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Abstract

Reentrancy is a well-known vulnerability in smart contracts for blockchain platforms, allowing malicious actors
to repeatedly call a contract before previous executions are completed, often leading to unexpected and harmful
behavior. In this paper, we propose the use of the notion of noninterference to model and analyze reentrancy
attacks. Originally developed to characterize unwanted information flows in multi-level security systems,
noninterference provides a rigorous framework for reasoning about the absence of illicit interactions between
components. Among the various formulations of noninterference, those based on unwinding conditions are
particularly well-suited for our analysis, as they enable the precise localization of information flows within a
system. We investigate how these conditions can be applied to detect and understand reentrancy vulnerabilities
in smart contracts, offering a novel perspective and potential foundation for developing verification techniques
against such attacks.
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1. Introduction

Reentrancy remains one of the most critical and extensively studied vulnerabilities in the domain of
smart contracts. It refers to a subtle yet highly dangerous class of bugs that arise when a contract issues
an external call to another contract, and the callee, before the original execution flow is complete, calls
back into the initiating contract. If the contract’s internal state has not been properly updated prior to
the external call, such re-entries can manipulate the state in unintended ways, leading to potentially
severe consequences.

This vulnerability is particularly concerning in decentralized environments such as Ethereum, where
smart contracts operate autonomously and are entrusted with managing significant financial assets
without centralized oversight. The infamous DAO attack in 2016 stands as a stark example of the
risks posed by reentrancy: an attacker exploited this very flaw to drain millions of dollars worth of
Ether, severely undermining trust in the early Ethereum ecosystem. Since then, reentrancy has become
a canonical example underscoring the importance of rigorous security practices in smart contract
development.

In response to the threat of reentrancy, a broad spectrum of tools and techniques has been developed
to detect and mitigate related vulnerabilities. These range from static analysis methods [1] to machine
learning-based approaches [2], each aiming to identify potentially exploitable code patterns. Formal
analyzers often employ techniques such as symbolic execution, taint analysis, fuzzing, and constraint
solving [1]. Notable static analysis tools include Oyente [3], Securify [4], and Mythril [5], which inspect
the contract’s code for known reentrancy patterns. These are complemented by dynamic analysis tools
like ContractFuzzer [6] and sFuzz [7], which test runtime behavior through fuzzing techniques. Among
static analyzers, Ethor [8] stands out as the only tool that provides soundness guarantees, ensuring the

DLT2025: 7th Distributed Ledger Technology Workshop, June, 12-14 2025 - Pizzo, Italy
*Corresponding author.
& sabina.rossi@unive.it (S. Rossi)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5


mailto:sabina.rossi@unive.it
https://creativecommons.org/licenses/by/4.0/deed.en

absence of false negatives. Ethor works by abstracting EVM bytecode semantics using Horn clauses to
verify reachability properties. To better handle the complexity of inter-contract dependencies, more
advanced analyzers like Clairvoyance [9] and SmartDagger [10] focus specifically on cross-contract
interactions. More recent approaches have begun to incorporate Large Language Models (LLMs) into
the analysis pipeline. For example, AdvScanner [11] uses static analysis in conjunction with LLMs to
generate adversarial smart contracts that test the robustness of target contracts. However, LLMs on
their own have shown limited effectiveness in vulnerability detection [12] and in code generation tasks
more broadly [13]. On the machine learning front, graph-based representations of smart contracts have
proven particularly effective [14, 15], especially when combined with multi-modal input representations
that include both structural and semantic features [16, 17, 18].

However, distinguishing between contracts that are merely syntactically vulnerable and those that are
truly exploitable remains a subtle and unresolved problem. A contract may exhibit reentrant behavior
at the code level, yet remain unexploitable under realistic execution scenarios [19]. This gap highlights
the growing need for rigorous, semantics-driven methods that can more accurately differentiate benign
from truly dangerous behaviors, especially in the context of complex inter-contract interactions and
dynamic asset transfers.

To address this gap, we investigate the application of formal verification methods to the problem of
reentrancy detection, with a particular focus on noninterference, a foundational concept in security
that ensures the absence of unauthorized information flow between distinct components of a system.
Noninterference was originally introduced in the setting of multi-level secure systems [20], and has
since evolved through various formalizations and extensions [21, 22, 23], adapting to new contexts such
as distributed computing and programming language semantics.

Among the different approaches to verifying noninterference, one of the most tractable and compo-
sitional methods is based on unwinding conditions. These conditions offer a structured and modular
framework for reasoning about security properties, providing sufficient criteria to ensure that no illicit
flow of information occurs during system execution [24, 25, 26, 27]. This makes them particularly well-
suited for analyzing complex behaviors such as reentrancy, where the interaction between components
and the timing of state updates play a critical role.

