CEUR-WS.org/Vol-4105/short06.pdf

CEUR
E Workshop
Proceedings

published 2025-11-24

Smart contracts and issue reporting: a preliminary analysis

Ermanno Francesco Sannini**, Andrea Di Sorbo’ and Corrado Aaron Visaggio®

"University of Sannio, Benevento, Italy

?University of Foggia, Foggia, Italy

Abstract

The widespread adoption of blockchain and smart contracts (SCs) in contexts and tasks beyond currency man-
agement has introduced novel challenges in their development and maintenance. This paper investigates the
characteristics of issue reports and their handling dynamics in SC-related projects, comparing them against
traditional software. To this end, we curated a dataset of Ethereum-based smart contracts, selecting the top
2,000 active and used ones. Out of them, 42 projects with publicly maintained source code on GitHub were
discovered. Using data extracted from the issue trackers of these projects, we conducted a statistical comparison
with known patterns in traditional software projects. The results reveal that SC developers and users actively
engage with issue-tracking systems, though most SC projects receive fewer than 50 issue reports. Besides, a
significant portion of issue reports in SC-related projects pertain to feature enhancements, and resolution tends
to be faster, often involving extensive use of comments. These trends reflect the community’s emphasis on
modularity, upgradeability, and collaborative development practices, suggesting that, in SC-related projects,
maintenance tools and platforms should prioritize support for enhancement-oriented workflows and collaborative
communication. Additionally, the heavy use of commentary features underscores the importance of integrated
communication tools and traceability features to support transparent and audit-friendly development processes.

Keywords
Solidity, Ethereum, Issue Report, Github

1. Introduction

Smart Contracts (SCs) have been established as one of the most innovative and promising tools,
mainly valued for their ability to automate transactions and processes in a secure and decentralized way.
Initially tied to the transfer of digital assets, their use has rapidly expanded to areas such as decentralized
finance (DeFi), digital identity, supply chain tracking, gaming, and virtual property management [1].
A chief factor that has contributed significantly to the massive use of SCs was the completion and
capability of the Ethereum blockchain, which led the blockchain as a programmable platform [2]. While
early blockchain systems focused only on digital asset transfer, Ethereum introduced an execution
environment through a distinctive Virtual Machine (EVM), which makes it possible to build and deploy
decentralized applications (dApps) [3]. They are usually developed in a high-level language, such as
Solidity, Vyper, or other languages. Solidity is the programming language’s most popular way to develop
SCs on Ethereum. Based on the concept of immutability, SCs cannot be modified once added to the
blockchain. Once started, all contract execution is based on its code. No one can change it, even the
creator [4]. Another distinctive facet of Ethereum is the introduction of the gas mechanism, a measure
of the computational work required to perform operations on the platform, i.e. the cost of operations
performed on the blockchain [5]. Every transaction, from a simple value transfer to a complex function
call, incurs a gas cost that must be paid in Ether. Efficient gas usage is therefore a key design concern in
SCs development [4].

The inherent characteristics of SCs lead to unusual challenges influencing all phases of the software
life cycle [6]. For instance, due to the characteristics of immutability and transparency of SCs, in the
design steps, it is necessary to make systems modular and upgradable and avoid storing sensitive

DLT2025: 7th Distributed Ledger Technology Workshop, June, 12-14 2025

*Corresponding author.

Q) e.sannini@studenti.unisannio.it (E.F. Sannini); disorbo@unisannio.it (A. D. Sorbo); corrado.visaggio@unifg.it
(C.A. Visaggio)

® 0000-0002-3192-739X (A. D. Sorbo); 0000-0002-0558-4450 (C. A. Visaggio)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
B

mailto:e.sannini@studenti.unisannio.it
mailto:disorbo@unisannio.it
mailto:corrado.visaggio@unifg.it
https://orcid.org/0000-0002-3192-739X
https://orcid.org/0000-0002-0558-4450
https://creativecommons.org/licenses/by/4.0/deed.en

information, as, once published, it will be accessible to everyone. During the development phase,
instead, care must be taken in implementing the smart contract by optimizing both the computational
cost of gas that would be required for its execution and security because smart contracts often control
and manage sensitive digital assets and, after the deployment, an attacker could identify any flaws
and exploit them. Due to immutability, it will not be possible to accomplish updates or corrective
patches [7]. Furthermore, the lack of consolidated best practices, universal standards in terms of security
and efficiency, and adequate tools to verify the correctness of the code complicates these already tangled
steps. Finally, concerning the maintenance phase, challenges inevitably arise in implementing corrective
and adaptive actions when a problem is discovered or a change disrupts the SC operation. Once deployed,
modifications to the specific smart contract to restore proper functionality are no longer possible.

