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Abstract
Modern automotive systems are evolving into complex cyber-physical platforms, where traditional fixed-policy
fault recovery mechanisms prove insufficient against sophisticated faults and cyber-attacks. This work presents
an anomaly detection framework for RISC-V-based automotive systems, combining Hardware Performance
Counters (HPC) with additional hardware metrics to improve detection accuracy under realistic conditions. The
methodology is validated by running FreeRTOS workloads on a full-system RISC-V architecture with controlled
fault injection using the CHAOS framework. A comparative analysis of sequence-aware and classical machine
learning models demonstrates that integrating temporal data significantly enhances detection, with the GRU-
Autoencoder showing the best trade-off between performance and computational efficiency for safety-critical
scenarios.
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1. Introduction

The automotive industry’s rapid evolution toward sophisticated cyber-physical systems has exposed
critical vulnerabilities in conventional safety architectures. Modern vehicles integrate numerous
Electronic Control Units (ECUs) within complex networks, creating attack surfaces that traditional
fixed-policy recovery mechanisms cannot adequately address [1]. This paradigm shift necessitates the
development of adaptive, learning-based resilience frameworks that can dynamically respond to both
accidental failures and deliberate security breaches. Contemporary automotive systems must comply
with stringent safety standards, particularly ISO 26262, which establishes comprehensive guidelines for
Functional Safety (FS) implementation across Electrical and Electronic (E/E) systems [2, 3]. However,
the increasing complexity of these systems, coupled with the adoption of emerging technologies such as
RISC-V instruction set architectures [4], presents both opportunities and challenges for safety-critical
applications. While RISC-V offers enhanced flexibility and performance monitoring capabilities, it also
introduces novel attack vectors and failure modes that require innovative detection methodologies.

Building upon the foundational work presented in [5], which demonstrated the feasibility of anomaly
detection in RISC-V-based automotive systems through Hardware Performance Counters (HPC) analysis,
this research addresses several critical limitations in the current state-of-the-art. The previous approach,
while effective in detecting behavioral anomalies through artificial intelligence techniques applied to
HPC data, relied on a limited set of performance metrics and synthetic test environments that may not
accurately reflect real-world automotive operational conditions.

This investigation advances the field by introducing a comprehensive anomaly detection framework
that incorporates multiple complementary metrics beyond traditional HPC. The proposed methodology
is validated through realistic benchmark scenarios, including FreeRTOS execution environments, which
more accurately represent the operational characteristics of production automotive systems. Through
extensive experimental evaluation, this work demonstrates enhanced detection capabilities and provides
practical insights for implementing robust anomaly detection systems in safety-critical automotive
applications.
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Figure 1: Comprehensive overview of the proposed framework.

2. Proposed Methodology

The framework logic has been presented and analyzed in [5]. At every Check Period (CP), the system
state is sent to a computing platform, which uses artificial intelligence models to analyze hardware
metrics in order to classify the execution status, as illustrated in Figure 1.

2.1. FreeRTOS Configuration

FreeRTOS is a lightweight, open-source real-time operating system kernel widely adopted in embedded
and automotive applications due to its minimal resource footprint and portability across heterogeneous
hardware platforms, including RISC-V. Through FreeRTOS, it becomes possible to analyze system
behavior in more realistically accurate environments, which is why it has been employed as the
operating system executing tasks for the purposes of this work. The selected tasks correspond to the
MiBench benchmarks [6] from the Automotive and Industrial Control suite, specifically BasicMath and
BitCount. The FreeRTOS application configured in this manner will be simulated in gem5 [7] to obtain
the hardware metrics necessary for this work.

