
Modeling Reentrancy in Smart Contracts through
Noninterference
Lorenzo Benetollo

1
, Semia Guesmi

1
, Carla Piazza

2
, Dalila Ressi

3
, Sabina Rossi

3,*
and

Alvise Spanò
3

1

Università degli Studi di Camerino

2

Università degli Studi di Udine

3

Università Ca’ Foscari di Venezia

Abstract
Reentrancy is a well-known vulnerability in smart contracts for blockchain platforms, allowing malicious actors

to repeatedly call a contract before previous executions are completed, often leading to unexpected and harmful

behavior. In this paper, we propose the use of the notion of noninterference to model and analyze reentrancy

attacks. Originally developed to characterize unwanted information flows in multi-level security systems,

noninterference provides a rigorous framework for reasoning about the absence of illicit interactions between

components. Among the various formulations of noninterference, those based on unwinding conditions are

particularly well-suited for our analysis, as they enable the precise localization of information flows within a

system. We investigate how these conditions can be applied to detect and understand reentrancy vulnerabilities

in smart contracts, offering a novel perspective and potential foundation for developing verification techniques

against such attacks.

Keywords
Smart Contracts, Reentrancy, Noninterference, Unwinding Conditions

1. Introduction

Reentrancy remains one of the most critical and extensively studied vulnerabilities in the domain of

smart contracts. It refers to a subtle yet highly dangerous class of bugs that arise when a contract issues

an external call to another contract, and the callee, before the original execution flow is complete, calls

back into the initiating contract. If the contract’s internal state has not been properly updated prior to

the external call, such re-entries can manipulate the state in unintended ways, leading to potentially

severe consequences.

This vulnerability is particularly concerning in decentralized environments such as Ethereum, where

smart contracts operate autonomously and are entrusted with managing significant financial assets

without centralized oversight. The infamous DAO attack in 2016 stands as a stark example of the

risks posed by reentrancy: an attacker exploited this very flaw to drain millions of dollars worth of

Ether, severely undermining trust in the early Ethereum ecosystem. Since then, reentrancy has become

a canonical example underscoring the importance of rigorous security practices in smart contract

development.

In response to the threat of reentrancy, a broad spectrum of tools and techniques has been developed

to detect and mitigate related vulnerabilities. These range from static analysis methods [1] to machine

learning-based approaches [2], each aiming to identify potentially exploitable code patterns. Formal

analyzers often employ techniques such as symbolic execution, taint analysis, fuzzing, and constraint

solving [1]. Notable static analysis tools include Oyente [3], Securify [4], and Mythril [5], which inspect

the contract’s code for known reentrancy patterns. These are complemented by dynamic analysis tools

like ContractFuzzer [6] and sFuzz [7], which test runtime behavior through fuzzing techniques. Among

static analyzers, Ethor [8] stands out as the only tool that provides soundness guarantees, ensuring the

DLT2025: 7th Distributed Ledger Technology Workshop, June, 12-14 2025 - Pizzo, Italy

*
Corresponding author.

$ sabina.rossi@unive.it (S. Rossi)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2025-11-24

mailto:sabina.rossi@unive.it
https://creativecommons.org/licenses/by/4.0/deed.en

absence of false negatives. Ethor works by abstracting EVM bytecode semantics using Horn clauses to

verify reachability properties. To better handle the complexity of inter-contract dependencies, more

advanced analyzers like Clairvoyance [9] and SmartDagger [10] focus specifically on cross-contract

interactions. More recent approaches have begun to incorporate Large Language Models (LLMs) into

the analysis pipeline. For example, AdvScanner [11] uses static analysis in conjunction with LLMs to

generate adversarial smart contracts that test the robustness of target contracts. However, LLMs on

their own have shown limited effectiveness in vulnerability detection [12] and in code generation tasks

more broadly [13]. On the machine learning front, graph-based representations of smart contracts have

proven particularly effective [14, 15], especially when combined with multi-modal input representations

that include both structural and semantic features [16, 17, 18].

However, distinguishing between contracts that are merely syntactically vulnerable and those that are

truly exploitable remains a subtle and unresolved problem. A contract may exhibit reentrant behavior

at the code level, yet remain unexploitable under realistic execution scenarios [19]. This gap highlights

the growing need for rigorous, semantics-driven methods that can more accurately differentiate benign

from truly dangerous behaviors, especially in the context of complex inter-contract interactions and

dynamic asset transfers.

To address this gap, we investigate the application of formal verification methods to the problem of

reentrancy detection, with a particular focus on noninterference, a foundational concept in security

that ensures the absence of unauthorized information flow between distinct components of a system.

Noninterference was originally introduced in the setting of multi-level secure systems [20], and has

since evolved through various formalizations and extensions [21, 22, 23], adapting to new contexts such

as distributed computing and programming language semantics.

Among the different approaches to verifying noninterference, one of the most tractable and compo-

sitional methods is based on unwinding conditions. These conditions offer a structured and modular

framework for reasoning about security properties, providing sufficient criteria to ensure that no illicit

flow of information occurs during system execution [24, 25, 26, 27]. This makes them particularly well-

suited for analyzing complex behaviors such as reentrancy, where the interaction between components

and the timing of state updates play a critical role.

In this work, we investigate how unwinding conditions can be effectively leveraged to reason about

reentrancy vulnerabilities in smart contracts. To this end, we build on a simplified concurrent imperative

language originally proposed in [25, 27], extending it to capture key features of account-based blockchain

platforms such as Ethereum. In particular, we enrich the language with constructs that model contracts

performing value transfers during execution, that is an essential aspect of smart contract semantics. Our

abstraction deliberately omits low-level implementation details in order to focus on the core mechanisms

of inter-contract interaction and monetary flow, enabling a clean and precise formal analysis of potential

reentrancy behaviors.

As a concrete application of our approach, we present a formal case study based on an auction contract,

a widely used and security-sensitive pattern in decentralized applications. This case study demonstrates

how our formalization can be used to systematically identify potential reentrancy vulnerabilities, assess

their exploitability, and analyze the effectiveness and limitations of common mitigation strategies. Our

work builds on [28], which exploits similar noninterference-based reasoning in the context of Maximal

Extractable Value (MEV) [29, 30] attacks. In contrast, we apply a similar formal approach to uncover

and analyze reentrancy vulnerabilities, highlighting how these reasoning principles extend naturally to

this distinct class of threats.

Our findings demonstrate that the noninterference framework, and in particular the application of

unwinding conditions, offers a powerful and principled foundation for reasoning about reentrancy in

smart contracts. By formalizing the contract semantics and systematically analyzing the conditions

under which re-entrant behavior can occur, we gain deeper insight into the nature of this vulnerability

and the structural safeguards required to mitigate it effectively.

Structure of the paper. The remainder of the paper is organized as follows. Section 2 introduces a

simplified concurrent imperative language designed to model contracts that perform value transfers

during execution. In Section 3, we present the notion of noninterference and explain how the concept

of downgrading can be used to represent the intentional release of sensitive information. Section 4

provides a detailed formalization of the Auction contract within our language, illustrating how the

noninterference property is instantiated and how downgrading helps distinguish between secure and

potentially vulnerable scenarios. Finally, Section 5 concludes the paper.

2. The Language

In this section, we present an extension of the imperative concurrent language introduced in [27], aimed

at capturing the behavior of account-based smart contracts, such as those written in Solidity.