In this work, we investigate how unwinding conditions can be effectively leveraged to reason about
reentrancy vulnerabilities in smart contracts. To this end, we build on a simplified concurrent imperative
language originally proposed in [25, 27], extending it to capture key features of account-based blockchain
platforms such as Ethereum. In particular, we enrich the language with constructs that model contracts
performing value transfers during execution, that is an essential aspect of smart contract semantics. Our
abstraction deliberately omits low-level implementation details in order to focus on the core mechanisms
of inter-contract interaction and monetary flow, enabling a clean and precise formal analysis of potential
reentrancy behaviors.

As a concrete application of our approach, we present a formal case study based on an auction contract,
a widely used and security-sensitive pattern in decentralized applications. This case study demonstrates
how our formalization can be used to systematically identify potential reentrancy vulnerabilities, assess
their exploitability, and analyze the effectiveness and limitations of common mitigation strategies. Our
work builds on [28], which exploits similar noninterference-based reasoning in the context of Maximal
Extractable Value (MEV) [29, 30] attacks. In contrast, we apply a similar formal approach to uncover
and analyze reentrancy vulnerabilities, highlighting how these reasoning principles extend naturally to
this distinct class of threats.

Our findings demonstrate that the noninterference framework, and in particular the application of
unwinding conditions, offers a powerful and principled foundation for reasoning about reentrancy in
smart contracts. By formalizing the contract semantics and systematically analyzing the conditions
under which re-entrant behavior can occur, we gain deeper insight into the nature of this vulnerability
and the structural safeguards required to mitigate it effectively.

Structure of the paper. The remainder of the paper is organized as follows. Section 2 introduces a
simplified concurrent imperative language designed to model contracts that perform value transfers
during execution. In Section 3, we present the notion of noninterference and explain how the concept



of downgrading can be used to represent the intentional release of sensitive information. Section 4
provides a detailed formalization of the Auction contract within our language, illustrating how the
noninterference property is instantiated and how downgrading helps distinguish between secure and
potentially vulnerable scenarios. Finally, Section 5 concludes the paper.

2. The Language

In this section, we present an extension of the imperative concurrent language introduced in [27], aimed
at capturing the behavior of account-based smart contracts, such as those written in Solidity.

Let Z be the set of integer numbers, T = {true, false} be the set of boolean values, IL be a set of low-
level locations and H be a set of high-level locations, with I. N H = (). We also assume a distinguished
family of special locations, denoted B¢, used to access the balance associated with a contract C'. These
balance variables are readable within the program but are not directly writable, their value can only be
updated indirectly through external interactions, such as contract calls that transfer funds. As with
standard storage locations, balance variables are divided into high-level and low-level subsets, denoted
by By and By, respectively, with B, N By = (.

The set Aexp of arithmetic expressions is defined by the grammar:

ax=n|X|Bc|ag+ai|ap—ar|ap*ar

wheren € Z, X € LUH and B¢ € By, U Bp. We assume that arithmetic expressions are total. The
set Bexp of boolean expressions is defined by:

b :=true | false | (ap = a1) | (ap < ay) | =b|bog Ab1|boV by

where ag, a; € Aexp.

We say that an arithmetic expression a is confidential, denoted by a € high, if there is a high-level
location which occurs in it. Otherwise we say that a is public, denoted by a € low. Similarly, we say
that a boolean expression b is confidential, denoted by b € high, if there is a confidential arithmetic
expression which occurs in it. Otherwise we say that b is public, denoted by b € 1low. This notion of
confidentiality, both for arithmetic and boolean expressions, is purely syntactic. Notice that a high-level
expression can contain low-level locations, i.e., its value can depend on the values of low-level locations.
This reflects the idea that a high-level user can read high- and low-level data.

The syntax of our language is organized into three primary categories: contracts, programs, and
statements. A contract is defined as a tuple of programs, each representing a possible execution entry
point. Programs, in turn, consist of sequences of statements. This structured syntax enables the
modeling of smart contracts that perform value transfers and interact with other contracts via the call
operator, effectively capturing the essential semantics of contract interaction and asset flow. Formally,
the syntax is defined as:

c == (P,..,P) contracts
P S| Po; Pr | if(b) {Po} else {Pi} | while(b) {P} programs

| await(b) {S} | co Pi|...|Py, oc|callp (P, a)
S = skip|X :=a] S; S statements

where a € Aexp, X € LUH, and b € Bexp. Notice that, as in [31], in the body of the await operator
only sequences of assignments are allowed.