2.2. Hardware metrics

In order to classify the execution status as normal or defective, this work employs HPC, following
established approaches in the literature [8, 9, 10, 11]. HPC are specialized registers that track various
microarchitectural events during program execution, providing low-overhead monitoring capabilities
for detecting anomalous behavior patterns. For the purposes of this work, a comprehensive set of RISC-
V performance counters is monitored, including basic execution metrics (𝑚𝑐𝑦𝑐𝑙𝑒, 𝑚𝑡𝑖𝑚𝑒, 𝑚𝑖𝑛𝑠𝑡𝑟𝑒𝑡) and
specialized hardware performance events covering instruction execution patterns, memory subsystem
behavior, cache performance, and branch prediction accuracy (𝑚ℎ𝑝𝑚𝑐𝑜𝑢𝑛𝑡𝑒𝑟4 − 5, 𝑚ℎ𝑝𝑚𝑐𝑜𝑢𝑛𝑡𝑒𝑟7 −
15, 𝑚ℎ𝑝𝑚𝑐𝑜𝑢𝑛𝑡𝑒𝑟22, 𝑚ℎ𝑝𝑚𝑐𝑜𝑢𝑛𝑡𝑒𝑟27 − 31). These counters provide detailed insights into arithmetic
operations, load/store instructions, cache misses, Translation Lookaside Buffer (TLB) performance, and
pipeline behavior. However, the exclusive use of HPC may not be sufficient to fully characterize an
execution. To test the effectiveness of machine learning models, a secondary set of metrics is introduced,
representing different aspects of the system including cache hierarchy performance, memory controller
behavior, branch prediction statistics, instruction throughput, and overall system utilization patterns.
The secondary metrics that are most suitable for integration into the system have been extracted
through a comprehensive framework that combines four complementary feature selection methods via
an ensemble approach. This framework incorporates neural attention weights derived from custom
self-attention layers, permutation importance through systematic feature shuffling, mutual information
for statistical feature-target dependencies, and cross-dataset stability via bootstrap sampling analysis.
The complete mechanism of this system will not be discussed in detail in this work; however, it is



pio

system

HiFive platform

system_port

cpu_side_ports default mem_side_ports

SystemXBar membus

IOXBar iobus

bridge

mem_cntrls

RiscvO3CPU

dcache_port

icache_port

badaddr_responder

mem_side_ports

cpu_side_portscpu_side_port mem_side_port

port plic GenericRiscvPciHost RiscvRTC RiscvUart8250

clint

pio pio

pio

pio

int_pin

int_pin

Figure 2: gem5 configuration overview.

inspired by the methodology presented in [12].

2.3. CHAOS

The concrete evaluation of normal or defective execution classification necessitated the use of a fault
injector. The Controlled Hardware fAult injectOr System (CHAOS) [13] addresses this need by enabling,
through its modular structure, the modeling of faults in CPU registers, cache memory hierarchy, and
main memory. CHAOS is a fault injector specifically designed for gem5, and its distinctive feature lies
in its modular and open-source nature. The system is organized into three different modules, which
offer the ability to inject faults into: CPU registers (CHAOSReg), cache hierarchy (CHAOSCache), and
main memory (CHAOSMem). All Instruction Set Architectures (ISAs) and CPU models supported by
gem5 are fully compatible with CHAOS. CHAOS provides comprehensive control over fault injection
parameters, encompassing fault type and injection methodology, fault occurrence frequency, and
temporal distribution patterns. This granular control enables the configuration of highly flexible fault
injection campaigns capable of emulating arbitrary fault scenarios and systematically analyzing their
consequential impact on system behavior and reliability characteristics.

3. Experiments & Results

This section provides a comprehensive review of experiments designed to determine which machine
learning algorithm and hardware metrics set are most suitable for realistically accurate scenarios
compared to those presented in [5].

3.1. Experiments Setup

The simulated RISC-V system employs a FullSystem configuration based on the HiFive platform,
operating at 1GHz with a three-level cache hierarchy: 16KiB L1I, 64KiB L1D, and 256KiB L2, backed
by 2048MiB of DDR4 DRAM. An out-of-order (O3) processor in RV64 mode executes the workload with
a CP interval of 1,000,000 clock cycles, whose selection rationale is detailed in [5]. Figure 2 illustrates
the complete architectural setup adopted for the gem5-based simulation.
CHAOS has been configured to initiate fault injection at a randomly selected clock cycle at the

beginning of each simulation, with fault probabilities ranging from 1 × 10−1 to 1 × 10−8 and a random
number of bits to alter using a random fault mask.
Furthermore, to diversify FreeRTOS executions and present results based on increasingly realistic

scenarios, the parameters of BasicMath and BitCount tasks have been randomized at compile time.
Each fault-free simulation operates with a distinct parameter set.

3.2. Machine Learning Techniques

The identification of the most effective machine learning approach for anomaly detection necessitated
an analysis across multiple algorithmic paradigms. Eight distinct methodologies were evaluated:
Isolation Forest, K-means clustering, K-nearest neighbors (KNN), Local Outlier Factor (LOF), Support



Table 1
Accuracy and F1 Score of various Machine Learning Algorithms Using HPC Only.