However, little is known about the issues users and developers of active SCs typically encounter after
SC deployment and how these issues are specifically managed and resolved. To start filling this gap,
this work explores issues reported in SC-related projects on collaborative platforms, investigating how
they are communicated and managed. By comparing these practices with those of more conventional
software repositories, we aim to identify patterns occurring in similar underlying reports and assess
the effectiveness of the current reporting and management dynamics, with the long-term goal of
improving the accuracy and timeliness of issue management practices in SC-related projects. The
analysis specifically focuses on (i) identifying active smart contract repositories with issue reporting
enabled, (ii) analyzing the frequency, nature, and classification of reported issues, and (iii) drawing
comparisons with traditional software projects in terms of issue types and their lifecycle. In particular,
understanding how often issues arise and what types are most common can help teams prioritize
recurring pain points and allocate resources more effectively. In addition, parallels with conventional
software allow for identifying gaps or best practices, leading to improved maturity in issue management.

Paper structure. The paper proceeds as follows. Section 2 discusses the related literature, high-
lighting the novelty of our findings. Section 3 presents the research questions and the methodology to
answer them. Section 4 reports and discusses the preliminary results. Finally, Section 5 concludes the
paper outlining future research directions.

2. Related work

The scientific community is currently paying particular attention to the critical phases of the smart
contract life cycle, focusing on development and maintenance. To date, these phases represent the
ones that most differ from traditional systems, giving rise to innovative challenges to improve security,
reliability, and efficiency.

Regarding the development phase, the study conducted by the Karlsruhe Institute of Technology
(KIT) [8] pinpointed three main categories of challenges: (i) the platform makes it difficult to trace
the user’s identity through the address used, and the updateability of the code; (ii) the programming
language and execution environment are lean to computational inefficiency and inadequate memory
management, leading to performance drops and gas leaks; (iii) the adoption of complex code practices
concerning transactions’ security and the currency management that can disrupt code readability and
understandability.

Regarding the maintenance phase, instead, Chen et al. [4] focused on the challenges affecting
three main tasks: (i) the corrective maintenance is hampered by the lack of refined tools for bugs and
error detections, alongside skimpy community support in reporting due to the lack of developers and
researchers with expertise in the field; (ii) the adaptive maintenance is made tricky by the ongoing
evolution of the Ethereum network, that can make any SC obsolete or even no longer operational, heavily
affecting its dependability; (iii) the perfective maintenance is deeply restricted by the plainness of Solidity
grammar, which limits projects’ scalability, and imposes trade-offs between gas cost optimization and
code readability. Besides, preventive maintenance is fairly absent due to the constant SCs’ ecosystem
growth and the lack of consolidated standards and experts in the field. Finally, the study emphasizes
the shortage of fruitful tools and methodologies to support the maintenance phase of smart contracts.

A further obstacle impacting the development and maintenance of smart contracts is represented
by code duplication, a widespread practice, especially among less skilled developers. For example,
Pierro and Tonelli [9] discovered that on 7,500 smart contracts carried from the Ethereum platform,
over 80% of them include duplicate portions of code. This behavior makes the implementation phase
easier but raises severe issues. Without appropriate verification and customization, code clones improve
complexity. This often translates into greater gas consumption, increasing the maintenance efforts
required for optimization. Moreover, code clones often contain outdated functions or libraries or
functions developed for other purposes, introducing errors or vulnerabilities. Indeed, He et al. [10]
observed that the high presence of SCs containing duplicate code fragments has led to a proliferation of
contracts that inherit vulnerabilities or design errors in the Ethereum ecosystem.

The high propagation of vulnerabilities represents an effective criticality for SC security and reliability.
In 2022, observing 30 SC-related security flaws, the estimated financial losses amounted to 1.2 billion,
with an increase of 837% compared to the previous year, indicative that many developers had not
updated the code of their SCs to fix known vulnerabilities [11]. In light of these findings, the scientific
community is reserving greater awareness of vulnerability analysis and developing increasingly refined
tools for the static and dynamic analysis of SCs.

