CEUR-WS.org/Vol-4105/short07.pdf

CEUR
E Workshop
Proceedings

published 2025-11-24

Certified Solutions on Blockchain to Computationally
Difficult Optimization Problems

Alberto Leporati

University of Milan-Bicocca, Department of Informatics, Systems and Communication, Edificio U14 (ABACUS), Viale Sarca 336,
20126 Milano, Italy

Abstract

Blockchains allow to store in an unalterable and secure way different types of information. Because this
information can be associated with the precise moment (timestamp) at which it is stored, it is sometimes referred
to as notarization, or certification. In this paper we propose to use blockchains to store in a certified way solutions
to computationally difficult optimization problems. Specifically, we show how it is possible to encode within
a smart contract the verification of a proposed solution and its subsequent storage. After discussing how the
proposed framework works, and the security assumptions made, we consider as use cases two famous NP-hard
problems: Knapsack and Max-SAT, which are representative of a large class of optimization problems that
arise in the real world. For each of the two cases we briefly discuss the peculiarities of the corresponding smart
contract, showing how it fits in the general framework.

Keywords
Blockchain, Computationally Difficult Optimization Problems, Certified Storage of Solutions

1. Introduction

A blockchain is a decentralized ledger shared between nodes on a computer network. These nodes
work together to maintain a secure, immutable and decentralized record of data.

Typical uses of blockchains include supply chain management, document notarization, decentralized
finance (DeFi) applications, and tokenization of digital and physical assets. Every application needs
a blockchain with certain characteristics, and in fact there are different types of blockchains. Thus, a
blockchain can be public or private, depending upon whether its contents is publicly available or not.
Furthermore, a blockchain can be either permissionless or permissioned.

Another common use of blockchains is the notarization (also certification) of documents. The idea is
to demonstrate that a digital document existed in exactly that form at a given time. Since the block size
does not allow documents to be saved directly in the blockchain, the document file is usually saved on
a decentralized file system, such as IPFS’, while the document’s cryptographic hash fingerprint is saved
on the blockchain. A natural next step is the certification of processes, or workflows. In these cases the
blockchain is used to certify the correct execution of the processing phases, collecting information and
documents both from the machinery and from the people involved in the process.

In this paper we assume that a research group, or a company, has to solve a computationally difficult
optimization problem. This problem can be related for example to the optimization of transport lines
or optimal delivery of goods, the search for a new medicine, optimal scheduling of processes, DNA
alignment, etc. In any case, we assume that finding the optimal solution can bring great advantages to
the people who proposed the problem, such as the release of additional research funds, competitiveness
on the market, or other. Therefore, we assume that the team who proposes the problem is willing to
pay a reward to the person who finds the optimal solution. Since often even a suboptimal solution can
still be enough, the reward will be paid to whoever found the best solution among those proposed, i.e.
the one that has the greatest value of the objective function to be maximized (or the lowest value, in
case the objective function must be minimized).

DLT2025: 7th Distributed Ledger Technology Workshop, June, 12-14 2025 — Pizzo, Italy

Q alberto.leporati@unimib.it (A. Leporati)

® 0000-0002-8105-4371 (A. Leporati)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://ipfs.tech/


mailto:alberto.leporati@unimib.it
https://orcid.org/0000-0002-8105-4371
https://creativecommons.org/licenses/by/4.0/deed.en
https://ipfs.tech/

Thus, we propose to use a blockchain to store in a certified way the solutions of the problem. The
proposer of the problem publishes a smart contract that checks the validity of submitted solutions,
and stores valid solutions along with a timestamp. The contract accepts proposed solutions for a
predefined submission time, after which the contract owner rewards the one who submitted the best
solution. To clarify how this mechanism can be implemented, in the following we consider two examples
of computationally hard optimization problems: KNapsack and Max-SAT, which are representative
of a large class of real-world optimization problems. For each of the two cases we discuss how the
corresponding smart contract is made, and how it fits into the general framework.