Let Z be the set of integer numbers, T = {true, false} be the set of boolean values, L be a set of low-

level locations and H be a set of high-level locations, with L ∩H = ∅. We also assume a distinguished

family of special locations, denoted 𝐵𝐶 , used to access the balance associated with a contract 𝐶 . These

balance variables are readable within the program but are not directly writable, their value can only be

updated indirectly through external interactions, such as contract calls that transfer funds. As with

standard storage locations, balance variables are divided into high-level and low-level subsets, denoted

by B𝐻 and B𝐿 respectively, with B𝐿 ∩ B𝐻 = ∅.

The set Aexp of arithmetic expressions is defined by the grammar:

𝑎 ::= 𝑛 |𝑋 |𝐵𝐶 | 𝑎0 + 𝑎1 | 𝑎0 − 𝑎1 | 𝑎0 * 𝑎1

where 𝑛 ∈ Z, 𝑋 ∈ L ∪H and 𝐵𝐶 ∈ B𝐿 ∪ B𝐻 . We assume that arithmetic expressions are total. The

set Bexp of boolean expressions is defined by:

𝑏 ::= true | false | (𝑎0 = 𝑎1) | (𝑎0 ≤ 𝑎1) | ¬𝑏 | 𝑏0 ∧ 𝑏1 | 𝑏0 ∨ 𝑏1

where 𝑎0, 𝑎1 ∈ Aexp.

We say that an arithmetic expression 𝑎 is confidential, denoted by 𝑎 ∈ high, if there is a high-level

location which occurs in it. Otherwise we say that 𝑎 is public, denoted by 𝑎 ∈ low. Similarly, we say

that a boolean expression 𝑏 is confidential, denoted by 𝑏 ∈ high, if there is a confidential arithmetic

expression which occurs in it. Otherwise we say that 𝑏 is public, denoted by 𝑏 ∈ low. This notion of

confidentiality, both for arithmetic and boolean expressions, is purely syntactic. Notice that a high-level

expression can contain low-level locations, i.e., its value can depend on the values of low-level locations.

This reflects the idea that a high-level user can read high- and low-level data.

The syntax of our language is organized into three primary categories: contracts, programs, and

statements. A contract is defined as a tuple of programs, each representing a possible execution entry

point. Programs, in turn, consist of sequences of statements. This structured syntax enables the

modeling of smart contracts that perform value transfers and interact with other contracts via the call
operator, effectively capturing the essential semantics of contract interaction and asset flow. Formally,

the syntax is defined as:

𝐶 ::= ⟨𝑃1, .., 𝑃𝑛⟩ contracts

𝑃 ::= 𝑆 | 𝑃0;𝑃1 | if(𝑏) {𝑃0} else {𝑃1} | while(𝑏) {𝑃} programs

| await(𝑏) {𝑆} | co 𝑃1|| . . . ||𝑃𝑛 oc | call𝑃 (𝑃 ′, 𝑎)

𝑆 ::= skip | 𝑋 := 𝑎 | 𝑆0;𝑆1 statements

where 𝑎 ∈ Aexp,𝑋 ∈ L∪H, and 𝑏 ∈ Bexp. Notice that, as in [31], in the body of the await operator

only sequences of assignments are allowed.

The operational semantics of our language is based on the notion of state. A state 𝜎 is a function which

assigns to each location, both standard and balance location, an integer, i.e., 𝜎 : L∪H∪B𝐿∪B𝐻 −→ Z.

Given a state 𝜎, we denote by 𝜎[𝑋/𝑛] (resp., 𝜎[𝐵𝐶/𝑛]) the state 𝜎′ such that 𝜎′(𝑋) = 𝑛 (resp.,

𝜎′(𝐵𝐶) = 𝑛) and 𝜎′(𝑌) = 𝜎(𝑌) for all 𝑌 ̸= 𝑋 (resp., 𝑌 ̸= 𝐵𝐶). Moreover, we denote by 𝜎𝐿 the

restriction of 𝜎 to the low-level locations and, given the states 𝜎 and 𝜃, we write 𝜎 =𝑙 𝜃 for 𝜎𝐿 = 𝜃𝐿.

⟨skip, 𝜎⟩ low→ ⟨end, 𝜎⟩
⟨𝑎, 𝜎⟩ → 𝑛

⟨𝑋 := 𝑎, 𝜎⟩ 𝜖→ ⟨end, 𝜎[𝑋/𝑛]⟩
𝑎 ∈ 𝜖

⟨𝑃0, 𝜎⟩
𝜖→ ⟨𝑃 ′

0, 𝜎
′⟩

⟨𝑃0;𝑃1, 𝜎⟩
𝜖→ ⟨𝑃 ′

0;𝑃1, 𝜎
′⟩
𝑃 ′
0 ̸≡ end

⟨𝑃0, 𝜎⟩
𝜖→ ⟨end, 𝜎′⟩

⟨𝑃0;𝑃1, 𝜎⟩
𝜖→ ⟨𝑃1, 𝜎

′⟩

⟨𝑏, 𝜎⟩→ true

⟨if(𝑏) {𝑃0} else {𝑃1}, 𝜎⟩
𝜖→ ⟨𝑃0, 𝜎⟩

𝑏 ∈ 𝜖
⟨𝑏, 𝜎⟩→ false

⟨if(𝑏) {𝑃0} else {𝑃1}, 𝜎⟩
𝜖→ ⟨𝑃1, 𝜎⟩

𝑏 ∈ 𝜖

⟨𝑏, 𝜎⟩→ true

⟨while(𝑏) {𝑃}, 𝜎⟩ 𝜖→ ⟨𝑃 ; while(𝑏) {𝑃}, 𝜎⟩
𝑏 ∈ 𝜖

⟨𝑏, 𝜎⟩→ false

⟨while(𝑏) {𝑃}, 𝜎⟩ 𝜖→ ⟨end, 𝜎⟩
𝑏 ∈ 𝜖

⟨𝑏, 𝜎⟩→ true ⟨𝑆, 𝜎⟩ 𝜖2⇝ ⟨end, 𝜎′⟩

⟨await(𝑏) {𝑆}, 𝜎⟩ 𝜖1∪𝜖2→ ⟨end, 𝜎′⟩
𝑏 ∈ 𝜖1

⟨𝑏, 𝜎⟩→ false

⟨await(𝑏) {𝑆}, 𝜎⟩ 𝜖→ ⟨await(𝑏) {𝑆}, 𝜎⟩
𝑏 ∈ 𝜖

⟨𝑃𝑖, 𝜎⟩
𝜖→ ⟨𝑃 ′

𝑖 , 𝜎
′⟩

⟨co 𝑃1|| . . . ||𝑃𝑖|| . . . ||𝑃𝑛 oc, 𝜎⟩ 𝜖→ ⟨co 𝑃1|| . . . ||𝑃 ′
𝑖 || . . . ||𝑃𝑛 oc, 𝜎′⟩ ⟨co end|| . . . ||end|| . . . ||end oc, 𝜎⟩ low→ ⟨end, 𝜎⟩

∃𝐶.𝑃 ∈ 𝐶 ∃𝐶 ′.𝑃 ′ ∈ 𝐶 ′ 𝜎(𝐵𝐶) → 𝑛 𝜎(𝐵𝐶′) → 𝑛′ ⟨𝑎, 𝜎⟩ → 𝑛0 𝑛 ≥ 𝑛0

⟨call𝑃 (𝑃 ′, 𝑎), 𝜎⟩ 𝜖→ ⟨𝑃 ′, 𝜎[𝐵𝐶′/𝑛′ + 𝑛0][𝐵𝐶/𝑛− 𝑛0]⟩
𝑎 ∈ 𝜖

∃𝐶.𝑃 ∈ 𝐶 ∃𝐶 ′.𝑃 ′ ∈ 𝐶 ′ 𝜎(𝐵𝐶) → 𝑛 ⟨𝑎, 𝜎⟩ → 𝑛0 𝑛 < 𝑛0

⟨call𝑃 (𝑃 ′, 𝑎), 𝜎⟩ 𝜖→ ⟨end, 𝜎⟩
𝑎 ∈ 𝜖

Table 1
The operational semantics.

