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Abstract

Multi-objective optimization has been extensively used to efficiently solve real-world problems. In this work,
we address privacy-preserving multi-objective optimization of non-fungible token bartering problem with the
consideration of two conflicting objectives as: (i) the maximization of the number of bids satisfied and (ii)
the maximization of the budget after the bids costs are paid. To solve this problem, we propose a novel multi-
objective approach (i.e. zkMOBF - Zero Knowledge-based Multi-Objective Bellman-Ford) utilizing zero-knowledge
proofs to preserve the privacy of these bids. Our approach takes the global bid graph as input and extracts
optimized bartering solution(s) through four phases. Publicly-verifiable proof of this approach is generated
off-chain and later verified on-chain on Ethereum Sepolia test network. In our empirical study, we measure proof
generation/verification times, proof artifact sizes and blockchain gas consumption for three bartering scenarios.
The work justifies the validity and the applicability of our approach.
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1. Introduction

Multi-objective optimization refers to a specific group of problems that involve the minimization or max-
imization of multiple objectives simultaneously [1]. Multi-objective modelings of real-world problems
may offer certain benefits over their single-objective counterparts by allowing for the consideration
of trade-offs. For instance, single-objective modelings may neglect significant objectives while trying
to push the limit of only one objective (e.g. neglecting cost to minimize time) where it may lead to
practically infeasible solutions (e.g. too high cost to pay). In the literature, there exist many works that
adopt multi-objective techniques [2, 3, 4]. Therefore, we model a multi-objective bartering with two
conflicting objectives in this work as the maximization of number of bids satisfied and maximization of
the budget after bid costs are paid. The cost of a bid may result from the urgency to satisfy it where an
urgent bid is associated with a lower cost.

In certain scenarios, privacy concerns may arise in real-world multi-objective optimization while
processing confidential user data (e.g. recommendation systems on mobile user data [5]). In this context,
we define privacy-preserving variant of multi-objective optimization as a more specific group of
problems with multiple objectives, which ensures the confidentiality of certain data during computation.
There also exist works that address the notion of privacy-preservation on blockchain, especially for
federated learning [6]. However, to the best of our knowledge, there exists no work that considers
both privacy-preservation and multi-objective optimization on blockchains in the literature. In this
work, we propose a multi-objective approach for token bartering by preserving the privacy of bids via
zero-knowledge proofs and deploying the corresponding contract on blockchain for proof verification.

The main contributions of our work can be enumerated as follows:

+ We address privacy-preserving multi-objective optimization of our token bartering problem which
involves performing a publicly-verifiable computation on the private bids to find an optimal
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bartering solution by considering multiple objectives.

« We propose a novel privacy-preserving approach (i.e. zkMOBF) with four phases: (i) detecting
cycles in bid graph with the Bellman-Ford algorithm, (ii) evaluating these cycles (i.e. solutions) for
two conflicting objectives, (iii) ranking the feasible solutions with pareto-domination to find the
non-dominated solutions and (iv) applying a utility function over the non-dominated solutions to
determine the final solution. To the best of our knowledge, this is the first work that introduces
novelty of solving a multi-objective problem on zero-knowledge proof in the literature.

« We perform experiments over three scenarios (i.e. small, medium and large) with respect to the
number of bids to measure (i) proof generation and verification times, (ii) proof artifact size (e.g.
size of proof circuit) and (iii) blockchain gas consumption for contract deployment. This study
justifies the applicability of our protocol.

2. Privacy-Preserving Multi-Objective Bartering Problem

Privacy-preserving multi-objective bartering problem refers to a secure optimization problem which
aims to find the best token bartering solution(s) with respect to the available bids and by considering
several conflicting objectives at the same time. In the scope of the problem, we define the set of bidders
U as:

U = {ug, uq, ..., U, ..., UN_1} (1)

where u; represents the ith bidder while N is the total number of bidders. We also define the set of
non-fungible tokens (e.g. NFTs) as:

T = {105 T1s eover Thos eoos TM—1} (2)

where 7 represents the kth token while M is the total number of tokens. Each bidder u; is associated
with a bid ¢; as:
RN AN o (3)

where ¢, € T is the token to be supplied, " € T is the token to be demanded and ¢{** is the cost of
the bid ¢ while @ is the set of all bids. The problem is a single-token single-instance bartering problem
where bidders can supply and demand at most one instance of one token (|¢h | = || = 1). Here, we
also assume that each bidder u; can propose one bid ¢; at most at a time.