In contrast to prior studies focusing on technical and structural challenges, the work by Vaccargiu et
al. [12] investigates the socio-technical factors of issue management within blockchain-based projects.
Analyzing 15,954 Go-Ethereum issues and 50, 023 comments from GitHub, the authors apply topic
modeling to reveal that sustainability emerges as a prominent theme, accounting for about 38% of the
identified topics. Additionally, network analysis highlights gas prices and cost efficiency as main topics
in sustainability communities.

Unlike the studies above, this work investigates issue reporting and management in SC-related
projects. Bug reports or requests for new features are essential to software maintenance and evolution
tasks. In traditional software systems, issue management happens through consolidated tools, such
as issue tracking systems, which allow recording, categorizing, and managing reports in a structured
way. As regards smart contracts, however, it is unclear how and what types of issues are reported and
effectively addressed. Therefore, this study evaluates how much and in what way consolidated software
maintenance tools are adopted in the distinct context of smart contracts.

3. Objectives and Study Design

The goal of our study is to investigate the issue reporting and management practices in SC-related
projects to spot operational peculiarities. Starting from open source projects (as a preliminary analysis,
only projects publicly available on GitHub were considered), the goal is to understand the process of
issue report discussion, management, and resolution in SC-related projects and compare them with
those observed in traditional software systems. The findings provide useful knowledge to improve the
tools and practices of problem management in blockchain-based projects. With these objectives, we
pose the following research questions:

« RQ;: Among the most active and used SCs on the Ethereum blockchain, how many have
their source code publicly developed and maintained on the GitHub collaborative develop-
ment platform?

« RQ>: What percentage of smart contract projects found on GitHub have received at least
one issue report and how many issues are tracked?

« RQ3: What are the most recurring labels associated with issue reports in smart contract
projects found on GitHub?

« RQ,: What are the characteristics of closed issue reports across smart contract projects
hosted on GitHub?

RQ; assesses the transparency and accessibility of the source code of the most used smart contracts
on the Ethereum blockchain. With RQ2, we pinpoint the adoption of issue trackers among SC develop-
ers. The frequency and distribution of issue reports are also evaluated to understand the extent and

complexity of issue management in the identified smart contract-related projects. RQ3 determines
the recurrent cases and their categorization for gaining a better understanding of the most common
criticalities. Finally, with RQ,, we analyze the dynamics of closed issues reported on the different
projects.

3.1. Experimental dataset

Starting from the public Ethereum dataset bigquery-public-data.crypto_ethereum', Google BigQuery
was used to find all contract addresses, joined with the total number of transactions, performed since
the contract deployment on the blockchain, and the date of the last recorded transaction. This stage has
led to the identification of 8,922, 530 contract addresses. Since we were interested in mining active
and used SCs, the relevance of the collected data was assured by removing addresses with less than
10 transactions associated or whose last transaction was earlier than 2024, reducing the addresses to
272,014. Later, the contracts’ source code was retrieved using Etherscan, a well-known platform to
explore and examine the Ethereum blockchain [13], obtaining 203,033 files. All the contracts with a
language different from Solidity and any duplicates were eventually filtered out. After this filtering step,
the experimental dataset evolved to 82, 337 files. We then ordered the remaining files by the number of
transactions received and selected the top 2, 000, ensuring extensive interaction and representativeness.