Given an arithmetic expression 𝑎 ∈ Aexp and a state 𝜎, the evaluation of 𝑎 in 𝜎, denoted by

⟨𝑎, 𝜎⟩ → 𝑛 with 𝑛 ∈ Z, is defined in the standard way. Similarly, ⟨𝑏, 𝜎⟩ → 𝑣 with 𝑏 ∈ Bexp and

𝑣 ∈ {true, false}, denotes the evaluation of a boolean expression 𝑏 in a state 𝜎. In both cases, atomicity

of the evaluation operation is assumed.

To model the behavior of Ethereum smart contracts, we assume that the execution of a contract 𝐶
is initiated by an external user 𝑈 through a call. In our formalism, contract execution begins with a

designated entry-point program, typically named Main. We represent this interaction as an implicit

call of the form call𝑈 (Main, 𝑎), where 𝑎 is the argument passed to the contract. This models the

external invocation of a contract, as commonly occurs in Ethereum when users send transactions to

trigger contract logic. Since all contract behavior ultimately unfolds through the execution of individual

programs, we focus our operational semantics on programs rather than entire contracts. This modular

view allows us to capture the core dynamics of execution, including inter-contract interactions and

value transfers, while maintaining a clear and tractable the semantic model.

Let Prog be the set of programs of our language. The operational semantics of programs is defined in

terms of state transitions. A transition from a program 𝑃 and a state 𝜎 has the form ⟨𝑃, 𝜎⟩ 𝜖→ ⟨𝑃 ′, 𝜎′⟩
where 𝑃 ′

is either a program or the special symbol end (denoting termination) and 𝜖 ∈ {high, low}
stating that the transition is either confidential or public. The operation 𝜖1 ∪ 𝜖2 returns low if both 𝜖1
and 𝜖2 are low otherwise it returns high. Let P = Prog ∪ {end} and Σ be the set of all the possible

states. The operational semantics of ⟨𝑃, 𝜎⟩ ∈ P× Σ is the labelled transition system (LTS) defined by

structural induction on 𝑃 according to the rules depicted in Table 1. Intuitively, the semantics of the

sequential composition impose that a program of the form 𝑃0;𝑃1 behaves like 𝑃0 until 𝑃0 terminates

and then it behaves like 𝑃1. To describe the semantics of a program of the form while(𝑏) {𝑃} we have

to distinguish two cases: if 𝑏 is true, then the program is unravelled to 𝑃 ; while(𝑏) {𝑃}; otherwise

it terminates. As far as the await operator is concerned, if 𝑏 is true then await(𝑏) {𝑃} terminates

executing 𝑃 in one indivisible action, i.e., it is not possible to observe the state changes internal to the

execution of 𝑃 , while if 𝑏 is false then await(𝑏) {𝑃} loops waiting for 𝑏 to become true. In a parallel

composition of the form co 𝑃0|| . . . ||𝑃𝑛oc any of the 𝑃𝑖 can move, and the termination is reached only

when all the 𝑃𝑖’s have terminated. Finally, we define the call call𝑃 (𝑃
′, 𝑎) operator, which describes

how a program 𝑃 can invoke some other program 𝑃 ′
while transferring some amount of currency 𝑎

from the caller’s balance 𝐵𝐶 to the callee’s balance 𝐵𝐶′ , where 𝐶 and 𝐶 ′
are the contracts to which 𝑃

and 𝑃 ′
belong respectively. In other words, the call command can be used to transfer some amount of

currency 𝑎 and invoke a program 𝑃 ′
on another contract. In this case, the specified amount is subtracted

from the caller’s balance and added to the callee’s balance. The execution then continues in the callee’s

context.

We use the following notations. We write ⟨𝑃, 𝜎⟩ → ⟨𝑃 ′, 𝜎′⟩ to denote ⟨𝑃, 𝜎⟩ 𝜖→ ⟨𝑃 ′, 𝜎′⟩ with 𝜖 ∈
{low, high} and ⟨𝑃0, 𝜎0⟩ →𝑛 ⟨𝑃𝑛, 𝜎𝑛⟩ with 𝑛 ≥ 0 for ⟨𝑃0, 𝜎0⟩ → ⟨𝑃1, 𝜎1⟩ → · · · → ⟨𝑃𝑛−1, 𝜎𝑛−1⟩ →
⟨𝑃𝑛, 𝜎𝑛⟩. The notation ⟨𝑃0, 𝜎0⟩

low
⇝ ⟨𝑃𝑛, 𝜎𝑛⟩ stands for ⟨𝑃0, 𝜎0⟩ →𝑛 ⟨𝑃𝑛, 𝜎𝑛⟩ for some 𝑛 ≥ 0 with all

the 𝑛 transitions labelled with low; similarly ⟨𝑃0, 𝜎0⟩
high
⇝ ⟨𝑃𝑛, 𝜎𝑛⟩ stands for ⟨𝑃0, 𝜎0⟩ →𝑛 ⟨𝑃𝑛, 𝜎𝑛⟩ for

some 𝑛 ≥ 0 with at least one of the 𝑛 transitions labelled with high. Finally, we write ⟨𝑃, 𝜎⟩⇝ ⟨𝑃 ′, 𝜎′⟩
to denote ⟨𝑃, 𝜎⟩ 𝜖

⇝ ⟨𝑃 ′, 𝜎′⟩ with 𝜖 ∈ {low, high}.

Notice that the operational semantics defined in Table 1 is non-deterministic, since in the case of

parallel composition there are many possible evolutions.

3. Noninterference and Downgrading

In [27], we introduced an imperative concurrent language, inspired by the one presented in [31], and we

investigated several notions of noninterference aimed at ensuring secure information flow in multi-level

systems. In such systems, users are classified into different security levels, typically high (e.g., system

administrators) and low (e.g., standard users), and noninterference guarantees that no information

flows from high-level entities to low-level ones. Such a flow would, in effect, result in the unintended

disclosure of confidential information.

However, recognizing that a strict prohibition of all high-to-low flows can be overly rigid and

impractical in many real-world scenarios, we also proposed a downgrading mechanism in [27]. This

mechanism allows for explicitly authorized, limited information flows from high to low, enabling a

more flexible and context-aware approach to enforcing security.

To keep the presentation simple and accessible, we avoid relying on complex observational equiv-

alences such as bisimulation. Instead, we adopt a more direct approach by observing only the final

values of low-level variables at the end of program execution.