The multi-objective modeling of this problem evaluates the set of feasible solutions with several
objectives simultaneously by mapping each solution x; : {xjo, xj1, ..., Xj, ..., Xj N—1) and xj; € {0, 1} from
the decision space to a point in the objective space:

max. F(x;) = {F(x;), Fa(x))} (4)
N-1
Fl(x]') = Z in (5)
= N-1
Fy(ag) =B = 3 x ¢ (6)
N-1 Nt
st Y x> Y, b x (7)
i=0 i=0

where Equation (4) refers to the multi-objective optimization of two objectives where Equation (5)
defines the first objective as the maximization of the number of total bids included in the solution
while Equation (6) defines the second objective as the maximization of the fixed total budget value B
(which is globally shared among bidders) left after the costs of the bids included are covered. Finally,
the constraint in Equation (7) implies that the total number of tokens supplied must be at least equal to
or greater than the total number of tokens demanded in the solution. A solution x; is considered as
feasible if it satisfies this condition. Furthermore, each solution is assumed to have only a single simple



cycle. In the problem definition, there is no explicit supply constraint since we assume that the bidders
already have sufficient balances to propose bids.

We present a simple bartering scenario in Fig. (1) where there exist six bids at total as
{d0s D1, Do, B3, Py, s} for five different tokens {r;, 75, 73, 74, 75}. Out of these bids, it is possible to con-
struct a bid graph where the tokens are the nodes and the bids are the edges. For instance, the bid ¢;
connects the third node (i.e. source node) 73 to the fourth node (i.e. target node) 74. In the bid graph,
there are two different cycles (i.e. bartering solutions) as x,, x; € S where x; and x; are shown in blue
and red, respectively while S is the set of feasible solutions. The first objective F; of x; is the number
of bids satisfied as 3 while the second objective F, is the budget left as 10 — (1 + 1 + 1) = 7 where the
total budget is taken as 10. We can compute the objectives of x; in similar fashion. These two solutions
can be represented as points (e.g. blue and red points) in the objective space of (F;, F;). The resulting
objective space shows that x; is non-dominated by outperforming x; at every objective (i.e. maximizing
the objectives more). The set of all such non-dominated solutions forms the pareto-optimal set, POS [1].
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Figure 1: A Simple lllustration for Multi-Objective Bartering Scenario

3. The zkMOBF Approach

In this section, we propose the zkMOBF approach with four phases as: (i) detecting cycles on bid graph
with the Bellman-Ford algorithm, (ii) evaluating feasible cycles (i.e. solutions) with the objectives, (iii)
ranking solutions with pareto-domination and (iv) decision-making with utility function for the final
solution. This approach is: (i) privacy-preserving since it protects the privacy of bids throughout the
calculations, (ii) multi-objective since it considers the optimization of two objectives at the same time, (iii)
publicly-verifiable since the off-chain proof generation for the calculations can be verified in blockchain,
(iv) non-interactive since it does not require communication during proof generation or verification.
We present where zkMOBF is positioned to solve the privacy-preserving multi-objective bartering
problem in Fig. (2) where (i) we assume that barterers propose their bids through their corresponding
commitments in the first stage, (ii) they all individually apply our proposed approach to arrive the same
bartering solution in the second stage and (iii) they individually apply the solution to exchange tokens
in the third stage. Barterers must find the same solution since they run the same deterministic proof
circuit over the same inputs. In this paper, we specifically address the challenges of the second stage.
Refer to the following work [7] for a potential solution to the first stage.

3.1. Detecting Cycles with Bellman-Ford Algorithm

The bids of the bidders constitute the global bid graph altogether. The constraint given in Equation (7)
implicitly limits the valid bartering solutions over this graph to be complete cycles. More intuitively,
the token demanded in the last bid in the cycle must be supplied from the first bid in the same cycle.
This lets us to use a cycle detection algorithm (i.e. Bellman-Ford) to find the cycles available in the
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Figure 2: zkMOBF Approach in Privacy-Preserving Multi-Objective Bartering

1: def zkMOBF(private bids ®):