The operational semantics of our language is based on the notion of state. A state o is a function which
assigns to each location, both standard and balance location, an integer, i.e., 0 : LUHUB, UBy — Z.
Given a state o, we denote by o[X/n| (resp., c[Bc/n]) the state o’ such that ¢/(X) = n (resp.,
o'(Be) = n)and o/(Y) = o(Y) forall Y # X (resp., Y # Bc¢). Moreover, we denote by o, the
restriction of ¢ to the low-level locations and, given the states o and 6, we write o =; 6 for o, = 0.



(a,0) = n

low € ace
(skip,o) = (end, o) (X :=a,0) = (end,o[X/n])
(Po, o) —:> (P, 0") Pl # end (Py,0) 5 Eend, o’)
(Py; Py,0) = (P4; P1,o’) (Py; P1,0) = (P1,0")
(b, 0)— true (b, o)— false
€ bee < bee
(if(b) {Po} else {Pi},0) = (Po,0) (i£(b) {Po} else {Pi},0) = (P1,0)
(b, 0)— true (b, o)— false
p bee p bee
(while(b) {P},0) = (P;while(b) {P},0o) (while(b) {P},o) = (end, o)
(b,o)—true  (S,0) % (end, o) (b, o)— false
U bee . bee
(await(b) {S},0) "=~ (end,o’) (await(b) {S},0) — (await(b) {S},0)
(Pi,0) = (P],0")
(co Pi|...| P ...|Pnoc,a) 5 (coPy|...|P/|...|Pyoc,o’)y (coend|...|end|...|endoc,c) Loy (end, o)

Cc.peC 3C'.P el o(Bg)—n o(Bg)—n (a,0)—nyg n>ng
(callp(P', a), o) = (P',0[Bcr /n' + no)[Be/n — ngl)

ace

iCc.PeCc 3IC'P el o(Bc)—n ({a,0)—=ng n<ng
(callp(P', a), o) = (end, o)

a€e

Table 1
The operational semantics.

Given an arithmetic expression a € Aexp and a state o, the evaluation of a in o, denoted by
(a,0) — n with n € Z, is defined in the standard way. Similarly, (b,0) — v with b € Bexp and
v € {true, false}, denotes the evaluation of a boolean expression b in a state . In both cases, atomicity
of the evaluation operation is assumed.

To model the behavior of Ethereum smart contracts, we assume that the execution of a contract C
is initiated by an external user U through a call. In our formalism, contract execution begins with a
designated entry-point program, typically named Main. We represent this interaction as an implicit
call of the form cally(Main, a), where a is the argument passed to the contract. This models the
external invocation of a contract, as commonly occurs in Ethereum when users send transactions to
trigger contract logic. Since all contract behavior ultimately unfolds through the execution of individual
programs, we focus our operational semantics on programs rather than entire contracts. This modular
view allows us to capture the core dynamics of execution, including inter-contract interactions and
value transfers, while maintaining a clear and tractable the semantic model.

Let Prog be the set of programs of our language. The operational semantics of programs is defined in
terms of state transitions. A transition from a program P and a state ¢ has the form (P, o) -5 (P', o’)
where P’ is either a program or the special symbol end (denoting termination) and € € {high, low}
stating that the transition is either confidential or public. The operation €; U €3 returns low if both €;
and e are low otherwise it returns high. Let P = Prog U {end} and X be the set of all the possible
states. The operational semantics of (P, o) € P x X is the labelled transition system (LTS) defined by
structural induction on P according to the rules depicted in Table 1. Intuitively, the semantics of the
sequential composition impose that a program of the form Fy; P; behaves like Py until P terminates
and then it behaves like P;. To describe the semantics of a program of the form while(b) { P} we have
to distinguish two cases: if b is true, then the program is unravelled to P;while(b) { P}; otherwise
it terminates. As far as the await operator is concerned, if b is true then await(b) {P} terminates
executing P in one indivisible action, i.e., it is not possible to observe the state changes internal to the



execution of P, while if b is false then await(b) { P} loops waiting for b to become true. In a parallel
composition of the form co Py| ... || P,oc any of the P; can move, and the termination is reached only
when all the P;’s have terminated. Finally, we define the call callp(P’, a) operator, which describes
how a program P can invoke some other program P’ while transferring some amount of currency a
from the caller’s balance B¢ to the callee’s balance B¢, where C and C’ are the contracts to which P
and P’ belong respectively. In other words, the call command can be used to transfer some amount of
currency a and invoke a program P’ on another contract. In this case, the specified amount is subtracted
from the caller’s balance and added to the callee’s balance. The execution then continues in the callee’s
context.