3.1. Noninterference

Intuitively, when analyzing a program 𝑃 that manipulates both low and high-level variables, our goal is

to ensure that the behavior of 𝑃 does not allow high-level activities to influence the low-level outcomes.

In other words, no matter how the high-level variables are modified during execution, potentially due

to interactions with high-level users or components, the values of the low-level variables should remain

unaffected. If modifications to high-level variables result in observable changes to low-level ones, this

constitutes an information flow, or more precisely, interference.

The key idea is to reason about the security of 𝑃 in isolation, by showing that its execution is secure in

any possible context, regardless of the actions performed by external high-level entities. This principle

is formalized in [27] through the notion of a generalized unwinding condition, which characterizes

classes of secure programs that are parametric with respect to:

• a binary relation

.
= which equates two states if they are indistinguishable for a low-level observer;

• a binary reachability relation ℛ on P×Σ which associates to each pair ⟨𝑃, 𝜎⟩ all the pairs ⟨𝐹,𝜓⟩
which, in some sense, are reachable from ⟨𝑃, 𝜎⟩.

• a binary relation ≑ which equates two pairs ⟨𝑃, 𝜎⟩ and ⟨𝑄, 𝜃⟩ if they are indistinguishable for a

low-level observer;

A pair ⟨𝑃, 𝜎⟩ satisfies (an instance of) our unwinding framework (i.e., there are no flows of information

from high to low) if any high-level step ⟨𝐹,𝜓⟩ high→ ⟨𝐺,𝜙⟩ performed by a pair ⟨𝐹,𝜓⟩ reachable from

⟨𝑃, 𝜎⟩ has no effect on the observation of a low-level user. This is achieved by requiring that all the

elements in the set {⟨𝐹, 𝜋⟩ | 𝜋 .
= 𝜓} (whose states are low-level equivalent) may perform a transition

reaching an element of the set {⟨𝑅, 𝜌⟩ | ⟨𝑅, 𝜌⟩ ≑ ⟨𝐺,𝜙⟩} (whose elements are all indistinguishable for

a low-level observer). We use the notation ℛ(⟨𝑃, 𝜎⟩) to denote the set of pairs reachable from ⟨𝑃, 𝜎⟩,
i.e., ℛ(⟨𝑃, 𝜎⟩) = {⟨𝐹,𝜓⟩ | ⟨𝑃, 𝜎⟩ℛ⟨𝐹,𝜓⟩}.

Definition 1. (Generalized Unwinding) Let

.
= be a binary relation over Σ, ℛ and ≑ be two binary

relations over P× Σ. We define the unwinding class 𝒲(
.
=,ℛ,≑) by:

𝒲(
.
=,ℛ,≑) def

= {⟨𝑃, 𝜎⟩ ∈ Prog × Σ | ∀ ⟨𝐹,𝜓⟩∈ℛ(⟨𝑃, 𝜎⟩)
if ⟨𝐹,𝜓⟩ high→ ⟨𝐺,𝜙⟩ then

∀ 𝜋 ∈ Σ such that 𝜋
.
= 𝜓, ∃ ⟨𝑅, 𝜌⟩ :

⟨𝐹, 𝜋⟩ → ⟨𝑅, 𝜌⟩ and ⟨𝐺,𝜙⟩ ≑ ⟨𝑅, 𝜌⟩}

We will now apply the concept of generalized unwinding in one of its simplest forms, which will

serve as a sufficient foundation for our analysis in the subsequent section focusing on our case study.

As far as the relation

.
= is concerned, it is quite natural to consider two states to be equivalent when

they assign the same values to the low-level variables, i.e., we consider

.
= to be the relation =𝑙. The

relation ℛ is the notion of reachability we rely on, i.e.,⇝ is defined by the operational semantics. In

[27], we introduced the concept of low-level bisimulation to define what the low-level user can observe.

Specifically, we utilized low-level bisimulation to instantiate the equivalence relation denoted by ≑.

Bisimulation is the appropriate notion to employ when it is assumed that the low-level user can observe

the values of low-level variables at any point during the execution. Also other more involved forms of

approximating equivalences such as the one presented in [32] could be used for our aims. However, for

the sake of simplicity in our current presentation, we make the assumption that the low-level user can

only observe the values of variables at the end of the execution. We are aware of the fact that this is not

a good choice when non-terminating programs are considered. Formally this means that we instantiate

≑ as ≈𝑙 defined as follows.

Definition 2 (≈𝑙). Let ⟨𝐺,𝜙⟩ and ⟨𝑅, 𝜌⟩ be two pairs. It holds that ⟨𝐺,𝜙⟩ ≈𝑙 ⟨𝑅, 𝜌⟩ if and only if

whenever ⟨𝐺,𝜙⟩⇝ ⟨end, 𝜙′⟩, there exists a pair ⟨end, 𝜌′⟩ such that ⟨𝑅, 𝜌⟩⇝ ⟨end, 𝜌′⟩ with 𝜙′ =𝑙 𝜌
′
,

and vice-versa (i.e., ≈𝑙 is symmetric).

Now that we have gathered all the necessary components, our objective is to demonstrate that a

program 𝑃 does not exhibit interference. In other words, for all possible states 𝜎, the pair ⟨𝑃, 𝜎⟩ belongs

to 𝒲(=𝑙,⇝,≈𝑙).
As shown in our previous work [27], when a program does not belong to a given unwinding class, it

is possible to construct a malicious environment in which information can flow from high to low. This

observation implies that even by analyzing the program in isolation, we can anticipate and identify

potential security vulnerabilities. Conversely, if a program does belong to an unwinding class, then no

information leaks can occur—regardless of how the environment behaves.

One of the key strengths of the unwinding approach lies in its ability to pinpoint the exact points in

the program where information flow might arise. As illustrated in Figure 1, such flows are triggered

when transitions involving high-level data are executed.

Example 1. In order to provide some more intuition on the meaning of the unwinding condition, let

us consider the followning toy example.

𝑃 ≡ 𝐻 := 0; if(𝐻 > 0){𝐿 := 𝐻} else {skip}

Let𝐻 be high-level and 𝐿 be low-level. Apparently, when we reach the if test the value of the high-level

variable is 0, so the else branch is always taken and the value of the high-level variable is not revealed.

⟨𝐹,𝜓⟩ high−→ ⟨𝐺,𝜙⟩ ⇝ ⟨end, 𝜙′⟩
↑ ↑ ↑↓ ↓ ↓

𝜋 =𝑙 𝜓 ≈𝑙 𝜙′ =𝑙 𝜌
′

↑ ↑ ↑↓ ↓ ↓
⟨𝐹, 𝜋⟩ −→ ⟨𝑅, 𝜌⟩ ⇝ ⟨end, 𝜌′⟩

Figure 1: A pictorial representation of the unwinding condition 𝒲(=𝑙,⇝,≈𝑙).

However, this program does not satisfy our unwinding condition as one can observe taking for instance

𝜓 which assigns value 0 to 𝐻 and 𝜋 that is 𝜓[𝐻/1]. As a matter of fact, when the if test is reached we

have to consider the possibility that another program running in parallel with 𝑃 has modified the value

of 𝐻 , thus allowing to take the if branch and reveal the value of the variable 𝐻 to the low-level user.