2 Find cycles (i.e. solutions x;) from bids ® with Bellman-Ford algorithm
3 for each solution x; do

4: Add x; to set of feasible solutions Sas: S < Su x;

5: Evaluate x; with the first objective F; as: F,(x;)

6 Evaluate x; with the second objective F, as: F,(x;)

7 for each solution x; € Sdo
8

for each solution x/ € Sthat is x; # x/ do

9: Compare x; and x{ through pareto-domination
10: Add x; to pareto-optimal set POS if it is non-dominated
11:  for each solution x; € POS do
12: Apply utility function over x; to compute the final score
13: if x; has better score than the best score then
14: Select x; as the best solution as x*

15:  return the best solution found x*

Figure 3: Multi-Objective Optimization on Zero-Knowledge

graph. The calculations for this phase correspond to Line 2 in Fig. (3) where it traverses every node in
the graph as start node by setting distances to infinity except the start node itself. Then, it iteratively
relaxes all the edges to find the shortest paths by updating the distances. After its completion, in case it
could not find any further improvement over the distances, it means there is no cycle. Otherwise, it
simply backtracks the previous nodes to construct a complete cycle. This cycle is included into the set
of feasible solutions in Line 4. This can be seen in Fig. (4) where the cycles are highlighted.

Global Bid Network  Bartering Cycles on Network

Figure 4: Cycle Detection with Bellman-Ford



3.2. Evaluating Feasible Cycles with Objectives

The cycles (i.e. feasible solutions) found in the given global bid graph must be evaluated with respect to
the existing objectives of the multi-objective optimization to find their qualities. We already mathe-
matically define our two objectives in Equation (5) and Equation (6). The calculations for this phase
correspond to Lines 5-6 in Fig. (3). For the first objective, it simply counts the number of the bids
satisfied for every feasible solution. For the second objective, it sums the costs of the bids and later
subtracts the total cost from the available budget for every feasible solution. This phase is especially
important to transform the solutions (as collection of decision variables) in the decision space to the
points in the objective space. This transformation can be seen in Fig. (5).
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Figure 5: Transformation of Solutions to Objective Values

3.3. Ranking Solutions with Non-Dominated Sorting

In single-objective optimization, the solutions can be ranked by simply sorting their values on that
objective ascendingly or descendingly with respect to the type of the problem (i.e. minimization or
maximization). However, multi-objective optimization requires a more sophisticated ranking mechanism
where we apply pareto-domination in this work. This technique is based on pairwise solution comparison
where a solution x; dominates another solution x, in case x; is no worse than x, for all the objectives
and x; is strictly better than x, in at least one objective, x, < x;. More formally:

Vi F(xp) < Fi(xy) A 3j Fi(xp) < Fi(x1) 8)

where x; is a non-dominated solution. The calculations for this phase correspond to Lines 7-10 in Fig. (3)
where it compares every solution x; with all the other feasible solutions and marks x; as non-dominated
if there is not another solution that dominates x;. The set of all non-dominated solutions constitutes
POS in Line 10. This can be seen in Fig. (6) where the blue solutions are non-dominated.
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Figure 6: Non-Dominated Ranking of Solutions for POS



3.4. Decision-Making for Final Solution with Utility Function

In our work, the third phase generates a pareto-optimal set (i.e. POS) that consists of only the non-
dominated solutions by cleansing the useless solutions for our problem. The selection of the final
solution to be applied over the bids from this set requires an additional phase. For this phase, we
incorporate a utility function A that represents a group of probabilities to measure user preferences.
These preferences simply show how important an objective is with respect to the other objective(s).
Since we have two objectives in our problem, we can represent this function as A : (@, ay) where o;
and a, are the probabilities for the first and second objectives, respectively by satisfying the condition
of a; + ap = 1. The calculations for this phase correspond to Lines 11-14 in Fig. (3) where it applies
the preferences over the objectives for every optimal solution. It iterates over all the optimal solutions
to find the single best solution with the best score in Line 14. This is seen in Fig. (7) where the green
solution is shown as the best.
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Figure 7: Selection of Best Solution from Optimal Solutions

4. Experimental Study

We use the ZoKrates framework [8] to implement zkMOBF over zero-knowledge proof. The proof
generations and verifications are performed off-chain on the command line. The smart contracts
corresponding to the proofs are automatically generated by the framework itself and ready to be
deployed on Ethereum Sepolia only for proof verification. During our experiments, we consider three
increasingly-complex graphs as small (with 10 bids), medium (with 30 bids) and large (with 50 bids).
The open-source implementation of zkMOBF is available in our website [9] for further inspection and
experimental reproducibility. The experiments are carried out on MacBook Air with M2 chip, 8 GB
memory and 8 cores.