Isolation Forest K-Means KNN LOF SVM LSTM-Aut GRU-Aut MLP
S NS S NS S NS S NS S NS S NS S NS S NS

Fault Free [%] 94.99 95.01 94.99 90.58 89.99 95.0 94.99 92.89 95.0 95.0 94.99 \\ 94.99 \\ 100.0 100.0
CPU Registers [%] 81.37 84.69 83.79 80.79 84.64 85.28 85.38 39.57 85.34 85.71 84.11 \\ 83.97 \\ 35.43 69.5
L1D Cache [%] 94.48 97.74 97.79 94.58 98.54 98.5 99.13 27.99 98.05 97.7 98.26 \\ 98.2 \\ 25.54 90.27
L1I Cache [%] 94.69 97.61 97.64 94.36 98.4 98.34 99.05 28.16 98.07 97.58 98.12 \\ 98.03 \\ 25.78 98.64
L2 Cache [%] 91.6 93.94 93.46 86.37 95.09 95.58 96.42 63.48 94.05 93.66 94.03 \\ 93.84 \\ 65.2 95.21

Main Memory [%] 30.0 35.51 30.9 32.18 30.49 34.66 32.44 37.58 31.81 35.67 31.41 \\ 31.33 \\ 30.67 35.46
Overall F1 Score [0-1] 0.8 0.82 0.82 0.79 0.82 0.83 0.84 0.05 0.83 0.82 0.83 \\ 0.83 \\ 0 0.6

Table 2
Accuracy and F1 Score of Various Machine Learning Algorithms on an Extended Set of Hardware Metrics.

Isolation Forest K-Means KNN LOF SVM LSTM-Aut GRU-Aut MLP
S NS S NS S NS S NS S NS S NS S NS S NS

Fault Free [%] 94.99 95.01 94.99 90.18 89.99 95.0 94.99 92.88 95.0 95.01 95.0 \\ 95.01 \\ 100.0 100.0
CPU Registers [%] 77.32 80.97 83.21 80.43 84.99 86.14 85.21 39.86 85.38 86.44 83.85 \\ 83.95 \\ 35.43 39.51
L1D Cache [%] 88.12 92.17 97.38 94.27 98.53 98.85 98.81 32.5 98.09 98.15 98.02 \\ 98.15 \\ 25.54 29.4
L1I Cache [%] 92.47 96.78 97.25 94.06 98.39 98.71 98.72 31.7 98.09 98.06 97.87 \\ 98.01 \\ 25.77 29.97
L2 Cache [%] 87.69 90.93 92.6 85.68 95.07 96.44 95.75 64.53 94.25 94.75 93.4 \\ 93.78 \\ 65.2 67.51

Main Memory [%] 28.35 33.99 57.15 56.56 71.72 85.01 77.65 37.6 59.2 73.14 59.31 \\ 71.22 \\ 30.67 35.26
Overall F1 Score [0-1] 0.77 0.79 0.87 0.83 0.9 0.93 0.92 0.11 0.88 0.9 0.88 \\ 0.9 \\ 0 0.01

Vector Machine (SVM), Long Short-Term Memory (LSTM) Autoencoder, Gated Recurrent Units (GRU)
Autoencoder, and the Multilayer Perceptron (MLP) architecture detailed in [14, 15, 16, 17]. This selection
reflects established practices within the field [14, 15, 16, 17], ensuring methodological alignment with
current research standards. Each algorithm was deployed in its one-class variant, a configuration
that enables comprehensive pattern recognition across varied operational conditions while facilitating
robust learning of nominal system behavior without requiring labeled anomalous examples during the
training phase.
The experimental dataset comprised 500 normal execution traces complemented by 14,000 syn-

thetically generated faulty instances. These defective samples were systematically created through
randomized fault injection across different temporal points and hardware abstraction layers within
the CHAOS framework, ensuring comprehensive fault space coverage. This unsupervised learning
approach allows the models to internalize the fundamental characteristics of correct system operation,
subsequently enabling detection of any deviation from expected behavior patterns. Consequently,
the trained models can identify novel anomalies without prior exposure to specific fault signatures,
demonstrating superior generalization capabilities compared to supervised approaches constrained by
predefined fault categories.
Table 1 summarizes the results obtained by exclusively leveraging HPC metrics as input features.

Each algorithm was evaluated in two distinct configurations: a sequenced (S) variant, where the input
consists of a temporal window of 14 consecutive multivariate HPC samples; and a non-sequenced (NS)
variant, where the input is limited to a single multivariate sample. Notably, certain models–such as
the LSTM-Autoencoder and GRU-Autoencoder–are inherently designed to process sequential data and
therefore cannot be applied in the non-sequenced setting. In addition, for each algorithm we analyzed
how detection accuracy varies depending on the specific architectural component affected by fault
injection. Overall, results indicate that, except for the LOF algorithm in its non-sequenced variant and
the MLP in its sequenced variant, most approaches achieve reasonably acceptable accuracy. However, it
is worth highlighting that none of the models shows satisfactory performance when faults are injected
into main memory, which remains the most challenging scenario.