3.2. Downgrading

As observed by numerous researchers, the notion of noninterference, while foundational, can be overly

restrictive in many practical scenarios. By definition, noninterference enforces a strict absence of any

information flow from high to low levels. However, in real-world applications, programs often require

controlled release, or downgrading, of sensitive information. Common examples include password

validation, access-controlled data retrieval, and computations in spreadsheets involving both public and

confidential inputs [22, 33].

The intuitive concept of downgrading conceals several subtle challenges at the implementation

level. It naturally leads to critical questions such as: Who is authorized to perform downgrading?

What information can be downgraded? Where and when is downgrading permissible? In our previous

work [27], we addressed these concerns by introducing a set of high-level expressions and proposing

a delimited notion of noninterference. This refined model allows for the controlled downgrading of

designated expressions at any point during program execution.

In this paper, we focus on a notion of downgrading that is tied to the specific point during execution

at which the downgrading takes place. This choice is consistent with our use of unwinding conditions

to identify precise execution points in a smart contract where potential reentrancy vulnerabilities may

occur. To support this approach, we introduce a function, downgrade, which maps any arithmetic

or boolean expression to itself while explicitly lowering its confidentiality level to low. As a result,

program instructions involving downgrade are treated as declassified in the operational semantics and

are not considered dangerous within the unwinding test.

Example 2. We consider again the program 𝑃 of Example 1. If we know that revealing to the low-level

user the value of 𝐻 is not dangerous, and it is necessary (e.g., the system administrator needs to send

to the user a message), then we can modify the program 𝑃 as follows:

𝑃 ≡ 𝐻 := 0;𝐷 := downgrade(𝐻); if(𝐷 > 0){𝐿 := 𝐷} else {skip}

If 𝐷 is low-level, the only point where we should check the unwinding condition, is the second

assignment instruction. However, since the downgrade operator is used, when the assignment is

executed a low-level transition is performed and the unwinding condition is satisfied.

4. Case Study: An Auction Contract

We are now ready to model a smart contract implementing an auction by using our language. The

original contract written in Solidity is depicted in Table 2 and is taken from [34].

1 pragma solidity ^0.8.28;
2

3 contract ReentrantAuction {
4

5 address payable public seller;
6 uint public endTime;
7 address public highestBidder;
8 uint public highestBid;
9

10 mapping(address => uint) public bids;
11

12 constructor(uint _startingBid, uint _duration) {
13 seller = payable(msg.sender);
14 highestBid = _startingBid;
15 endTime = block.timestamp + (_duration * 1 seconds);
16 }
17

18 function bid() external payable {
19 require(block.timestamp < endTime, "Bidding time expired");
20 require(msg.value > highestBid, "Value must be greater than highest");
21 require(bids[msg.sender] == 0, "You have already placed a bid");
22 bids[msg.sender] = msg.value;
23 highestBidder = msg.sender;
24 highestBid = msg.value;
25 }
26

27 function withdraw() public {
28 require(block.timestamp >= endTime, "Auction not ended");
29 uint amt = bids[msg.sender];
30 (bool success,) = payable(msg.sender).call{value: amt}("");
31 bids[msg.sender] = 0;
32 require(success, "Transfer failed.");
33 }
34

35 function end() external {
36 require(msg.sender == seller, "Only the seller");
37 require(block.timestamp >= endTime, "Auction not ended");
38 (bool success,) = seller.call{value: highestBid}("");
39 require(success, "Transfer failed.");
40 }
41 }

Table 2
Auction sample contract in Solidity. The withdraw() function exhibits a reentrancy vulnerability due to the
assignment to zero taking place after the call rather than before. This allows attackers to call again the
withdraw() function without ever reaching that line and performing unwanted payments.

In our model, a contract is a tuple of programs, thus we define:

ReentrantAuction ≡ ⟨Bid,Withdraw⟩ .

We will show that the code of this contract is subject to malicious reentrancy attacks due to the way

it is implemented. The contract contains two main procedures: Bid and Withdraw, defined as follows:

1: Program Bid

2: PrevBid := Bids[Sender];
3: if (CallValue ≤ HighestBid ∨ PrevBid ̸= 0) then
4: skip
5: else
6: HighestBidder := Sender;

7: HighestBid := CallValue;
8: Bids[Sender] := CallValue

1: Program Withdraw

2: Amt := Bids[Sender];

3: call(Receive, Amt); ◁ 𝐵𝑐𝑎𝑙𝑙𝑒𝑟 -= Amt, 𝐵𝑐𝑎𝑙𝑙𝑒𝑒 += Amt

4: Bids[Sender] := 0

We denote variables using capitalized identifiers. In all examples, we omit the caller program in

the subscript of the call primitive, as it is implicitly understood to be the program from which the

call originates. Thus, any call of the form call(𝑃 ′, 𝑎) should be interpreted as being issued by the

currently executing program, typically the one enclosing the call. The identifiers highlighted in red

represent high locations, from which unwanted information flows may originate; conversely, those

highlighted in green represent low locations that may be affected by such flows. A few identifiers have

a special meaning: Sender refers to the identifier of the user invoking the current smart contract, while

CallValue denotes the amount of money transferred by the caller via the call primitive.

Each bid is accepted only if the Sender has not already placed a bid, and the offered amount

(CallValue) exceeds the current HighestBid. If both conditions hold, the bid is recorded and the

highest bidder is updated accordingly. Our model faithfully reproduces the fund transfer mechanism

used in Solidity on Ethereum, where transferring money to another contract is done by invoking a

call method that implicitly dispatches a receive() function defined in the target contract. The same

happens in our language: the Withdraw procedure allows participants to reclaim their funds by calling

a Receive function with the amount previously bid.

The call to Receive within the Withdraw procedure is crucial to understand the mechanisms

undergoing reentrancy. It serves two purposes: triggering the execution of the target program (Receive)

and transferring funds from the balance of the caller contract to the balance of the callee contract.

Notably, balances are associated with contracts, not programs, whereas the call primitive manipulates

programs, not contracts. Being contracts just tuples of programs, though, it is easy to reconstruct which

contract a given program belongs to.

In the comment, the 𝐵𝑐𝑎𝑙𝑙𝑒𝑟 and 𝐵𝑐𝑎𝑙𝑙𝑒𝑒 are two placeholders indicating, respectively, the balance

of the caller contract and the callee contract, whatever they are upon execution. The examples in the

sections below will show how those two placeholders become contract names when a contract is run.

4.1. A Harmless Interaction

We now introduce another contract, which implements the code of a user participating to the auction.

Such contract does not exploit the reentrancy vulnerability and is an example of a harmless interaction

consisting of the following two programs:

Harmless ≡ ⟨Main,Receive⟩

where the implementation are:

1: Program Main

2: call(Bid, 100); ◁ 𝐵Harmless -= 100, 𝐵ReentrantAuction += 100

3: call(Withdraw, 0)

1: Program Receive

2: skip

In the Main program, a user wishing to participate in the auction places a bid with an amount of 100.

This amount is transferred from the balance of Harmless to that of ReentrantAuction, since the

former contains the calling context and the latter contains the Bid program. In other words, that call

could be rewritten in our formal language as:

callMain(Bid, 100) whereMain ∈ Harmless ∧ Bid ∈ ReentrantAuction

hence, the two balances involved are 𝐵Harmless and 𝐵ReentrantAuction.