4.1. Zero-Knowledge Proof Generation/Verification Times

In this experiment, we measure the proof generation and verification times on the command line with
ten independent runs. The results of the experiment are given in Table 1 for the small, medium and
large bid graphs. From the table, we simply observe that the time to generate proof increases with
the increasing graph complexity (e.g. from 23.67 seconds for small to 188.75 seconds for large). But,
the standard deviations between runs are quite low (e.g. 0.01, 1.2 and 1.8 seconds for small, medium
and large, respectively). On the other hand, we observe that the proof verification remains constant
regardless of the graph complexity. This implies that the proof generation is computationally more
expensive than the proof verification, especially for complex instances. Hence, ZoKrates strategically
moves proof generation out of blockchain to external nodes while still keeping proof verification
on-chain.



Table 1
Proof Generation/Verification Times (in seconds).

Proof Generation Proof Verification
Run | Small Medium Large | Small Medium Large
1 23.5 90.1 189.6 0.013 0.013 0.013
2 23.7 91.1 188.4 0.016 0.012 0.012
3 23.7 92.7 188.9 0.013 0.015 0.012
4 23.6 92.3 187.8 0.013 0.012 0.012
5 23.8 90.2 189.7 0.012 0.013 0.013
6 23.7 88.9 188.5 0.012 0.013 0.012
7 23.8 90.4 189.0 0.012 0.014 0.012
8 23.6 89.1 191.4 0.013 0.013 0.013
9 23.6 89.9 184.4 0.015 0.013 0.013
10 23.7 90.5 189.8 0.013 0.012 0.016

4.2. Proof Artifact Size

In this experiment, we measure the size of several proof artifacts including the proof circuit, the proving
key, the verification key and the proof itself. The results of the experiment are given in Table 2 for
the small, medium and large bid graphs. From the table, we observe that the number of constraints
in circuits and the proving key size increase with the increasing graph complexity (e.g. from +1.5M
for small to +8.5M for large in circuits and from 0.63GB for small to 3.78GB for large in proving key).
On the other hand, verification keys and proofs remain constant all the time. This is beneficial for
blockchain applications since verification keys and proofs are processed on-chain while proving keys
are stored off-chain. For the large graph, the proving key is x2.7M larger than the verification key while
the proof is the shortest.

Table 2
Zero-Knowledge Proof Artifact Size.

Scenario Circuit Proving Key  Verification Key  Proof
Small 1,557,109 0.63GB 1.4KB 0.8KB
Medium 4,959,472 2.11GB 1.4KB 0.8KB
Large 8,515,531 3.78GB 1.4KB 0.8KB

4.3. Blockchain Gas Consumption

In this experiment, we simply deploy the smart contracts that the ZoKrates framework automatically
generates to blockchain. The structures of these contracts for small, medium and large graphs are
basically the same except the verification keys. These keys result from the one-time setup where they
are perfectly matched with their corresponding proving keys. According to our experiments, the smart
contracts need approximately 1,069,149 gas units (i.e. approximately $3.51) to be deployed on Ethereum
Sepolia.

5. Conclusion

We address the privacy-preserving multi-objective bartering problem to find optimal bartering solution(s)
to be applied over the bids. It considers two objectives as the maximization of the number of bids and
the maximization of the budget left over. For the problem, we contribute a novel privacy-preserving
approach (i.e. zkMOBF) on zero-knowledge proof by incorporating the Bellman-Ford algorithm, the non-



dominated ranking and the utility function-based decision-making. We evaluate the performance over
three bartering scenarios with increasing complexity to measure proof generation times, proof artifact
size and blockchain gas consumption. This empirical study indicates the validity and applicability of
the approach. In the future, we also plan to construct solutions as union of cycles.

6. Declaration on Generative Al

During the preparation of this work, the author(s) used ChatGPT in order to: Grammar and spelling
check, Peer review simulation. After using this tool/service, the author(s) reviewed and edited the
content as needed and take(s) full responsibility for the publication’s content.
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