Using a blockchain, rather than a centralized application managed by the problem proposer, makes
the entire process more transparent and robust against fraud. In fact, anyone will be able to examine the
proposed solutions stored in the state of the smart contract, and this information cannot be modified.
We will also discuss some security issues and assumptions made to mitigate possible attacks, the most
important of which is solution stealing: when a proposed solution is sent to the public mining pool, a
dishonest user can see it and propose the same solution with a higher fee for the miner/validator.

The rest of the paper is structured as follows. In Section 2 we describe the design and operation of
the proposed framework, and we discuss some security concerns as well as possible mitigations. In
Section 3 we present the smart contracts that deal with the KNapsack and the Max-SAT optimization
problems. In Section 4, we discuss some related works found in the literature. Finally, Section 5 draws
conclusions and offers some perspectives for future work.

2. The Proposed Framework

In this section we describe how the proposed framework is made and how it works. Let us clarify that
the implementation of the framework is still in its early stages; therefore, albeit presenting a possible
software architecture for the system, we will focus our attention on smart contracts, which are the
most relevant parts of the system in the context of blockchains. We assume that an Ethereum-based
blockchain is used, and that smart contracts are written in the Solidity language.

Assume that a research group, or a company, has to solve some real-world computationally difficult
optimization problem, for which checking a proposed solution is much less computationally expensive
than finding an optimal solution (this is the typical situation when considering NP-hard optimization
problems). Since even suboptimal solutions can be very valuable to the research team, they are willing
to reward anyone who provides the best among submitted solutions. As a first step, the research group
formalizes the optimization problem, defining precisely how its instances are made and how the cost
function that associates an integer or real value to each admissible solution is defined. Then, they write
a smart contract that checks whether a submitted solution is admissible (i.e., valid), and calculates
its cost. The smart contract also stores the submitted solution in its state if it has a better cost value
than the solutions proposed so far. The smart contract will contain the data structures and variables
needed to represent the problem instance and the submitted solutions. The variables containing the
problem instance will be assigned during the creation of the smart contract via the constructor()
function. The submitted solutions will be contained in the array historyOfBestSolutions, which
will be populated over time during the expected submission period. This period can be closed (and
never reopened) by the contract owner by calling the closeSubmissions () functions, that sets the
value of the boolean variable submissionsOpen to false. Anyone can check whether we are in the
submission period by calling the areSubmissionsOpen() function.

A solution can be submitted using the submitSolution() function, which is the core of the smart
contract. The precise logical flow of this function is illustrated in Algorithm 1. It takes as input a
proposed solution and returns true if it is valid and better than the solutions stored so far; otherwise,
it returns false. Moreover, in the former case it appends the proposed solution at the end of the
historyOfBestSolutions array, and emits the SolutionFound() event. In this way, the smart
contract stores the sequence (history) of increasingly better solutions submitted to it over time. For
each of these solutions, also the timestamp and the address of the proposer are stored. Note that



checkvalidity() is an independent function, that can be called by anyone to check whether a
proposed solution is valid; it returns a Boolean value, and does not modify the state of the contract.

Algorithm 1 Pseudo-code of the submitSolution() function
Input: A proposed solution
Output: true if solution is valid and better than currently known solutions, false otherwise

1: function sUBMITSOLUTION(solution)

2 if submissions are not open then return false

3 if not checkvalidity(solution) then return false

4 currently_best < last solution stored in historyOfBestSolutions array
5: if value(solution) > value(currently_best) then

6 append solution to the end of historyOfBestSolutions

7 emit SolutionFound() event
8 return true
9

: else
10: return false
11: end if

12: end function

Finally, the smart contract contains some helper functions. The getNumberOfSolutions(),
getStoredSolution(), and getBestSolution() functions allow one to get the number of so-
lutions stored in the contract, to get the details of a specified (through its index in the historyofBest -
Solutions array) solution, and to get the details of the best among the stored solutions (that is, the
last one in the historyOfBestSolutions array), respectively. If no such solutions exist, because the
specified index in the historyOfBestSolutions array is out of range, or because the array is empty,
a dummy empty solution is returned.