3.2. Analysis methodology

To answer RQj, a Python script was built to automate the invocation of the GitHub REST APL
This service allows access to a wide range of GitHub features [14], i.e. full name, description, cre-
ated_at, updated_at, stargazers_count, forks_count, open_issues, open_issues_count, pushed_at, license,
default_branch, topics. For each of the 2,000 smart contracts featured in the dataset detailed in Section 3.1,
the script exploits the GitHub search feature by (i) building a query containing a noteworthy piece of the
Solidity source code and (ii) analyzing all the retrieved repositories in terms of the number of Solidity
files contained: if this number is greater than 100, the script recognizes the repository as a collection of
SCs and, therefore, discard it; otherwise, the repository is identified as worth of further analysis. For
the remaining repositories (i.e., the ones worthy of further analysis), a deeper comparison between the
whole source code of the smart contract extracted from the initial dataset and the one retrieved from
GitHub is performed. The main limitations encountered are: (i) the limited number of searches that can
be executed via the GitHub API in a given time frame, causing long execution time; (ii) a high number of
search results for each query due to smart contracts with duplicate code fragments; (iii) the GitHub API
limit for query size to 256 characters, leading to high false positives in query results. The first limitation
was mitigated through a sleep function. To address the others, we created queries reporting the first
200 characters of the source code contained in the initial dataset and filtering the results to the Solidity
files only. Despite being simple, this method has proven valid as, usually, details at the beginning
of the source code, such as specific metadata, introductory comments, the Solidity version, or any
logos, allow for obtaining more pertaining search results. GitHub’s search algorithm sorts results based
on the position of the search phrase within the code; that is, the first outcomes produced match the
search string in the initial lines, increasing the precision of the search. The second approach populates
the query with the functions’ signatures of the source code, obtained with regular expressions. The
final results include all distinct projects successfully retrieved using these two approaches, without
considering out-of-scope (e.g., audits, replication packages, API documentation, testing tools, etc.) and
projects with less than five stargazers, to exclude toy projects or projects with too limited visibility.
The other RQs were answered using the Perceval tool [15]. Leveraging the GitHub REST API, Perceval
allows users to pull out all issue reports’ data from a repository and collect them in JSON format. A
Python script was used to run Perceval on all repositories found in RQq, analyze the corresponding
outputs, and compute the required statistics. The procedure first involves the extraction of issues only,
as the GitHub API includes also pull requests in issue retrieval. For each issue retrieve the current

'https://cloud.google.com/blog/products/data-analytics/data-for-11-more-blockchains-in-bigquery-public-datasets

https://cloud.google.com/blog/products/data-analytics/data-for-11-more-blockchains-in-bigquery-public-datasets

state, and, if it is closed, collect the comments’ number and compute the Time to Resolution (TTR), by
subtracting created_at from closed_at time. Eventually, gather the tags related to each issue.

4. Results

This section reports the obtained results and compares them with those concerning traditional software
observed in previous work: for RQ2 and RQ3, we considered the study of Bissyandé et al. [16], who
analyzed 100, 000 GitHub repositories, focusing on the adoption and impact of issue tracking systems
in traditional open source projects on GitHub; for RQy, the comparison is made considering the work
of Siiliin et al. [17], who examined the adoption of issue templates across GitHub projects and the
managing dynamics of 1.9 million issue reports with and without conformance to templates.

4.1. Smart contracts developed on GitHub and issue report adoption

To answer RQ1, the execution of the queries described in 3.2 led respectively to 339 files within 251
repositories and 217 files within 175 repositories, merged into 436 unique files within 316 distinct
repositories. After filtering out low visibility and out-of-scope projects, the repositories’ number signifi-
cantly decreased to 42 items. Therefore, among the 2,000 most active and used SCs on the Ethereum
blockchain, only 2.1% of them are publicly developed and maintained on the GitHub collaborative
development platform. The limited number of identified repositories highlights a key limitation of
relying solely on open-source sources for smart contract investigation, suggesting that most active
contracts are likely developed and maintained privately or via alternative platforms. To investigate this
further, since in some platforms such as GitLab the global search is restricted to premium users, and
manually querying every single project was prohibitively time-consuming, we performed a raw Google
query search using the first 150 characters for each of the 2, 000 contracts and filtered the results match-
ing the domains https:/gitlab.com, https://bitbucket.com, and https://openzeppelin.com. However, this
strategy yielded no successful matches. Therefore, we proceeded by collecting the top ten domains from
Google’s response to each of the queries above. As reported in Table 1, GitHub is the most frequently
occurring domain, confirming its essential role for future analyses. Notably, for 223 repositories, no
trace could be found on the public web, suggesting they may be private or hosted on non-indexed
or restricted-access platforms. Among the domains identified, several are not hosting platforms but
discussion forums (e.g., Ethereum StackExchange, OpenZeppelin Forum), documentation sites (e.g.,
docs.openzeppelin.com, docs.soliditylang.org), or educational resources (e.g., O'Reilly, GeeksforGeeks,
Metaschool). This mix indicates that while GitHub remains prominent for code hosting, much of the
smart contract discussions, learning, and technical reference happen on generic domains, reflecting the
scraped nature of the smart contract development ecosystem. On the contrary, further platforms like
GitLab and Bitbucket yielded no successful outcomes via direct or indirect query methods, emphasizing
the limitations in visibility and accessibility on those platforms.