The following line performs a call with zero amount, which reduces to a simple program invocation

and produces no effect on balances. When invoking Withdraw, the user expects to receive money

via the execution of the Receive program supplied. The dummy implementation of Receive is key to

understanding why the contract is harmless and does not allow reentrancy attacks. Since our example

mimicks the same callback mechanism undergoing in Solidity, which allows the Receive function to

perform any arbitrary logic, implementing it as a skip ensures that it solely receives the funds without

triggering any additional operation.

When running this code, once the Withdraw program is invoked, the caller’s balance appearing in

the comment of the Withdraw function in the previous section refers to 𝐵ReentrantAuction, and the

callee’s balance to 𝐵Harmless. Hence, the caller’s balance is decreased by the transferred amount, while

the callee’s balance is increased by the same amount.

The execution of the Harmless contract starts from the Main program:

⟨Main, 𝜎[𝐵ReentrantAuction/200, 𝐵Harmless/100]⟩
↓
. . . execution of Main

↓
⟨Bid, 𝜎[𝐵ReentrantAuction/200, 𝐵Harmless/100]⟩

↓
. . . execution of Bid

↓
⟨Withdraw, 𝜎[𝐵ReentrantAuction/300, 𝐵Harmless/0, Bids[Sender]/100]⟩

↓
. . . execution of Withdraw

↓
⟨Receive, 𝜎[𝐵ReentrantAuction/200, 𝐵Harmless/100, Bids[Sender]/100]⟩

↓
. . . execution of Receive

↓
⟨Withdraw, 𝜎[𝐵ReentrantAuction/200, 𝐵Harmless/100, Bids[Sender]/100]⟩

↓
. . . return to Withdraw

↓
⟨skip, 𝜎[𝐵ReentrantAuction/200, 𝐵Harmless/100, Bids[Sender]/0]⟩

4.2. A Reentrancy Attack

Consider now a malicious setup where the Receive programs are written by an attacker and embedded

in the following contract:

Attacker ≡ ⟨Main,Receive⟩ .

Whereas the Main program is unchanged from the previous section, the Receive implementation

differs, as it exploits a reentrant call to Withdraw to steal money.

1: Program Receive

2: call(Withdraw, 0)

Reentrancy takes place via repeated, mutually recursive calls between Withdraw and Receive, which

gradually deplete the caller’s balance until it reaches zero, at which point execution halts. The following

trace shows this process in action. We focus on a state 𝜎 in which the variables have the following

values:

𝜎(𝐵ReentrantAuction) = 200; 𝜎(𝐵Attacker) = 100;

⟨Main, 𝜎[𝐵ReentrantAuction/200, 𝐵Attacker/100]⟩
↓
. . . execution of Main

↓
⟨Bid, 𝜎[𝐵ReentrantAuction/200, 𝐵Attacker/100]⟩

↓
. . . execution of Bid

↓
⟨Withdraw, 𝜎[𝐵ReentrantAuction/300, 𝐵Attacker/0, Bids[Sender]/100]⟩

↓
. . . execution of Withdraw #1

↓
⟨Receive, 𝜎[𝐵ReentrantAuction/200, 𝐵Attacker/100, Bids[Sender]/100]⟩

↓
. . . execution of Receive #1

↓
⟨Withdraw+Receive, 𝜎[𝐵ReentrantAuction/200, 𝐵Attacker/100], Bids[Sender]/100⟩

↓
. . . execution of Withdraw #1

and Receive #1

↓
⟨Withdraw+Receive, 𝜎[𝐵ReentrantAuction/100, 𝐵Attacker/200, Bids[Sender]/100]⟩

↓
. . . execution of Withdraw #2

and Receive #2

↓
⟨Withdraw+Withdraw, 𝜎[𝐵ReentrantAuction/0, 𝐵Attacker/300, Bids[Sender]/100]⟩

↓
. . . return to Withdraw #3,

Withdraw #2, Withdraw #1

↓
⟨skip, 𝜎[𝐵ReentrantAuction/0, 𝐵Attacker/300, Bids[Sender]/0]⟩

4.3. A Non-Reentrant Auction

In order to avoid the attacker from being able to leverage a reentrancy attack, the Withdraw program

should be edited as follows:

1: Program Withdraw

2: Amt := Bids[Sender];

3: Bids[Sender] := 0;
4: call(Receive, Amt) ◁ 𝐵SafeAuction -= Amt, 𝐵Attacker += Amt

The only change lies in the position of the line that resets the bid to zero: it has now been moved

before the call to Receive.

With reference to the Solidity code in Table 2, this means to apply the same simple fix:

1 function withdraw() public {
2 require(block.timestamp >= endTime, "Auction not ended");
3 uint amt = bids[msg.sender];
4 bids[msg.sender] = 0; // attackers reach this before and prevent further payments
5 (bool success,) = payable(msg.sender).call{value: amt}("");
6 require(success, "Transfer failed.");
7 }

This reordering is sufficient to prevent the reentrancy attack, as an attacker invoking the modified

Withdraw procedure recursively would find the Bids[Sender] location already cleared, and thus be

unable to extract further funds. As a result, any subsequent calls to Receive would transfer zero value

only.

Let us update the auction contract embedding the new, safer version of the Withdraw as well as the

original Bid shown in the previous section:

SafeAuction ≡ ⟨Bid,Withdraw⟩

And let the contract invoking the auction be the same malicious Attacker contract defined above.

Its execution produces the following trace, in which no information flow compromises the caller’s

balance. Reentrancy attacks are rendered harmless by the assignment to zero occurring before the call,

effectively neutralizing any attempt to extract additional funds.

⟨Main, 𝜎[𝐵SafeAuction/200, 𝐵Attacker/100]⟩
↓
. . . execution of Main

↓
⟨Bid, 𝜎[𝐵SafeAuction/200, 𝐵Attacker/100]⟩

↓
. . . execution of Bid

↓
⟨Withdraw, 𝜎[𝐵SafeAuction/300, 𝐵Attacker/0, Bids[Sender]/100]⟩

↓
. . . execution of Withdraw #1

↓
⟨Receive, 𝜎[𝐵SafeAuction/200, 𝐵Attacker/100, Bids[Sender]/0]⟩

↓
. . . execution of Receive #1

↓
⟨Withdraw+Receive, 𝜎[𝐵SafeAuction/200, 𝐵Attacker/100, Bids[Sender]/0]⟩

↓
. . . execution of Withdraw #2

and Receive #2

↓
⟨Withdraw+Receive, 𝜎[𝐵SafeAuction200, 𝐵Attacker/100, Bids[Sender]/0]⟩

↓
. . . execution of Withdraw #n

and Receive #n

↓
⟨skip, 𝜎[𝐵SafeAuction/200, 𝐵Attacker/100, Bids[Sender]/0]⟩

The last state transition proves that the balance associated to the malicious contract Attacker has

not increased, and the original amount of money stored in the balance associated to the SafeAuction

contract is unchanged.

4.4. A case of Downgrading

We now present a simplified version of a crowdfunding contract written in Solidity. At first glance,

the withdraw function appears vulnerable to a reentrancy attack, as it invokes the call function

to transfer Ether to an external address receiver before updating the contract’s internal state, a

well-known red flag in smart contract security. However, in this case, the receiver address is

hardcoded and not dynamically computed, ensuring that no malicious contract can exploit the callback.