Let us now look at some potential security issues, and how we can try to mitigate them. If the
smart contract is published on a public permissionless blockchain, such as Ethereum, it is subject to
the solution stealing attack: since in this type of blockchains all transaction proposals end up in the
public mining pool and are visible to all miners, it may happen that a dishonest miner tries to include in
the block they are building their own transaction containing the solution to the optimization problem,
instead of the transaction proposed by the user who found it. This attack can also be mounted by any
user who is able to look at the content of the mining pool: when they see a solution, they propose a
similar transaction but with a higher fee for the miner. While a complete solution to this problem is
difficult and yet to be found, to mitigate this attack we suggest that the proposer of the problem rely on
an existing permissioned blockchain, or create their own. In the former case, the team will pay the use
of the blockchain to the consortium that operates it. In the latter case, the research team should ensure
a good level of decentralization, installing a node at each of the partners participating in the project.
This should not be a problem in the case of European projects, for example, where a distribution of
competences between partners from several different countries is foreseen.

If the research group sets up its own permissioned blockchain, it will also run a certification authority,
which allows those who want to participate in solving the problem to register and receive the credentials
needed to submit the solutions to the smart contract. The blockchain will be used as a distributed
ledger, using proof-of-authority (PoA) as a consensus algorithm. Usually, information is written to the
blockchain very quickly, since it is not necessary to wait for miners or validators to reach consensus
and authorize the transactions. This mitigates the possibility that other users look at the mining pool
and steal the proposed solutions. However, a dishonest node might still be able to steal the solutions
it is supposed to validate. We believe that there is no technical solution to this problem; instead, the
nodes that make up the consortium that manages the permissioned blockchain could sign a legal
contract stating that they cannot propose solutions, and that they commit to pay damages in case of
incorrect behavior. The same consideration applies to dishonest uses of the certification authority, such
as revoking a user’s credentials so they can’t submit solutions. Clearly, this mitigation is not possible in



the case of adopting a permissionless blockchain.

A well known problem of permissioned blockchains is that they are completely controlled by the
consortium. This means that if the consortium members agree, they can modify the content of the
blocks as they want. This problem is especially felt for small consortia. An often adopted solution
to prevent this possibility is to save the cryptographic hash of the last block of the blockchain on
a well-known public blockchain, such as Ethereum or Polygon?, at established time intervals. The
exact amount of time will be established by the consortium, considering that the more frequent the
notarization on the public blockchain, the more trust is instilled in users (but the more expensive
the operation). Clearly, in this way the solutions remain confined to the permissioned blockchain;
the notarization on the public blockchain only serves to demonstrate that the data present on the
permissioned blockchain has been altered, but does not allow for its recovery. A more expensive but
still more transparent solution would be to publish a nearly identical copy of the smart contract on the
permissionless blockchain. The differences between this copy and the original smart contract would be
the following: (1) only the owner of the contract can save the proposed solutions, and (2) in doing so,
they would also save the address of the user who proposed the solution. In this way, every time a new
solution is saved in the smart contract on the permissioned blockchain, the owner of the contract would
save a copy of the same solution on the permissionless blockchain. This would allow public scrutiny of
the entire sequence of proposed solutions. Let us note, however, that running the submitSolution()
and checkvalidity () functions on a permissionless blockchain may be expensive in terms of gas
used. This is another reason why we believe a permissioned blockchain - in which gas is not used -
may be more appropriate.