Table 1

Top 20 domains from most used smart contract Google queries
Domain Domain
github.com 1552 | swcregistry.io 262
ethereum.stackexchange.com 1345 | coinsbench.com 241
forum.openzeppelin.com 1235 | metana.io 219
stackoverflow.com 1167 | docs.blockscout.com 200
docs.openzeppelin.com 657 | etherscan.io 196
medium.com 538 | www.geeksforgeeks.org 189
www.oreilly.com 517 | www.cyfrin.io 181
docs.soliditylang.org 498 | gnosisscan.io 157
gist.github.com 311 | www.quicknode.com 140
metaschool.so 291 | huggingface.co 134

80% 100% 93%

66% 6.00%
. 80%
60% 52%

40% 60%
40%

30% 40%

20%
20%
7%

° 9 7.00% 9
3.80% 0% 29 551% 5% 1 14%
0% 0% — |
Disabled 0 >0 <50 50-100 100-500 > 500
mSmart Contracts Traditional SWs m Smart Contracts Traditional SWs
(a) Issue Tracker Adoption (b) Issues distribution

Figure 1: Issue management comparison between SCs and traditional SWs.

Concerning RQ», out of 42 SC-related projects found on GitHub, three have the issue tracker disabled
(7%), 18 have not received any issue reported (40%), and 21 feature at least one issue report (52%).
Figure 1a compares these results with those from traditional software (SWs) [16], where 3.8% projects
have the issue tracker disabled, 66% have no issues received, and 30% feature at least one issue report.
Therefore, SC projects tend to take advantage of the issue-tracking systems more. Instead, Figure 1b
provides a picture of issue distributions. For SC-related projects, (i) 39 repositories have less than 50
issues reported, 93% against the 86% of traditional software, (ii) no repository has between 50 and
100 issue reported, against the 7% of traditional software, (iii) one repository has between 100 and
500 issues, 2% against the 6.31% of traditional software, and (iv) two repositories have more than 500
issues, 5% against the 1.14% of traditional software. The distribution of SC-related projects is not
homogeneous in the intermediate ranges, showing a high proportion of projects with very few issues,
while a few projects show higher issue rates. This highlights developers’ and users’ trends to consider
more popular projects, leading to a more prominent reporting of bugs, requests, and suggestions, with
lesser-known projects resulting in few reports.

4.2. Label analysis and issue characteristics in smart contract-related projects

Table 2

Top 10 popular Tags on GitHub Issue Reports for SCs projects
Tag # of Tagged Issues | % of Tagged Issues
enhancement 1101 29%
bug 760 20%
apps:closed 342 9%
tools:old 314 8%
libraries 222 6%
build 142 4%
apps:cmd 99 3%
apps:export 88 2%
indexing 72 2%
epic 69 2%

To answer R()3, we analyzed the 3, 793 issues extracted through Perceval from the 42 SC-related
repositories, examining the labels (i.e., customizable tags used to classify an issue) assigned to each
issue report and reporting a total of 4, 126 labels. Table 2 reports the top-10 frequent tags: the most
used are enhancement and bug, which occur in 29% and 20% of cases, respectively. The comparison
with traditional software (see Figure 2) corroborates the trend to use an issue tracker to mainly request
enhancements, while bugs have similar distributions in both contexts. Although the relevant presence
of bug reports is expected as SCs generally handle financial transactions or sensitive data, the high

frequency of enhancement requests likely reflects the dynamic nature of the blockchain ecosystem.
As this ecosystem evolves rapidly, developers and users propose improvements to adapt to emerging
standards or optimize existing functionalities to keep pace with technological advancements and
changing user needs.