We use the following notations. We write (P,o) — (P’ ¢') to denote (P, o) < (P’ ¢') with € €
{low,high} and (Py, 00) =" (Py, 0y) withn > 0 for (Py,00) = (P1,01) = -+ = (Pp_1,0p—1) —
(P, 0). The notation ( Py, 0¢) Xy (P, 0y stands for (Py, 09) —" (P, 0p,) for some n > 0 with all
the n transitions labelled with 1ow; similarly (P, o) g (P, op) stands for (Py, 0g) =" (P,, oy, for
some n > 0 with at least one of the n transitions labelled with high. Finally, we write (P, o) ~» (P’ o’)
to denote (P, o) ~ (P',¢') with ¢ € {low,high}.

Notice that the operational semantics defined in Table 1 is non-deterministic, since in the case of
parallel composition there are many possible evolutions.

3. Noninterference and Downgrading

In [27], we introduced an imperative concurrent language, inspired by the one presented in [31], and we
investigated several notions of noninterference aimed at ensuring secure information flow in multi-level
systems. In such systems, users are classified into different security levels, typically high (e.g., system
administrators) and low (e.g., standard users), and noninterference guarantees that no information
flows from high-level entities to low-level ones. Such a flow would, in effect, result in the unintended
disclosure of confidential information.

However, recognizing that a strict prohibition of all high-to-low flows can be overly rigid and
impractical in many real-world scenarios, we also proposed a downgrading mechanism in [27]. This
mechanism allows for explicitly authorized, limited information flows from high to low, enabling a
more flexible and context-aware approach to enforcing security.

To keep the presentation simple and accessible, we avoid relying on complex observational equiv-
alences such as bisimulation. Instead, we adopt a more direct approach by observing only the final
values of low-level variables at the end of program execution.

3.1. Noninterference

Intuitively, when analyzing a program P that manipulates both low and high-level variables, our goal is
to ensure that the behavior of P does not allow high-level activities to influence the low-level outcomes.
In other words, no matter how the high-level variables are modified during execution, potentially due
to interactions with high-level users or components, the values of the low-level variables should remain
unaffected. If modifications to high-level variables result in observable changes to low-level ones, this
constitutes an information flow, or more precisely, interference.

The key idea is to reason about the security of P in isolation, by showing that its execution is secure in
any possible context, regardless of the actions performed by external high-level entities. This principle
is formalized in [27] through the notion of a generalized unwinding condition, which characterizes
classes of secure programs that are parametric with respect to:

« a binary relation = which equates two states if they are indistinguishable for a low-level observer;

« abinary reachability relation R on IP x ¥ which associates to each pair (P, o) all the pairs (F 1))
which, in some sense, are reachable from (P, o).

« a binary relation = which equates two pairs (P, o) and (@, ) if they are indistinguishable for a
low-level observer;



A pair (P, o) satisfies (an instance of) our unwinding framework (i.e., there are no flows of information

from high to low) if any high-level step (F’ 1) nign (G, ¢) performed by a pair (F, 1) reachable from
(P, o) has no effect on the observation of a low-level user. This is achieved by requiring that all the
elements in the set {(F,7) | 1 = ¢} (whose states are low-level equivalent) may perform a transition
reaching an element of the set {(R, p) | (R, p) = (G, ¢)} (whose elements are all indistinguishable for
a low-level observer). We use the notation R((P, o)) to denote the set of pairs reachable from (P, o),

ie. R((P,0)) = {(F,0) | (P,0)R(F,v)}.

Definition 1. (Generalized Unwinding) Let = be a binary relation over 3, R and = be two binary
relations over P x 3. We define the unwinding class W (=, R, =) by:

W(=, R, =) Y (P o) € Prog x ¥ |V (F, ) €R((P,0))
if (F, ) 8" (G, ¢) then
V€ Xsuchthat m =, I(R,p):
(F,m) = (R, p) and (G, ¢) = (R, p)}

We will now apply the concept of generalized unwinding in one of its simplest forms, which will
serve as a sufficient foundation for our analysis in the subsequent section focusing on our case study.
As far as the relation = is concerned, it is quite natural to consider two states to be equivalent when
they assign the same values to the low-level variables, i.e., we consider = to be the relation =;. The
relation R is the notion of reachability we rely on, i.e., ~ is defined by the operational semantics. In
[27], we introduced the concept of low-level bisimulation to define what the low-level user can observe.
Specifically, we utilized low-level bisimulation to instantiate the equivalence relation denoted by =.
Bisimulation is the appropriate notion to employ when it is assumed that the low-level user can observe
the values of low-level variables at any point during the execution. Also other more involved forms of
approximating equivalences such as the one presented in [32] could be used for our aims. However, for
the sake of simplicity in our current presentation, we make the assumption that the low-level user can
only observe the values of variables at the end of the execution. We are aware of the fact that this is not
a good choice when non-terminating programs are considered. Formally this means that we instantiate
= as = defined as follows.