Notice that the solution theft issue is similar to frontrunning and MEV (Maximally Extractable Value)
in financial uses of blockchains [1]. To mitigate these problems (or, at least, to democratize them),
infrastructures such as flashbots® have been proposed for Ethereum. In this case, proposed solutions
do not go through the public pool but are sent directly to the block proposer. However, dishonest
block proposers may still steal solutions; furthermore, there are numerous block proposers within the
infrastructure, and this makes it more difficult to ensure that invocations to the submitSolution()
function are executed rapidly and in the expected order.

To simplify the use of the framework by users, the research team could develop a web application
that allows users to register and create an account. Inside the account it would be possible for the user
to submit new solutions and see which solutions they have submitted, at what time, and what is the
value of the corresponding cost function. For greater transparency, the account may also contain direct
links to the blockchain transactions corresponding to the submitted solutions. These links may be used
with any blockchain explorer to inspect the content of the transactions. The account could also contain
contact information for the delivery of the rewards, and the possibility to revoke the credentials used to
call the smart contract functions, and/or request the generation of new credentials, if the user believes
their credentials have been compromised. The web application could adopt the typical architecture of
decentralized applications, which consists of the following elements:

« The user interface (frontend), that communicates with the backend via REST APIs. It could be
implemented using, for example, the React library”.

« The backend, that contains the operating logic, manages the information stored in the central-
ized database, exposes the REST APIs to the frontend, and manages access to the blockchain
and its smart contracts. It could be implemented using the Sails Javascript MVC framework>.
Communication between the APIs and the blockchain could occur through the Web3.js Ethereum
Javascript library®.

*https://polygon.technology/
*https://www.flashbots.net/
*https://react.dev/
Shttps://sailsjs.com/
Shttps://web3js.org/


https://polygon.technology/
https://www.flashbots.net/
https://react.dev/
https://sailsjs.com/
https://web3js.org/

_

= O 0 0NN U R W N =

« A centralized database, such as MongoDB’, in which all information that should not be recorded
on the blockchain—including the above mentioned account information—is stored.

« A permissioned version of the Ethereum blockchain, such as Quorum?®.

+ A public blockchain (such as Ethereum or Polygon, on which the hash fingerprint of the last

current block of the permissioned blockchain will be notarized at regular time intervals.

We conclude this section by noting that a single permissioned blockchain can handle many different
optimization problems, each one associated with the corresponding smart contract. It is therefore not
necessary to build a different blockchain for each problem to be solved.

3. Two Examples

To give a more precise idea of how our proposed framework works, we consider two NP-hard optimiza-
tion problems which are representative of a large class of real-world optimization problems: KNAPSACK,
and Max-SAT. For each of these problems we illustrate how instances and solutions can be represented
within the smart contract, and how the validity of the proposed solutions can be verified.

The complete source code of the two smart contracts can be found on https://github.com/alepo42/
CertifiedSolutions/. Both contracts have been implemented and tested using the Ethereum Remix IDE’;
precisely, using the Remix Desktop application version 1.0.8-insiders for MacOS Sequoia 15.4.1, running
on a MacBook Air M2 laptop with 16 GB of RAM. The Solidity compiler used is version 0.8.26.

In the KNAPSACK optimization problem, there are n items — each with its own value v; and weight w;
- and a knapsack of maximum weight capacity . Each item can be entirely put into the knapsack, or
left out (indeed, this variant is sometimes called the 0-1 KNaPsSACK problem). The goal is to choose the
items to put in the knapsack, in such a way as to maximize their total value, without exceeding the
capacity of the knapsack itself. The formal definition of the problem is therefore the following:

« Name: KNAPSACK

« Instance: a set of n items numbered from 1 up to n, each with a weight w; and a value v;, along
with a maximum weight capacity W.

« Admissible solution: a subset of the n items such that " ; w;z; < W and z; € {0, 1}.

« Goal: maximize ) ;" | v;x;.