Furthermore, the function includes an access control check that restricts its execution to the contract’s

owner. Additionally, the function transfers the entire contract balance in a single call, leaving no

residual funds that an attacker could repeatedly steal through reentrant invocations. As a result, despite

following a pattern commonly associated with reentrancy vulnerabilities, the contract is secure. This

example highlights the limitations of pure noninterference and underscores the importance of taking

into account the execution context when evaluating smart contract security.

1 pragma solidity ^0.8.28;
2

3 contract Crowdfund {
4

5 bool open; // flag that closes the Crowdfund
6 address receiver; // receiver of the donated funds
7 address owner;
8

9 constructor (address payable receiver_) {
10 receiver = receiver_;
11 owner = msg.sender;
12 open = true;
13 }
14

15 function donate() public payable {
16 require (open);
17 }
18

19 function withdraw() public {
20 require (open);
21 require (msg.sender == owner);
22 (bool succ,) = receiver.call{value: address(this).balance}("");
23 open = false;
24 require(succ);
25 }
26 }

In our model, we define the CrowdFund contract as follows:

CrowdFund ≡ ⟨Donate,Withdraw⟩

and we consider the Main and Receive programs of the Owner and the Receiver:

Owner ≡ ⟨Main⟩

Receiver ≡ ⟨Receive⟩ .

The execution starts from the Main program belonging to the Owner contract, which then invokes the

Withdraw of the Crowdfund contract and finally the Receive of the Receiver.

1: Program Main

2: call(Withdraw, 0)

1: Program Receive

2: skip

We provide only the implementation of Withdraw, as the Donate function is straightforward.

1: Program Withdraw

2: if (open = 𝑓𝑎𝑙𝑠𝑒 ∨ Sender ̸= Owner) then
3: skip
4: else
5: Balance := 𝐵CrowdFund;

6: call(Receive, downgrade(Balance));

7: open := 𝑓𝑎𝑙𝑠𝑒; ◁ 𝐵CrowdFund -= Balance, 𝐵Receiver += Balance

In this case, we use of the downgrade operator that lowers the confidentiality level of Balance, so

when the call is executed, it is treated as declassified and is therefore not considered dangerous in the

unwinding test, i.e., the unwinding condition is satisfied.

5. Conclusion

The case study presented in this article demonstrates that the non-interference framework is particularly

well-suited for capturing the vulnerability known as reentrancy in smart contracts. By applying the

unwinding conditions, we were able to systematically identify and understand potential reentrancy

vulnerabilities in an auction contract, highlighting the effectiveness of this formal approach.

As future work, we propose to develop a proof system in the style of [35] for the analysis of smart

contracts, which will enable formal verification of the absence of reentrancy vulnerabilities. Additionally,

we aim to implement a tool based on the non-interference framework as in [36] to facilitate automated

analysis of smart contracts, thereby enhancing security and reliability in blockchain applications.

Acknowledgements

This study was carried out within the PE0000014 - Security and Rights in the CyberSpace (SERICS) and

received funding from the European Union Next-GenerationEU - National Recovery and Resilience

Plan (NRRP) – MISSION 4 COMPONENT 2, INVESTIMENT 1.3 – CUP N. H73C22000890001. This work

has been also partially supported by the Research Project INDAM GNCS 2025 - CUP E53C24001950001 -

“Modelli e Analisi per sistemi Reversibili e Quantistici (MARQ)” and by the Project PRIN 2020 - CUP

N. 20202FCJMH "NiRvAna - Noninterference and Reversibility Analysis in Private Blockchains". This

manuscript reflects only the authors’ views and opinions, neither the European Union nor the European

Commission can be considered responsible for them.

Declaration on Generative AI

The authors used AI-based tools (ChatGPT, Grammarly) exclusively for language editing purposes

(grammar, spelling, and style). The scientific content, analysis, and conclusions are entirely the work of

the authors, who take full responsibility for the integrity and accuracy of the manuscript.

References

[1] H. Rameder, M. Di Angelo, G. Salzer, Review of automated vulnerability analysis of smart contracts

on ethereum, Frontiers in Blockchain 5 (2022) 814977.

[2] D. Ressi, A. Spanò, L. Benetollo, C. Piazza, M. Bugliesi, S. Rossi, Vulnerability detection in ethereum

smart contracts via machine learning: A qualitative analysis, arXiv preprint arXiv:2407.18639

(2024).

[3] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart contracts smarter, in: Proceedings

of the 2016 ACM SIGSAC conference on computer and communications security, 2016, pp. 254–269.

[4] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, M. Vechev, Securify: Practical

security analysis of smart contracts, in: Proceedings of the 2018 ACM SIGSAC conference on

computer and communications security, 2018, pp. 67–82.

[5] B. Mueller, Smashing smart contracts, in: 9th HITB Security Conference, 2018.

[6] B. Jiang, Y. Liu, W. K. Chan, Contractfuzzer: Fuzzing smart contracts for vulnerability detection, in:

Proceedings of the 33rd ACM/IEEE international conference on automated software engineering,

2018, pp. 259–269.

[7] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, Q. T. Minh, sfuzz: An efficient adaptive fuzzer for solidity

smart contracts, in: Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering, 2020, pp. 778–788.

[8] C. Schneidewind, I. Grishchenko, M. Scherer, M. Maffei, ethor: Practical and provably sound static

analysis of ethereum smart contracts, in: Proceedings of the 2020 ACM SIGSAC Conference on

Computer and Communications Security, 2020, pp. 621–640.

[9] Y. Xue, M. Ma, Y. Lin, Y. Sui, J. Ye, T. Peng, Cross-contract static analysis for detecting practical

reentrancy vulnerabilities in smart contracts, in: Proceedings of the 35th IEEE/ACM International

Conference on Automated Software Engineering, 2020, pp. 1029–1040.

[10] Z. Liao, Z. Zheng, X. Chen, Y. Nan, Smartdagger: a bytecode-based static analysis approach for

detecting cross-contract vulnerability, in: Proceedings of the 31st ACM SIGSOFT International

Symposium on Software Testing and Analysis, 2022, pp. 752–764.

[11] Y. Wu, X. Xie, C. Peng, D. Liu, H. Wu, M. Fan, T. Liu, H. Wang, Advscanner: Generating adversarial

smart contracts to exploit reentrancy vulnerabilities using llm and static analysis, in: Proceedings

of the 39th IEEE/ACM International Conference on Automated Software Engineering, 2024, pp.

1019–1031.

[12] B. Boi, C. Esposito, S. Lee, Smart contract vulnerability detection: The role of large language

model (llm), ACM SIGAPP Applied Computing Review 24 (2024) 19–29.

[13] C. Laneve, A. Spanò, D. Ressi, S. Rossi, M. Bugliesi, Assessing code understanding in llms, in:

C. Ferreira, C. A. Mezzina (Eds.), Formal Techniques for Distributed Objects, Components, and

Systems, Springer Nature Switzerland, Cham, 2025, pp. 202–210.

[14] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, X. Wang, Combining graph neural networks with

expert knowledge for smart contract vulnerability detection, IEEE Transactions on Knowledge

and Data Engineering 35 (2021) 1296–1310.

[15] L. Guo, H. Huang, L. Zhao, P. Wang, S. Jiang, C. Su, Reentrancy vulnerability detection based

on graph convolutional networks and expert patterns under subspace mapping, Computers &

Security 142 (2024) 103894.