35%

0
30% 29%
25%

20%
20% 18.36%

15% 12.85%

10%
5.30%
5%
0%

0%
bug feature enhancement

m Smart Contracts Traditional SWs

Figure 2: Labels frequency comparison with traditional SWs

1000.00 931.40
752.34
750.00
500.00
381.02
273.31
250.00 158.66
62.09
14.9723.14 . 495 850 3 9.44
000 N —_— —
Mean Median STD Mean Median STD
TTR (in days) # of Comments

m Smart Contracts Traditional SWs

Figure 3: Issue characteristics compared with traditional SWs

To answer R()4, we considered the Time To Resolve (TTR) in days and the number of comments
of closed issues. The collected statistics are compared with the work of Siiliin et al. [17], whose main
scope is to inspect how the adoption of templates affects issue management. Out of the 42 SC-related
projects, only one employs issue templates. Therefore, the comparisons of Figure 3 consider issues
in projects with no templates available. The histograms of Figure 3 reveal that issue resolution in
SC-related projects generally requires less time than traditional software despite the high number of
comments received. However, the high standard deviation value suggests that large projects notably
impact results.

A manual inspection of the issue reports in our dataset reveals recurring themes. In particular, several
reports [18, 19], even unlabeled [20, 21, 22, 23, 24], concern bugs, highlighting that the percentages
in Figure 2 are underestimated. Security-related concerns [25, 26] also emerge, including potential
vulnerabilities, typical blockchain attacks, and security flaws. Other issues [27] regard development
workflows, emphasizing the increasing complexity of managing smart contract ecosystems. Instead,
enhancement requests are mainly oriented toward testing improvements [28], gas optimization [29, 30]
and general code quality refinement [31, 32]. Finally, our manual inspection confirms that SC developers
follow a collaborative approach to issue resolution, making intensive use of issue comments [33, 24].

5. Conclusion

Nowadays, the scientific community has started investigating the general development dynamics and
problem management practices in the smart contract ecosystem, as the widespread diffusion of this
technology has inevitably led to an increase in specific challenges developers and smart contract users
have to address. In this context, this paper explores the characteristics of issue reports and their
management in SC-related projects, comparing them with those of traditional software projects. To
conduct this analysis, we built a dataset of public data containing smart contracts from the Ethereum
blockchain, considering the programming language, source code accessibility, and their degree of
activity. As a preliminary investigation, the top 2000 SCs in terms of transactions carried out were
selected. However, only 42 of them have their source code publicly developed and maintained on the
GitHub platform. Leveraging the information stored in the issue trackers of these projects, we gathered
the data required to pursue the statistical analysis. The collected data were compared with those from
previous literature concerning traditional software, emphasizing differences between the two areas
within the limits of the small size of the experimental dataset. Our results remark that SC developers and
users employ the issue-tracking system more than traditional software. However, the vast majority of
SC-related projects receive less than 50 issues; only a few projects receive more than 500 issues, lacking
an intermediate range. Furthermore, while the rate of bug reports is similar for the two contexts, the
study highlighted that, in SC-related projects, there is a greater demand for enhancements compared to
traditional software. However, among SC projects, we also found a scarce adoption of standardized issue
templates. Standardized issue templates and contribution guidelines would ensure higher consistency
and clarity in reporting, likely enhancing interactions and collaborative development. Finally, there is a
general trend to resolve issues earlier than traditional software, with an extensive use of comments in
the resolution process. Therefore, the integration of communication and traceability tools like Gitter or
Discord would allow for dynamic and threaded conversations, ensuring more transparent, efficient, and
audit-friendly development workflows.

5.1. Limitations and Future Work

The reported results are subject to several limitations that should be addressed in future work. First, the
process used to match smart contracts with their corresponding GitHub repositories (see Section 3.2)
may lack completeness and precision. Refining the search methodology, both by improving matching
heuristics and incorporating additional collaborative platforms such as GitLab (with premium func-
tionalities), could increase the effectiveness and accuracy of the dataset. Besides, the analysis is based
on Ethereum smart contracts only, with just 42 repositories out of the top 2,000 most used contracts
publicly available and maintained on GitHub. This small subset (2.1%) may introduce a significant
selection bias and limit the findings’ generalizability. Further, popular contracts are inherently more
likely to receive issue reports, potentially growing metrics related to issue frequency and management
activity. To mitigate these limitations, we plan to extend the dataset both in scale and variety. This
expansion will involve incorporating a substantially larger number of smart contracts, not only from
Ethereum but also from other leading blockchain platforms such as Binance Smart Chain and Solana.
This would ensure a more representative and reliable understanding of the smart contract development
landscape, enabling the analysis of a broader range of development and maintenance practices.