Definition 2 (x;). Let (G, ) and (R, p) be two pairs. It holds that (G, ¢) ~; (R, p) if and only if
whenever (G, ¢) ~ (end, ¢’), there exists a pair (end, p’) such that (R, p) ~» (end, p’) with ¢/ =; p/,
and vice-versa (i.e., & is symmetric).

Now that we have gathered all the necessary components, our objective is to demonstrate that a
program P does not exhibit interference. In other words, for all possible states o, the pair (P, o) belongs
to W(=y, ~, ~).

As shown in our previous work [27], when a program does not belong to a given unwinding class, it
is possible to construct a malicious environment in which information can flow from high to low. This
observation implies that even by analyzing the program in isolation, we can anticipate and identify
potential security vulnerabilities. Conversely, if a program does belong to an unwinding class, then no
information leaks can occur—regardless of how the environment behaves.

One of the key strengths of the unwinding approach lies in its ability to pinpoint the exact points in
the program where information flow might arise. As illustrated in Figure 1, such flows are triggered
when transitions involving high-level data are executed.

Example 1. In order to provide some more intuition on the meaning of the unwinding condition, let
us consider the followning toy example.

P=H:=0;if(H > 0){L := H} else {skip}

Let H be high-level and L be low-level. Apparently, when we reach the if test the value of the high-level
variable is 0, so the else branch is always taken and the value of the high-level variable is not revealed.



(F) — (G,¢) ~ (end,¢)

! ! !

/ /

=% ~ o' =1 p

! ! !

(F,m)  — (R,p) ~ (end,p’)

Figure 1: A pictorial representation of the unwinding condition W (=, ~, &).

However, this program does not satisfy our unwinding condition as one can observe taking for instance
1 which assigns value 0 to H and 7 that is )[H/1]. As a matter of fact, when the if test is reached we
have to consider the possibility that another program running in parallel with P has modified the value
of H, thus allowing to take the if branch and reveal the value of the variable H to the low-level user.

3.2. Downgrading

As observed by numerous researchers, the notion of noninterference, while foundational, can be overly
restrictive in many practical scenarios. By definition, noninterference enforces a strict absence of any
information flow from high to low levels. However, in real-world applications, programs often require
controlled release, or downgrading, of sensitive information. Common examples include password
validation, access-controlled data retrieval, and computations in spreadsheets involving both public and
confidential inputs [22, 33].

The intuitive concept of downgrading conceals several subtle challenges at the implementation
level. It naturally leads to critical questions such as: Who is authorized to perform downgrading?
What information can be downgraded? Where and when is downgrading permissible? In our previous
work [27], we addressed these concerns by introducing a set of high-level expressions and proposing
a delimited notion of noninterference. This refined model allows for the controlled downgrading of
designated expressions at any point during program execution.

In this paper, we focus on a notion of downgrading that is tied to the specific point during execution
at which the downgrading takes place. This choice is consistent with our use of unwinding conditions
to identify precise execution points in a smart contract where potential reentrancy vulnerabilities may
occur. To support this approach, we introduce a function, downgrade, which maps any arithmetic
or boolean expression to itself while explicitly lowering its confidentiality level to low. As a result,
program instructions involving downgrade are treated as declassified in the operational semantics and
are not considered dangerous within the unwinding test.

Example 2. We consider again the program P of Example 1. If we know that revealing to the low-level
user the value of H is not dangerous, and it is necessary (e.g., the system administrator needs to send
to the user a message), then we can modify the program P as follows:

P =H :=0;D :=downgrade(H);if(D > 0){L := D} else {skip}

If D is low-level, the only point where we should check the unwinding condition, is the second
assignment instruction. However, since the downgrade operator is used, when the assignment is
executed a low-level transition is performed and the unwinding condition is satisfied.

4. Case Study: An Auction Contract

We are now ready to model a smart contract implementing an auction by using our language. The
original contract written in Solidity is depicted in Table 2 and is taken from [34].
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pragma solidity 70.8.28;

contract ReentrantAuction {

}

Table 2

address payable public seller;
uint public endTime;

address public highestBidder;
uint public highestBid;

mapping(address => uint) public bids;

constructor(uint _startingBid, uint _duration) {

seller = payable(msg.sender) ;
highestBid = _startingBid;
endTime = block.timestamp + (_duration * 1 seconds);

function bid() external payable {

require(block.timestamp < endTime, "Bidding time expired");
require(msg.value > highestBid, "Value must be greater than highest");
require(bids[msg.sender] == 0, "You have already placed a bid");
bids[msg.sender] = msg.value;

highestBidder = msg.sender;

highestBid = msg.value;

function withdraw() public {

require(block.timestamp >= endTime, "Auction not ended");
uint amt = bids[msg.sender];

