1109/ACCESS.2019.2920776.

[31] M. M. Merlec, Y. K. Lee, H. P. In, SmartBuilder: A Block-based Visual Programming Frame-
work for Smart Contract Development, in: 2021 IEEE International Conference on Blockchain
(Blockchain), 2021, pp. 90–94. URL: https://ieeexplore-ieee-org.ezproxy.biblio.polito.it/document/
9680565. doi:10.1109/Blockchain53845.2021.00023.

[32] L. A. Trestioreanu, W. M. Shbair, F. S. de Cristo, R. State, Blockly2Hooks: Smart Con-
tracts for Everyone with the XRP Ledger and Google Blockly, in: 2023 IEEE Interna-
tional Conference on Decentralized Applications and Infrastructures (DAPPS), 2023, pp. 145–
150. URL: https://ieeexplore-ieee-org.ezproxy.biblio.polito.it/document/10237017. doi:10.1109/
DAPPS57946.2023.00027, iSSN: 2835-3498.

[33] C. Gomez, J. Vara, F. Pérez-Blanco, D. Granada, A block-based web ide to ease the smart contract
programming learning curve, IEEE Revista Iberoamericana de Tecnologias del Aprendizaje PP
(2024) 1–1. doi:10.1109/RITA.2024.3487475.

[34] Y.-C. Tsai, J.-Y. Huang, D.-R. Chiou, Empowering young learners to explore blockchain with user-
friendly tools: a method using Google Blockly and NFTs, IET Blockchain 4 (2024) 324–334. URL:

https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
http://dx.doi.org/10.1145/2976749.2978309
http://dx.doi.org/10.1109/AICCSA53542.2021.9686862
https://doi.org/10.1007/s10270-023-01109-1
http://dx.doi.org/10.1007/S10270-023-01109-1
https://doi.org/10.1145/3290621.3290627
http://dx.doi.org/10.1145/3290621.3290627
http://dx.doi.org/10.1109/DSN-W.2018.00052
http://dx.doi.org/10.1109/DSN-W.2018.00052
http://dx.doi.org/10.1109/SANER50967.2021.00090
https://www.mdpi.com/2076-3417/13/1/487
https://www.mdpi.com/2076-3417/13/1/487
http://dx.doi.org/10.3390/app13010487
https://ieeexplore.ieee.org/document/8525393
https://ieeexplore.ieee.org/document/8525393
http://dx.doi.org/10.1109/CVCBT.2018.00012
http://dx.doi.org/10.1109/DAPPCON.2019.00017
https://ieeexplore.ieee.org/document/8730359
https://ieeexplore.ieee.org/document/8730359
http://dx.doi.org/10.1109/ACCESS.2019.2920776
https://ieeexplore-ieee-org.ezproxy.biblio.polito.it/document/9680565
https://ieeexplore-ieee-org.ezproxy.biblio.polito.it/document/9680565
http://dx.doi.org/10.1109/Blockchain53845.2021.00023
https://ieeexplore-ieee-org.ezproxy.biblio.polito.it/document/10237017
http://dx.doi.org/10.1109/DAPPS57946.2023.00027
http://dx.doi.org/10.1109/DAPPS57946.2023.00027
http://dx.doi.org/10.1109/RITA.2024.3487475


https://onlinelibrary.wiley.com/doi/abs/10.1049/blc2.12055. doi:10.1049/blc2.12055, _eprint:
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/blc2.12055.

[35] S. Bragagnolo, H. Rocha, M. Denker, S. Ducasse, Smartinspect: solidity smart contract inspector,
in: 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE), 2018,
pp. 9–18. doi:10.1109/IWBOSE.2018.8327566.

[36] O. López-Pintado, L. García-Bañuelos, M. Dumas, I. Weber, A. Ponomarev, Caterpillar: A business
process execution engine on the Ethereum blockchain, Software: Practice and Experience 49
(2019) 1162–1193. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2702. doi:10.1002/
spe.2702, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2702.

[37] S. Tan, S. S Bhowmick, H. E. Chua, X. Xiao, LATTE: Visual Construction of Smart Contracts,
in: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’20, Association for Computing Machinery, New York, NY, USA, 2020, pp. 2713–2716.
URL: https://dl.acm.org/doi/10.1145/3318464.3384687. doi:10.1145/3318464.3384687.

[38] M. Skotnica, R. Pergl, Das contract - a visual domain specific language for modeling blockchain
smart contracts, in: D. Aveiro, G. Guizzardi, J. Borbinha (Eds.), Advances in Enterprise Engineering
XIII, Springer International Publishing, Cham, 2020, pp. 149–166.