Beyond the dataset issue, there is also a noteworthy possibility to pull practical insights from the issue
reports themselves. Future directions should investigate the nature and timing of reported issues to
identify common error patterns, recurring feature requests, and the stages of the typical problem-solving
cycle.

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.

References

(1]
(2]

(3]

A. Di Sorbo, S. Laudanna, A. Vacca, C. A. Visaggio, G. Canfora, Profiling gas consumption in
solidity smart contracts, Journal of Systems and Software 186 (2022) 111193.

M. Pacheco, G. Oliva, G. K. Rajbahadur, A. Hassan, Is my transaction done yet? an empirical
study of transaction processing times in the ethereum blockchain platform, ACM Transactions on
Software Engineering and Methodology 32 (2023) 1-46.

G. Wood, et al., Ethereum: A secure decentralised generalised transaction ledger, Ethereum project
yellow paper 151 (2014) 1-32.

[4] J. Chen, X. Xia, D. Lo, J. Grundy, X. Yang, Maintenance-related concerns for post-deployed

[5]
(6]
(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

ethereum smart contract development: issues, techniques, and future challenges, Empirical
Software Engineering 26 (2021) 117.

P. Maidamwar, N. Chavhan, Blockchain technology: a review on architecture, security issues and
challenges, in: International Conference on IoT, 2023.

M. H. Miraz, M. Ali, Blockchain enabled smart contract based applications: Deficiencies with the
software development life cycle models, arXiv preprint arXiv:2001.10589 (2020).

W. Zou, D. Lo, P.S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng, Z. Chen, B. Xu, Smart contract development:
Challenges and opportunities, IEEE transactions on software engineering 47 (2019) 2084-2106.
N. Kannengiesser, S. Lins, C. Sander, K. Winter, H. Frey, A. Sunyaev, Challenges and common
solutions in smart contract development, IEEE Transactions on Software Engineering 48 (2021)
4291-4318.

G. A. Pierro, R. Tonelli, Analysis of source code duplication in ethreum smart contracts, in: 2021
IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE,
2021, pp. 701-707.

N. He, L. Wu, H. Wang, Y. Guo, X. Jiang, Characterizing code clones in the ethereum smart contract
ecosystem, in: Financial Cryptography and Data Security: 24th International Conference, FC 2020,
Kota Kinabalu, Malaysia, February 10-14, 2020 Revised Selected Papers 24, Springer, 2020, pp.
654-675.

G. Wu, H. Wang, X. Lai, M. Wang, D. He, S. Chan, A comprehensive survey of smart contract
security: State of the art and research directions, Journal of Network and Computer Applications
(2024) 103882.

M. Vaccargiu, S. Aufiero, S. Bartolucci, R. Neykova, R. Tonelli, G. Destefanis, Sustainability
assessment of ethereum developers issues and comments: Topic and network analysis, Preprint
(2025).

N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, Y. Smaragdakis, Madmax: Surviving out-of-gas
conditions in ethereum smart contracts, Proceedings of the ACM on Programming Languages 2
(2018) 1-27.

A. Lima, L. Rossi, M. Musolesi, Coding together at scale: Github as a collaborative social network,
in: Proceedings of the international AAAI conference on web and social media, volume 8, 2014,
pp. 295-304.

S. Duenas, V. Cosentino, G. Robles, J. M. Gonzélez-Barahona, Perceval: software project data
at your will, in: Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 1-4.
T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillere, J. Klein, Y. Le Traon, Got issues? who cares about it? a
large scale investigation of issue trackers from github, in: 2013 IEEE 24th international symposium
on software reliability engineering (ISSRE), IEEE, 2013, pp. 188-197.

E. Stlin, M. Sacakey, E. Tiizin, An empirical analysis of issue templates usage in large-scale
projects on github, ACM Transactions on Software Engineering and Methodology 33 (2024) 1-28.
Github.com, Trueblocks/trueblocks-core issue #3587, https://github.com/TrueBlocks/
trueblocks-core/issues/3587, 2024.