(bool success, ) = payable(msg.sender).call{value: amt}("");
bids[msg.sender] = 0;

require(success, "Transfer failed.");

function end() external {

require(msg.sender == seller, "Only the seller");
require(block.timestamp >= endTime, "Auction not ended");
(bool success, ) = seller.call{value: highestBid} ("");
require(success, "Transfer failed.");

Auction sample contract in Solidity. The withdraw() function exhibits a reentrancy vulnerability due to the
assignment to zero taking place after the call rather than before. This allows attackers to call again the
withdraw() function without ever reaching that line and performing unwanted payments.

In our model, a contract is a tuple of programs, thus we define:

REENTRANTAUCTION = (BID, WITHDRAW) .

We will show that the code of this contract is subject to malicious reentrancy attacks due to the way

it is implemented. The contract contains two main procedures: Bib and WiTHDRAW, defined as follows:

Program Bip

PrevBid := Bids[Sender];

if (CallValue < HighestBid V PrevBid # 0) then
‘ skip

else

' HighestBidder := Sender;



HighestBid := CallValue;
L Bids[Sender] := CallValue
Program WITHDRAW
Amt := Bids[Sender];
call(RECEIVE, Amt); > Bealier -= Amt, Begilee += Amt
Bids[Sender] := 0

We denote variables using capitalized identifiers. In all examples, we omit the caller program in
the subscript of the call primitive, as it is implicitly understood to be the program from which the
call originates. Thus, any call of the form call(P’,a) should be interpreted as being issued by the
currently executing program, typically the one enclosing the call. The identifiers highlighted in red
represent high locations, from which unwanted information flows may originate; conversely, those
highlighted in green represent low locations that may be affected by such flows. A few identifiers have
a special meaning: Sender refers to the identifier of the user invoking the current smart contract, while
Callvalue denotes the amount of money transferred by the caller via the call primitive.

Each bid is accepted only if the Sender has not already placed a bid, and the offered amount
(Callvalue) exceeds the current HighestBid. If both conditions hold, the bid is recorded and the
highest bidder is updated accordingly. Our model faithfully reproduces the fund transfer mechanism
used in Solidity on Ethereum, where transferring money to another contract is done by invoking a
call method that implicitly dispatches a RECEIVE() function defined in the target contract. The same
happens in our language: the WiTHDRAW procedure allows participants to reclaim their funds by calling
a RecEeIvE function with the amount previously bid.

The call to RECeIvE within the WITHDRAW procedure is crucial to understand the mechanisms
undergoing reentrancy. It serves two purposes: triggering the execution of the target program (RECEIVE)
and transferring funds from the balance of the caller contract to the balance of the callee contract.
Notably, balances are associated with contracts, not programs, whereas the call primitive manipulates
programs, not contracts. Being contracts just tuples of programs, though, it is easy to reconstruct which
contract a given program belongs to.

In the comment, the B, and By, are two placeholders indicating, respectively, the balance
of the caller contract and the callee contract, whatever they are upon execution. The examples in the
sections below will show how those two placeholders become contract names when a contract is run.

4.1. A Harmless Interaction

We now introduce another contract, which implements the code of a user participating to the auction.
Such contract does not exploit the reentrancy vulnerability and is an example of a harmless interaction
consisting of the following two programs:

HARMLESs = (MAIN, RECEIVE)
where the implementation are:

1: Program MAIN
2: call(BIp, 100); > Bragmizss == 100,  BRregnrranravcrion += 100
3 call(WITHDRAW, 0)

—_

: Program RECEIVE
: L skip

In the MAIN program, a user wishing to participate in the auction places a bid with an amount of 100.
This amount is transferred from the balance of HARMLESS to that of REENTRANTAUCTION, since the
former contains the calling context and the latter contains the Bip program. In other words, that call
could be rewritten in our formal language as:

[ )

callpyaw(BID, 100) where MAIN € HARMLESS A BID € REENTRANTAUCTION



hence, the two balances involved are Byarmiess aNd BRegntraNTAUCTION-

The following line performs a call with zero amount, which reduces to a simple program invocation
and produces no effect on balances. When invoking WiTHDRAW, the user expects to receive money
via the execution of the RECEIVE program supplied. The dummy implementation of RECEIVE is key to
understanding why the contract is harmless and does not allow reentrancy attacks. Since our example
mimicks the same callback mechanism undergoing in Solidity, which allows the RECEIVE function to
perform any arbitrary logic, implementing it as a skip ensures that it solely receives the funds without
triggering any additional operation.