[39] M. Skotnica, J. Klicpera, R. Pergl, Towards model-driven smart contract systems-code generation
and improving expressivity of smart contract modeling, Proc. EEWC 20 (2020).

[40] J. Meng, Z. Li, R. Zhao, Y. Shang, An Automated Modeling Method and Visualization Implementa-
tion of Smart Contracts, in: H.-N. Dai, X. Liu, D. X. Luo, J. Xiao, X. Chen (Eds.), Blockchain and Trust-
worthy Systems, Springer, Singapore, 2021, pp. 399–406. doi:10.1007/978-981-16-7993-3_
30.

[41] X. Ye, M. König, From the graphical representation to the smart contract language: a use case in
the construction industry, in: C. Feng, T. Linner, I. Brilakis, D. Castro, P.-H. Chen, Y. Cho, J. Du,
S. Ergan, B. Garcia de Soto, J. Gaparík, F. Habbal, A. Hammad, K. Iturralde, T. Bock, S. Kwon,
Z. Lafhaj, N. Li, C.-J. Liang, B. Mantha, M. S. Ng, D. Hall, M. Pan, W. Pan, F. Rahimian, B. Raphael,
A. Sattineni, C. Schlette, I. Shabtai, X. Shen, P. Tang, J. Teizer, Y. Turkan, E. Valero, Z. Zhu (Eds.),
Proceedings of the 38th International Symposium on Automation and Robotics in Construction
(ISARC), International Association for Automation and Robotics in Construction (IAARC), Dubai,
UAE, 2021, pp. 272–279. doi:10.22260/ISARC2021/0039.

[42] K. Purnell, R. Schwitter, User-defined smart contracts using answer set programming, in: G. Long,
X. Yu, S. Wang (Eds.), AI 2021: Advances in Artificial Intelligence, Springer International Publishing,
Cham, 2022, pp. 291–303.

[43] F. Hdhili, R. Gouiaa, M. Jansen, Implementation and evaluation of a visual programming language
in the context of blockchain, in: J. Prieto, A. Partida, P. Leitão, A. Pinto (Eds.), Blockchain and
Applications, Springer International Publishing, Cham, 2022, pp. 74–82.

[44] S. Bistarelli, F. Faloci, P. Mori, Towards a graphical dsl for tracing supply chains on blockchain, in:
R. Chaves, D. B. Heras, A. Ilic, D. Unat, R. M. Badia, A. Bracciali, P. Diehl, A. Dubey, O. Sangyoon,
S. L. Scott, L. Ricci (Eds.), Euro-Par 2021: Parallel Processing Workshops, Springer International
Publishing, Cham, 2022, pp. 219–229.

[45] J. Rosa-Bilbao, J. Boubeta-Puig, A. Rutle, Edaloco: Enhancing the accessibility of blockchains
through a low-code approach to the development of event-driven applications for smart contract
management, Computer Standards Interfaces 84 (2022) 103676. doi:10.1016/j.csi.2022.
103676.

[46] M. Eshghie, W. Ahrendt, C. Artho, T. T. Hildebrandt, G. Schneider, Capturing smart contract
design with dcr graphs, in: C. Ferreira, T. A. C. Willemse (Eds.), Software Engineering and Formal
Methods, Springer Nature Switzerland, Cham, 2023, pp. 106–125.

[47] P. Bodorik, C. G. Liu, D. Jutla, TABS: Transforming automatically BPMN models into blockchain
smart contracts, Blockchain: Research and Applications 4 (2023) 100115. URL: https://www.
sciencedirect.com/science/article/pii/S2096720922000562. doi:10.1016/j.bcra.2022.100115.

[48] F. Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, F. Tiezzi, A flexible approach to
multi-party business process execution on blockchain, Future Generation Computer Systems 147

https://onlinelibrary.wiley.com/doi/abs/10.1049/blc2.12055
http://dx.doi.org/10.1049/blc2.12055
http://dx.doi.org/10.1109/IWBOSE.2018.8327566
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2702
http://dx.doi.org/10.1002/spe.2702
http://dx.doi.org/10.1002/spe.2702
https://dl.acm.org/doi/10.1145/3318464.3384687
http://dx.doi.org/10.1145/3318464.3384687
http://dx.doi.org/10.1007/978-981-16-7993-3_30
http://dx.doi.org/10.1007/978-981-16-7993-3_30
http://dx.doi.org/10.22260/ISARC2021/0039
http://dx.doi.org/10.1016/j.csi.2022.103676
http://dx.doi.org/10.1016/j.csi.2022.103676
https://www.sciencedirect.com/science/article/pii/S2096720922000562
https://www.sciencedirect.com/science/article/pii/S2096720922000562
http://dx.doi.org/10.1016/j.bcra.2022.100115


(2023) 219–234.
[49] X. Shen, W. Li, H. Xu, X. Wang, Z. Wang, A reuse-oriented visual smart contract code generator

for efficient development of complex multi-party interaction scenarios, Applied Sciences 13 (2023)
8094.