[16] M. Rizzo, D. Ressi, A. Gasparetto, S. Rossi, A comparison of machine learning techniques for

ethereum smart contract vulnerability detection, in: D. Porello, C. Vinci, M. Zavatteri (Eds.),

Proceedings of the 6th International Workshop on Artificial Intelligence and Formal Verification,

Logic, Automata, and Synthesis, OVERLAY 2024, Bolzano, Italy, November 28-29, 2024, volume

3904 of CEUR Workshop Proceedings, CEUR-WS.org, 2024, pp. 119–126.

[17] J. Yu, X. Yu, J. Li, H. Sun, M. Sun, Smart contract vulnerability detection based on multimodal

feature fusion, in: International Conference on Intelligent Computing, Springer, 2024, pp. 344–355.

[18] M. Rizzo, A. Spanò, L. Benetollo, D. Ressi, A. Gasparetto, S. Rossi, Advanced large language models

prompting strategies for reentrancy classification and explanation in smart contracts, in: D. Ressi,

S. Rossi, F. Tiezzi, W. Knottenbelt (Eds.), Proceedings of the 4th EAI International Conference on

Blockchain Technology and Emerging Applications BLOCKTEA 2025, Venice, Italy, September

18-19, 2025, Springer – LNICST series, 2025.

[19] D. Perez, B. Livshits, Smart contract vulnerabilities: Vulnerable does not imply exploited, in: 30th

USENIX Security Symposium (USENIX Security 21), 2021, pp. 1325–1341.

[20] J. A. Goguen, J. Meseguer, Security policies and security models, in: 1982 IEEE Symposium

on Security and Privacy, 1982, IEEE Computer Society, 1982, pp. 11–20. doi:10.1109/SP.1982.
10014.

[21] R. Focardi, S. Rossi, Information flow security in dynamic contexts, J. Comput. Secur. 14 (2006)

http://dx.doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1109/SP.1982.10014

65–110. doi:10.3233/JCS-2006-14103.

[22] S. Crafa, S. Rossi, Controlling information release in the pi-calculus, Inf. Comput. 205 (2007)

1235–1273. doi:10.1016/J.IC.2007.01.001.

[23] J. Hillston, A. Marin, C. Piazza, S. Rossi, Persistent stochastic non-interference, Fundam. Informat-

icae 181 (2021) 1–35. doi:10.3233/FI-2021-2049.

[24] A. Bossi, R. Focardi, C. Piazza, S. Rossi, Bisimulation and unwinding for verifying possibilistic

security properties, in: L. D. Zuck, P. C. Attie, A. Cortesi, S. Mukhopadhyay (Eds.), Verification,

Model Checking, and Abstract Interpretation, 4th International Conference, VMCAI 2003, New

York, NY, USA, January 9-11, 2002, Proceedings, volume 2575 of Lecture Notes in Computer Science,

Springer, 2003, pp. 223–237.

[25] A. Bossi, C. Piazza, S. Rossi, Unwinding conditions for security in imperative languages, in:

Logic Based Program Synthesis and Transformation, 14th International Symposium, LOPSTR

2004, volume 3573 of Lecture Notes in Computer Science, Springer, 2004, pp. 85–100. doi:10.1007/
11506676_6.

[26] A. Bossi, R. Focardi, C. Piazza, S. Rossi, Verifying persistent security properties, Comput. Lang.

Syst. Struct. 30 (2004) 231–258. doi:10.1016/J.CL.2004.02.005.

[27] A. Bossi, C. Piazza, S. Rossi, Compositional information flow security for concurrent programs, J.

Comput. Secur. 15 (2007) 373–416. doi:10.3233/JCS-2007-15303.

[28] S. Guesmi, C. Piazza, S. Rossi, Noninterference analysis for smart contracts: Would you bet on it?,

in: M. Bartoletti, C. Schifanella, A. Vitaletti (Eds.), Proceedings of the Sixth Distributed Ledger

Technology Workshop (DLT 2024), Turin, Italy, May 14-15, 2024, volume 3791 of CEUR Workshop

Proceedings, CEUR-WS.org, 2024.

[29] M. Bartoletti, J. H.-y. Chiang, A. Lluch Lafuente, Maximizing extractable value from automated

market makers, in: International Conference on Financial Cryptography and Data Security,

Springer, 2022, pp. 3–19.

[30] B. Weintraub, C. F. Torres, C. Nita-Rotaru, R. State, A flash (bot) in the pan: measuring maximal

extractable value in private pools, in: Proceedings of the 22nd ACM Internet Measurement

Conference, 2022, pp. 458–471.

[31] G. R. Andrews, Foundations of Multithreaded, Parallel, and Distributed Programming, Addison-

Wesley, 2000.

[32] A. Marin, C. Piazza, S. Rossi, Proportional lumpability, in: É. André, M. Stoelinga (Eds.), For-

mal Modeling and Analysis of Timed Systems - 17th International Conference, FORMATS 2019,

Amsterdam, The Netherlands, August 27-29, 2019, Proceedings, volume 11750 of Lecture Notes in

Computer Science, Springer, 2019, pp. 265–281. doi:10.1007/978-3-030-29662-9_16.

[33] A. Marin, C. Piazza, S. Rossi, D_PSNI : Delimited persistent stochastic non-interference, Theor.

Comput. Sci. 884 (2021) 116–135. doi:10.1016/J.TCS.2021.08.007.

[34] M. Bartoletti, L. Benetollo, M. Bugliesi, S. Crafa, G. Dal Sasso, R. Pettinau, A. Pinna, M. Piras,

S. Rossi, S. Salis, et al., Smart contract languages: A comparative analysis, Future Generation

Computer Systems 164 (2025) 107563.

[35] A. Bossi, R. Focardi, C. Piazza, S. Rossi, A proof system for information flow security, in: M. Leuschel

(Ed.), Logic Based Program Synthesis and Tranformation, 12th International Workshop, LOPSTR

2002, Madrid, Spain, September 17-20,2002, Revised Selected Papers, volume 2664 of Lecture Notes

in Computer Science, Springer, 2002, pp. 199–218.

[36] C. Piazza, E. Pivato, S. Rossi, Cops - checker of persistent security, in: K. Jensen, A. Podelski

(Eds.), Tools and Algorithms for the Construction and Analysis of Systems, 10th International

Conference, TACAS 2004, Held as Part of the Joint European Conferences on Theory and Practice

of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume 2988 of

Lecture Notes in Computer Science, Springer, 2004, pp. 144–152.

http://dx.doi.org/10.3233/JCS-2006-14103
http://dx.doi.org/10.1016/J.IC.2007.01.001
http://dx.doi.org/10.3233/FI-2021-2049
http://dx.doi.org/10.1007/11506676_6
http://dx.doi.org/10.1007/11506676_6
http://dx.doi.org/10.1016/J.CL.2004.02.005
http://dx.doi.org/10.3233/JCS-2007-15303
http://dx.doi.org/10.1007/978-3-030-29662-9_16
http://dx.doi.org/10.1016/J.TCS.2021.08.007

	1 Introduction
	2 The Language
	3 Noninterference and Downgrading
	3.1 Noninterference
	3.2 Downgrading

	4 Case Study: An Auction Contract
	4.1 A Harmless Interaction
	4.2 A Reentrancy Attack
	4.3 A Non-Reentrant Auction
	4.4 A case of Downgrading

	5 Conclusion