When running this code, once the WITHDRAW program is invoked, the caller’s balance appearing in
the comment of the WiTHDRAW function in the previous section refers to BrgenrrantAucrion, and the
callee’s balance to Brapmizss- Hence, the caller’s balance is decreased by the transferred amount, while
the callee’s balance is increased by the same amount.

The execution of the HARMLESS contract starts from the MAIN program:

<MAIN7 U[BREEN'I‘RAN'I‘/\UC'I‘ION/2007 BHARMLESS/100]>

!
e execution of MAIN
!
<BID7 U[BREI-ZN’I‘RAN’I‘ALJ("I‘ION /200, BHARMLESS/]-OO]>
!
e execution of BID
!
<WITHDRAW7 U[BREENTRANTAUCTION/3007 BHARMLESS/07 BldS[SGI’ldGI‘]/lOOD
!
e execution of WITHDRAW
1
<RECEIVE; U[BREENTRANTAUCTI()N/2007 BHARMLESS/1007 Bids[sender]/100]>
1
e execution of RECEIVE
1
(WITHDRAW, 0[Bgernrranraverion/200, Braruiess/100, Bids[Sender]/100])
1
o return to WITHDRAW
!

<SKIP7 U[BRI-IliN'I‘RAN'I‘AUC'I‘I()N/2007 BHARMLEss/looa Bids[sender] /0]>

4.2. A Reentrancy Attack

Consider now a malicious setup where the RECEIVE programs are written by an attacker and embedded
in the following contract:
ATTACKER = (MAIN, RECEIVE) .

Whereas the MAIN program is unchanged from the previous section, the RECEIVE implementation

differs, as it exploits a reentrant call to WITHDRAW to steal money.

1: Program RECEIVE
2: L call(WITHDRAW, 0)

Reentrancy takes place via repeated, mutually recursive calls between WiTHDRAW and RECEIVE, which
gradually deplete the caller’s balance until it reaches zero, at which point execution halts. The following



trace shows this process in action. We focus on a state ¢ in which the variables have the following
values:

O-(BREEN’I‘RAN’I‘AUCTION) = 200; U(BATTACKER) = 100;

<MAIN7 U[BREENTRANTAUCTION/2007 BATTACKER/100]>

4
e execution of MAIN
1
(BIDa O-[BREENTRANTAUCTION/2OO7 BATTACKER/100]>
1
e execution of BID
1
(WITHDRAW, 0[Bpisnrranraverion/300, Barracker/0, Bids[Sender]/100])
1
e execution of WITHDRAW #1
1
<RECEIVE, O-[BREEN'I'RAN'I'AUC'I'ION/2007 BATTACKER/]-OOa Bids[Sender]/100]>
1
e execution of RECEIVE #1
1
(WITHDRAW+RECEIVE, 0[Bresnrranrtaverion/200, Barracker/100], Bids[Sender]/100)
4
execution of WITHDRAW #1
and RECEIVE #1
1
(WITHDRAW+RECEIVE, U[BREENTRANTAUCTION/1007 BATTACKER/2007 Bids[Sender]/lOO]>
1
execution of WITHDRAW #2
and RECEIVE #2
1
<WITHDRAW+WITHDRAW, U[BREENTRANTAUCTION/O7 BATTACKER/3007 Bids[sender]/lo()D
1
return to WITHDRAW #3,
WITHDRAW #2, WITHDRAW #1
4

<SKIP7 U[BREENTRANTAUCTION/O; BATTACKER/3007 Bids [Sender]/()])

4.3. A Non-Reentrant Auction

In order to avoid the attacker from being able to leverage a reentrancy attack, the WITHDRAW program
should be edited as follows:

1: Program WITHDRAW

2: Amt := Bids[Sender];

3: Bids[Sender] := 0;

4 call(RECEIVE, Amt) > Bsarpaverion -= Amt, B arracker += Amt

The only change lies in the position of the line that resets the bid to zero: it has now been moved
before the call to RECEIVE.
With reference to the Solidity code in Table 2, this means to apply the same simple fix:
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function withdraw() public {
require(block.timestamp >= endTime, "Auction not ended");
uint amt = bids[msg.sender];
bids[msg.sender] = 0; // attackers reach this before and prevent further payments
(bool success, ) = payable(msg.sender).call{value: amt}("");
require(success, "Transfer failed.");

This reordering is sufficient to prevent the reentrancy attack, as an attacker invoking the modified
WiTHDRAW procedure recursively would find the Bids [Sender] location already cleared, and thus be
unable to extract further funds. As a result, any subsequent calls to RECEIVE would transfer zero value
only.