Here z; represents the number of copies (either 0 or 1) of item ¢ to include in the knapsack. A candidate
solution can then be represented either as the list of indices (a subset of {1, 2, ..., n}) of the items to be
inserted into the knapsack, or as the binary vector (1, z2, ..., zy). In this paper, we adopt the former
representation. In any case, the cost function to be maximized is ) ;" ; v;z;, subject to the constraint
Z?:l W; X5 < wW.

The weight and value of each instance item are stored in a struct Item. The items array thus
contains the weights and values of all the instance items. Knapsack capacity W, instead, is stored in
the integer maxweight variable, as shown in the following code snippet.

// Structure to represent an object

struct Item {

uint256 weight;
uint256 value;

3

// Array of available items
Item[] public items;

// Maximum knapsack capacity
uint256 public maxWeight;

"https://www.mongodb.com/
*https://github.com/ConsenSys/quorum
*https://remix.ethereum.org


https://github.com/alepo42/CertifiedSolutions/
https://github.com/alepo42/CertifiedSolutions/
https://www.mongodb.com/
https://github.com/ConsenSys/quorum
https://remix.ethereum.org

_
= O 0 0NN U R W DN =

_
= O O 0NN U RN -

NN DN DNDDNDNDNDDLD = = = s = = = =
N U RO R O 000NN R W

The weights w; and values v; of the instance items, and the maximum capacity of the backpack W,
are specified by the owner of the smart contract when it is created. The value of W is simply indicated
as an integer, while the weights and values of the elements are specified as a tuple. For example, the
tuple [[10, 60], [20, 100], [30, 120]] indicates that the instance contains three elements, having weights
w1 = 10, we = 20, w3 = 30 and values v; = 60, vo = 100, and v3 = 120. All these values are stored
in the above mentioned smart contract variables by the constructor () function, which also sets the
owner’s address and the Boolean flag submissionOpen to true, indicating that candidate solutions
can be accepted.

The solutions are stored in the smart contract state in the following format:

// Structure to represent a solution
struct BestSolution {

uint256[] solutionItems;

uint256 solutionvalue;

uint256 solutionWeight;

uint256 timestamp;

address senderAddress;

// History of best solutions
BestSolution[] public historyOfBestSolutions;

where solutionItems is an array containing the indices (a subset of {1,2,...,n}) of the items that
compose the solution, solutionvalue is the sum of the values of these items, solutionweight is
their total weight, timestamp is the block timestamp indicating the moment of time in which the
solution has been submitted, and senderAddress is the address of the user who proposed the solution.
All submitted solutions are stored in the historyOfBestSolutions array.

The checkvalidity () function can be used to verify that a proposed solution is valid, i.e, that it
satisfies the following conditions: (1) all indices of the proposed subset of {1,2, ..., n} are different, and
(2) the total weight of the items does not exceed knapsack capacity. If the presented solution is valid,
the function returns the triple (true, totalvalue, totalwWeight), where true indicates validity,
and totalvalue and totalWeight are the sum of values and weights of the items, respectively. On
the other hand, if the presented solution is not valid, the triple (false, 0, 0) is returned.

// Function to check the validity of the proposed solution

function checkvalidity(uint256[] memory _solution) public view returns (bool, uint256, uint256) {
uint256 totalweight = 0;
uint256 totalvalue = 0;

// All the indices of the proposed solution must be different
// Otherwise, return false
for (uint256 i = 0; i < _solution.length; i++) {
for (uint256 j = i+l; j < _solution.length; j++) {
if (_solution[i] == _solution[j]) {
return (false, 0, 0);
}
}
}

// Computes the total weight and value of the proposed solution
for (uint256 i = 0; i < _solution.length; i++) {

// If one of the indices is not valid, return false

if (_solution[i] >= items.length) {

return (false, 0, 0);

}

totalweight += items[_solution[i]].weight;

totalvalue += items[_solution[i]].value;
}
// If the total weight exceeds maximum capacity, return false
if (totalweight > maxWeight) {

return (false, 0, 0);

}



28
29
30
31

// At this point, we have a valid solution, and we return its total value
// and weight
return (true, totalvalue, totalWeight);

}

The submitSolution() function is, together with the above checkvalidity() function, the
core of the smart contract, since it allows users to submit their proposals for solving the optimization
problem. It takes as input a proposed solution, as usual in the form of a subset of {1,2,...,n}, and
returns true if it is valid and better than the solutions stored so far; otherwise, it returns false. Due
to space limitations, we do not report the code of the function here, which however implements the
logic described in the pseudo code of Algorithm 1.