Github.com, Trueblocks/trueblocks-core issue #3914, https://github.com/TrueBlocks/
trueblocks-core/issues/3914, 2024.

https://github.com/TrueBlocks/trueblocks-core/issues/3587
https://github.com/TrueBlocks/trueblocks-core/issues/3587
https://github.com/TrueBlocks/trueblocks-core/issues/3914
https://github.com/TrueBlocks/trueblocks-core/issues/3914

[24]

[25]

Github.com, datachainlab/ethereum-ibc-relay-chain issue #41, https://github.com/datachainlab/
ethereum-ibc-relay-chain/issues/41, 2024.

Github.com, kryptoklob-deprecated/zethr-issue-tracker issue #2, https://github.com/
kryptoklob-deprecated/Zethr-Issue-Tracker/issues/2, 2018.

Github.com, larvalabs/cryptopunks issue #3, https://github.com/larvalabs/cryptopunks/issues/3,
2024.

Github.com, Nibiruchain/nibiru issue #2252, https://github.com/NibiruChain/nibiru/issues/2252,
2025.

Github.com, Nibiruchain/nibiru issue #2158, https://github.com/NibiruChain/nibiru/issues/2158,
2025.

Github.com, aragon/aragon-network-token issue = #23, https://github.com/aragon/
aragon-network-token/issues/23, 2020.

Github.com, larvalabs/cryptopunks issue #31, https://github.com/larvalabs/cryptopunks/issues/31,
2024.

Github.com, radicle-dev/radicle-contracts issue #130, https://github.com/radicle-dev/
radicle-contracts/issues/130, 2021.

Github.com, becnmy/mexa issue #14, https://github.com/bcnmy/mexa/issues/14, 2020.
Github.com, balancer/exchange-proxy issue #3, https://github.com/balancer/exchange-proxy/
issues/3, 2020.

Github.com, bokkypoobah/bokkypoobahstokenteleportationservicesmartcontract issue #10, https:
//github.com/bokkypoobah/BokkyPooBahsTokenTeleportationServiceSmartContract/issues/10,
2018.

Github.com, hexoul/ether-stealer issue #2, https://github.com/hexoul/ether-stealer/issues/2, 2018.
Github.com, bokkypoobah/bokkypoobahstokenteleportationservicesmartcontract issue #8, https://
github.com/bokkypoobah/BokkyPooBahsTokenTeleportationServiceSmartContract/issues/8, 2018.
Github.com, larvalabs/cryptopunks issue #19, https://github.com/larvalabs/cryptopunks/issues/19,
2024.

https://github.com/datachainlab/ethereum-ibc-relay-chain/issues/41
https://github.com/datachainlab/ethereum-ibc-relay-chain/issues/41
https://github.com/kryptoklob-deprecated/Zethr-Issue-Tracker/issues/2
https://github.com/kryptoklob-deprecated/Zethr-Issue-Tracker/issues/2
https://github.com/larvalabs/cryptopunks/issues/3
https://github.com/NibiruChain/nibiru/issues/2252
https://github.com/NibiruChain/nibiru/issues/2158
https://github.com/aragon/aragon-network-token/issues/23
https://github.com/aragon/aragon-network-token/issues/23
https://github.com/larvalabs/cryptopunks/issues/31
https://github.com/radicle-dev/radicle-contracts/issues/130
https://github.com/radicle-dev/radicle-contracts/issues/130
https://github.com/bcnmy/mexa/issues/14
https://github.com/balancer/exchange-proxy/issues/3
https://github.com/balancer/exchange-proxy/issues/3
https://github.com/bokkypoobah/BokkyPooBahsTokenTeleportationServiceSmartContract/issues/10
https://github.com/bokkypoobah/BokkyPooBahsTokenTeleportationServiceSmartContract/issues/10
https://github.com/hexoul/ether-stealer/issues/2
https://github.com/bokkypoobah/BokkyPooBahsTokenTeleportationServiceSmartContract/issues/8
https://github.com/bokkypoobah/BokkyPooBahsTokenTeleportationServiceSmartContract/issues/8
https://github.com/larvalabs/cryptopunks/issues/19

	1 Introduction
	2 Related work
	3 Objectives and Study Design
	3.1 Experimental dataset
	3.2 Analysis methodology

	4 Results
	4.1 Smart contracts developed on GitHub and issue report adoption
	4.2 Label analysis and issue characteristics in smart contract-related projects

	5 Conclusion
	5.1 Limitations and Future Work