Let us update the auction contract embedding the new, safer version of the WiTHDRAW as well as the
original Bip shown in the previous section:

SAFEAUCTION = (BiD, WITHDRAW)

And let the contract invoking the auction be the same malicious ATTACKER contract defined above.
Its execution produces the following trace, in which no information flow compromises the caller’s
balance. Reentrancy attacks are rendered harmless by the assignment to zero occurring before the call,
effectively neutralizing any attempt to extract additional funds.

<MAIN7 O-[BSAFEAUCTION/2OO7 BATTACKER/100]>

d
e execution of MAIN
i
<BID7 J[BSAFEAUCTI()N/2007 BATTACKER/100]>
i
e execution of BID
i
(WITHDRAW, 0[Bsarraverion/300, Barracksr/0, Bids[Sender]/100])
i
e execution of WITHDRAW #1
i
<RECEIVE, J[BSAFEAU(T'I‘ION/2OO7 BATTACKER/1007 Bids[Sender]/O])
i
e execution of RECEIVE #1
i
(WITHDRAW+RECEIVE, 0[Bs,rpavcrion/200, Barracker/100, Bids[Sender]/0])
i
execution of WITHDRAW #2
and RECEIVE #2
i
<WITHDRAW+RECEIVE7 U[BSAFEAU(TTION2007 BATTACKER/1007 Bids[Sender]/()])
i
execution of WITHDRAW #n
and RECEIVE #n
i

(SKIP, 0[Bssrravcrion/200, Barracker/100, Bids[Sender]/0])

The last state transition proves that the balance associated to the malicious contract ATTACKER has
not increased, and the original amount of money stored in the balance associated to the SAFEAucTION
contract is unchanged.
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4.4. A case of Downgrading

We now present a simplified version of a crowdfunding contract written in Solidity. At first glance,
the withdraw function appears vulnerable to a reentrancy attack, as it invokes the call function
to transfer Ether to an external address receiver before updating the contract’s internal state, a
well-known red flag in smart contract security. However, in this case, the receiver address is
hardcoded and not dynamically computed, ensuring that no malicious contract can exploit the callback.
Furthermore, the function includes an access control check that restricts its execution to the contract’s
owner. Additionally, the function transfers the entire contract balance in a single call, leaving no
residual funds that an attacker could repeatedly steal through reentrant invocations. As a result, despite
following a pattern commonly associated with reentrancy vulnerabilities, the contract is secure. This
example highlights the limitations of pure noninterference and underscores the importance of taking
into account the execution context when evaluating smart contract security.

pragma solidity ~0.8.28;
contract Crowdfund {

bool open; // flag that closes the Crowdfund
address receiver; // receiver of the donated funds
address owner;

constructor (address payable receiver_) {
receiver = receiver_;
owner = msg.sender;
open = true;

}

function donate() public payable {
require (open);
}

function withdraw() public {
require (open);
require (msg.sender == owner);
(bool succ,) = receiver.call{value: address(this) .balance}("");
open = false;
require(succ);

In our model, we define the CrowdFund contract as follows:
CrOWDFUND = (DONATE, WITHDRAW)

and we consider the MAIN and RECEIVE programs of the OWNER and the RECEIVER:

OWwWNER = (MAIN)
RECEIVER = (RECEIVE) .

The execution starts from the MAIN program belonging to the Owner contract, which then invokes the
WiTHDRAW of the Crowdfund contract and finally the RECEIVE of the Receiver.

1: Program MAIN

22 call(WITHDRAW, 0)
1: Program RECEIVE

: L skip

We provide only the implementation of Withdraw, as the Donate function is straightforward.

[ )



: Program WITHDRAW
if (open = false V Sender # Owner) then
‘ skip
else

Balance := BcrownFunn;
call(RECEIVE, downgrade(Balance));
open = false; > BcrownFunp == Balance, Brecgiver += Balance

NSy e

In this case, we use of the downgrade operator that lowers the confidentiality level of Balance, so
when the call is executed, it is treated as declassified and is therefore not considered dangerous in the
unwinding test, i.e., the unwinding condition is satisfied.

5. Conclusion

The case study presented in this article demonstrates that the non-interference framework is particularly
well-suited for capturing the vulnerability known as reentrancy in smart contracts. By applying the
unwinding conditions, we were able to systematically identify and understand potential reentrancy
vulnerabilities in an auction contract, highlighting the effectiveness of this formal approach.

As future work, we propose to develop a proof system in the style of [35] for the analysis of smart
contracts, which will enable formal verification of the absence of reentrancy vulnerabilities. Additionally,
we aim to implement a tool based on the non-interference framework as in [36] to facilitate automated
analysis of smart contracts, thereby enhancing security and reliability in blockchain applications.
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