As another example of optimization problem we consider MAx-SAT, in which an assignment to the
Boolean variables must be found that maximizes the number of satisfied clauses. Formally, the Max-SAT
problem is defined as follows:

« Name: MAX-SAT

« Instance: a Boolean formula ¢, built over a set of n Boolean variables {x1, 2, . .., z, }, written in
conjuntive normal form. Thatis, ¢ = C1 AC2A. .. ACy, , whereeach C; = (X;, VX, V... VX, )
is a clause and each Xl-j is a literal, i.e., a variable or the negation of a variable. Without loss of
generality, we can assume that the number of literals in each clause is between 1 and n, since no
clause should contain repetitions of the same variable, or a variable and its negation.

+ Admissible solution: an assignment to the Boolean variables x1, z2, . . ., Zn.

+ Goal: maximize the number of clauses of ¢ that are satisfied, that is, that are made true by the
assignment.

To store an instance, this time we simply list all the clauses of the formula, where each clause is a
list of literals. Each literal is represented as a positive integer number in the range [1,...,n] ifitis a
variable, or as a negative number in the range [—n, ..., —1] if it is a negated variable. So, for example,
the Boolean formula ¢ = (x1 V 22) A (mx1 V a3) A (22 V ) is represented as [[1, 2], [—1, 3], [2, —3]].
The integer variable numberofvariables contains the number n of variables upon which the instance
formula is defined, and is computed by the constructor() function while storing the list of clauses
in the formula array.

The solutions are stored in an array whose elements are made up of a dedicated struct, that contains
an assignment (represented as a list of 0 and 1), the number of clauses satisfied by such an assignment,
the block timestamp, and the address of the user who proposed the solution. The checkvalidity ()
function is used to verify that the proposed assignment is valid, i.e, it is a list containing n elements
equal to 0 or 1. Also in this case, the submitSolution() function strictly follows the logic illustrated
in Algorithm 1. Finally, the helper functions are exactly the same as the ones that compose the smart
contract for the KNAPSACK problem.

Due to space limitations, we cannot enter into further details. We refer the interested reader to the
above mentioned GitHub repository, where the source code of the smart contracts can be found.

4. Some Related Works

By conducting a literature search, we discovered that we are not the first to have had the idea of using a
smart contract to store the solution of computationally difficult problems. In [2] (an unpublished short
note) the authors propose a framework, named CRICK, for incentivizing and verifying work on NP-
complete problems in a fully decentralized manner. The main idea is to issue a token as a reward for the
submission of valid improvements to existing solutions and updating the store of solutions accordingly.
The framework uses the decentralized storage network Swarm'?, both to store the (publicly available)
datasets related to the problems and the database of proposed solutions. In the Crick framework,
each time a better solution is proposed than those found so far, a reward token is emitted. This makes

Phttp://swarm-gateways.net/bzz:/theswarm.eth/


http://swarm-gateways.net/bzz:/theswarm.eth/

it possible to perform the so-called Bubka attack'!, whereby a user could submit increasingly better
solutions, specifically to maximize the number of reward tokens obtained. This attack is not possible
in our framework, as a reward will be given only to the one user who has proposed the best solution
when the submission period has ended.