[50] J. Köpke, G. Meroni, M. Salnitri, Designing secure business processes for blockchains with
secbpmn2bc, Future Generation Computer Systems 141 (2023) 382–398.

[51] P. Qin, Q. Hu, M. Cui, Towards machine-readable semantic-based e-business contract rep-
resentations using network of timed automata (nta), Future Generation Computer Systems
158 (2024) 457–471. URL: https://www.sciencedirect.com/science/article/pii/S0167739X24001699.
doi:https://doi.org/10.1016/j.future.2024.04.040.

[52] X. Ye, N. Zeng, X. Tao, D. Han, M. König, Smart contract generation and visualiza-
tion for construction business process collaboration and automation: Upgraded work-
flow engine, Journal of Computing in Civil Engineering 38 (2024) 04024030. URL: https:
//ascelibrary.org/doi/abs/10.1061/JCCEE5.CPENG-5938. doi:10.1061/JCCEE5.CPENG-5938.
arXiv:https://ascelibrary.org/doi/pdf/10.1061/JCCEE5.CPENG-5938.

[53] X. Wen, T. D. Nguyen, S. Ruan, Q. Shen, J. Sun, F. Zhu, Y. Wang, Ponzilens+: Visualizing bytecode
actions for smart ponzi scheme identification, IEEE Transactions on Visualization and Computer
Graphics (2024) 1–14. doi:10.1109/TVCG.2024.3516379.

[54] J. Jin, L. Yan, Y. Zou, J. Li, Z. Yu, Research on smart contract verification and generation method
based on bpmn, Mathematics 12 (2024) 2158.

[55] A. El Abidi, H. Elghazi, Converting bpmn diagrams into solidity code: A comprehensive new
approach and algorithm, in: 2024 IEEE International Conference on Technology Management,
Operations and Decisions (ICTMOD), IEEE, 2024, pp. 1–6.

[56] X. Shen, Z. Wang, J. Luo, H. Ruan, H. Xu, M. Liu, Ibc: An integrated framework combining
blockchain with bpmn choreography to enhance multi-party collaboration, in: 2024 IEEE Interna-
tional Conference on Web Services (ICWS), IEEE, 2024, pp. 457–467.

[57] A. El Abidi, H. El Ghazi, S. Assar, An integration model for the mapping of bpmn to smart contract:
Mcq case study, IEEE Engineering Management Review (2024).

[58] S. Curty, H.-G. Fill, Smartcml: A visual modeling language to enhance the comprehensibility
of smart contract implementations, in: E. Paja, J. Zdravkovic, E. Kavakli, J. Stirna (Eds.), The
Practice of Enterprise Modeling, Springer Nature Switzerland, Cham, 2025, pp. 87–104.

[59] A. Samanipour, O. Bushehrian, G. Robles, Mdapw3: Mda-based development of blockchain-enabled
decentralized applications, Science of Computer Programming 239 (2025) 103185.

[60] S. Gao, W. Liu, J. Zhu, X. Dong, J. Dong, Bpmn-llm: Transforming bpmn models into smart
contracts using large language models, IEEE Software (2025).

https://www.sciencedirect.com/science/article/pii/S0167739X24001699
http://dx.doi.org/https://doi.org/10.1016/j.future.2024.04.040
https://ascelibrary.org/doi/abs/10.1061/JCCEE5.CPENG-5938
https://ascelibrary.org/doi/abs/10.1061/JCCEE5.CPENG-5938
http://dx.doi.org/10.1061/JCCEE5.CPENG-5938
http://arxiv.org/abs/https://ascelibrary.org/doi/pdf/10.1061/JCCEE5.CPENG-5938
http://dx.doi.org/10.1109/TVCG.2024.3516379

	1 Introduction
	2 Background
	2.1 Code Visualization
	2.2 Smart Contract Programming Language
	2.3 Motivations

	3 Research methodology
	4 Smart Contract Visualization Approaches
	4.1 Block-based Visualization Approach
	4.2 Model Driven Visualization Approach
	4.3 Custom Visualization Approach

	5 Analysis
	5.1 Temporal Analysis
	5.2 Visualization Types Analysis
	5.3 Accessibility Requirements Analysis
	5.4 Use Case Analysis
	5.5 General Trends

	6 Conclusions