To enhance detection performance in scenarios where faults are injected into the main memory, an
additional set of hardware metrics–introduced in Section 2.2–has been integrated into the analysis. The
resulting performance improvements are reported in Table 2. The data demonstrate that incorporating
additional hardware metrics beyond HPC alone yields comparable average accuracies across nearly all
experimental classes, with the notable exception of the non-sequenced MLP, which exhibits significant
performance degradation. However, this mechanism enables improved accuracy for faults injected into



main memory, resulting in satisfactory solutions. Contrary to the results obtained using only HPC
(Table 1), the present analysis with an extended set of metrics (Table 2) reveals a marked difference
between sequenced and non-sequenced configurations. This divergence can be attributed to the intrinsic
characteristics of the algorithms employed. Traditional machine learning algorithms–Isolation Forest,
K-Means, KNN, LOF, SVM, and MLP–were originally designed for static data processing and lack
inherent mechanisms for handling temporal sequences. When the number of features per sequence is
increased, these algorithms exhibit performance degradation in processing sequential inputs, as they
are unable to effectively capture temporal dependencies in the data. Conversely, algorithms based on
recurrent neural networks–LSTM-Autoencoder and GRU-Autoencoder–are specifically designed for
temporal sequence processing and demonstrate greater robustness in handling extended sequential data.
Their architecture enables the retention and utilization of previous temporal information, resulting in
more stable performance regardless of the data presentation modality. Among the solutions that best
adapt to the scope of the present work from an accuracy perspective are the KNN algorithms (both
sequenced and non-sequenced variants), LOF (sequenced version), SVM (non-sequenced version), and
the GRU-Autoencoder.

Given the stringent computational constraints inherent to automotive applications, the selection of
algorithmically efficient mechanisms becomes paramount. Consequently, the evaluation framework
must encompass not merely predictive accuracy but also the computational complexity profiles of can-
didate algorithms to ensure real-time feasibility in resource-constrained environments. The complexity
analysis reveals distinct computational signatures: KNN operates with 𝒪(𝑛 ⋅ 𝑑), complexity, where 𝑑
represents the dataset cardinality and 𝑛 the feature dimensionality. LOF demonstrates quadratic scaling
at 𝒪(𝑑2 ⋅ 𝑛), attributed to the intensive pairwise distance computations required for local density esti-
mation. In contrast, SVM exhibits 𝒪(𝑛 ⋅ 𝑣) complexity, with 𝑣 denoting the support vector cardinality—a
parameter typically orders of magnitude smaller than the full dataset. The GRU-Autoencoder exhibits a
complexity of 𝒪(𝐿 ⋅ (ℎ2 + ℎ ⋅ 𝑖)), where 𝐿 represents the sequence length, ℎ denotes the hidden state
dimension, and 𝑖 represents the input dimension. Given that in our case ℎ ≫ 𝑖, this expression simplifies
to 𝒪(𝐿 ⋅ ℎ2), since each GRU cell requires 𝒪(ℎ2) operations for the hidden-to-hidden transformations at
each time step, and this quadratic term dominates the linear input-to-hidden term 𝒪(ℎ ⋅ 𝑖).

The GRU-Autoencoder is favored over traditional methods such as KNN, LOF, and SVM for sequential
temporal data due to its capability to capture temporal dependencies and evolutionary patterns that
these conventional approaches, which rely on static local density estimation or geometric separation
principles, are inherently unable to detect. While KNN and LOF operate under the assumption of
point independence with computational complexity directly proportional to dataset size, and SVM,
despite also assuming point independence, achieves inference complexity dependent on support vectors
rather than full dataset size, the GRU-Autoencoder demonstrates superior scalability by operating with
complexity dependent on sequence length and embedding dimensionality, thereby achieving enhanced
computational efficiency for inference on sequential data where temporal anomalies necessitate a
sequence-aware methodology rather than conventional point-wise data analysis.

4. Conclusions

This work has presented an adaptive anomaly detection framework for RISC-V-based automotive
systems, addressing the limitations of traditional fixed-policy fault recovery by exploiting both HPC and
complementary hardware metrics. Through realistic simulations using FreeRTOS workloads and con-
trolled fault injection, we demonstrated that sequential models—particularly the GRU-Autoencoder—can
effectively capture temporal execution patterns, improving detection accuracy even in challenging
scenarios like faults injected into main memory. While classical methods such as KNN, LOF, and SVM
remain competitive, our results show that sequence-aware approaches offer a better balance between
accuracy and computational efficiency for safety-critical applications. As next steps, future work will
focus on integrating concrete fault mitigation and recovery strategies into the framework, moving from
pure detection to active resilience.
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