The work just cited is the only one that comes close to the proposal made in this paper. Other works
involve solving computationally hard problems by incorporating them into the work done by miners.
So, for example, PRIMECOIN'? proposes a new type of PoW consensus protocol based on searching for
prime numbers, CURECOIN'® asks clients to perform protein folding tasks, and Coinamr [3] proposes
a modification to PoW that includes DNA alignment problems. On a similar line [4] and [5] propose
variants of the PoW consensus algorithm that reward blockchain miners for using computational
resources to solve NP-complete puzzles and optimization problems of scientific interest. Finally, in [6]
the authors present Hybrid Mining, a mining protocol that combines solving real-world instances of
NP-complete problems with Hashcash mining. Any node in the P2P network can submit a problem,
together with a reward for its solution; then, every other node of the network can add a new block to
the blockchain by either solving a submitted problem or taking part in standard Hashcash PoW.

5. Conclusions and Directions for Future Work

We proposed a blockchain-based framework for the certification of solutions to computationally hard
problems. Focusing in particular on smart contracts, we showed how to represent the instances and
solutions of two NP-hard optimization problems: KNaPsack and Max-SAT.

A clear direction for future work is to perform an extensive evaluation about the scalability of the
proposed framework, in terms of gas used, when increasingly large instances of NP-hard optimization
problems are considered. Moreover, a difficult and important issue to face is that of stealing solutions,
and executing calls to the submitSolution() function in the expected order. Another direction
for future work is to implement the entire web application, and test it with a set of users. It would
also be interesting to write software that helps research teams design smart contracts associated with
optimization problems. Such software would specify problem instances using a mathematical formalism,
and output the Solidity code of the smart contract.

Declaration on Generative Al

The author did not use any Generative Al tools.

References

[1] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, A. Juels, Flash Boys 2.0:
Frontrunning, Transaction Reordering, and Consensus Instability in Decentralized Exchanges, 2019.
URL: https://arxiv.org/abs/1904.05234.

[2] C. Oliver, A. Ricottone, P. Philippopoulos, Proposal for NP-Complete Problem Refinement Smart
Contract, https://pphili.github.io/misc/crick.html, 2017. Accessed: 2025-04-18.

[3] A. M. Ileri, H. I. Ozercan, A. Gundogdu, A. K. Senol, M. Y. Ozkaya, C. Alkan, Coinami: A Cryptocur-
rency with DNA Sequence Alignment as Proof-of-work, 2016. URL: https://arxiv.org/abs/1602.03031.

[4] C.G.Oliver, A. Ricottone, P. Philippopoulos, Proposal for a fully decentralized blockchain and proof-
of-work algorithm for solving NP-complete problems, 2017. URL: https://arxiv.org/abs/1708.09419.

[5] P.Philippopoulos, A. Ricottone, C. G. Oliver, Difficulty Scaling in Proof of Work for Decentralized
Problem Solving, Ledger 5 (2020). doi:10.5195/1ledger.2020.194.

"This attack is named after Ukrainian pole vaulter Sergey Bubka, who repeatedly broke his own records by small margins to
claim a new prize each time.

Zhttps://primecoin.io/

Bhttps://curecoin.net/


https://arxiv.org/abs/1904.05234
https://pphili.github.io/misc/crick.html
https://arxiv.org/abs/1602.03031
https://arxiv.org/abs/1708.09419
http://dx.doi.org/10.5195/ledger.2020.194
https://primecoin.io/
https://curecoin.net/

[6] K. Chatterjee, A. K. Goharshady, A. Pourdamghani, Hybrid mining: exploiting blockchain’s
computational power for distributed problem solving, in: Proceedings of the 34th ACM/SIGAPP

Symposium on Applied Computing, SAC *19, ACM, New York, NY, USA, 2019, p. 374-381. doi:10.
1145/3297280.32973109.


http://dx.doi.org/10.1145/3297280.3297319
http://dx.doi.org/10.1145/3297280.3297319

	1 Introduction
	2 The Proposed Framework
	3 Two Examples
	4 Some Related Works
	5 Conclusions and Directions for Future Work

