CEUR-WS.org/Vol-4106/short2.pdf

CEUR
E Workshop
Proceedings

published 2025-11-25

Bottom-Up Resource Orchestration in Edge Computing: A
Pod Profile-Aware Agent-Based Approach

Marija Gojkovi¢™?, Melanie Schranz?

! Alpen-Adria University, Klagenfurt, Austria
?Lakeside Labs GmbH, Klagenfurt, Austria

Abstract

Modern distributed systems face growing challenges in scheduling workloads across heterogeneous cloud-edge
infrastructures. Advanced pod orchestration techniques—pod cloning, dependency-aware scheduling, and parallel
pod processing—are crucial for improving resource utilization, scalability, and fault tolerance. Pod cloning
replicates workloads to handle spikes or failures, dependency management enforces correct task sequencing, and
Kubernetes-native parallelism distributes tasks across concurrent pods. Despite their benefits, these strategies
are seldom unified in adaptive, bio-inspired schedulers. This paper presents an emergent scheduler integrating
cloning, dependency resolution, and parallelism within a swarm intelligence framework based on the Artificial
Bee Colony (ABC) algorithm. Modeling the cluster as a multi-agent ecosystem, pods are treated as food sources
managed via ABC’s employed, onlooker, and scout phases. This enables decentralized decision-making that
dynamically adjusts cloning, enforces dependencies, and tunes parallelism in response to real-time cluster states.
Evaluated on a simulated edge-cloud testbed against random assignment, dependency-agnostic best-fit, and a
static ABC baseline, our scheduler achieves superior latency and deadline satisfaction rates.

Keywords
multiagent systems, edge computing, bottom-up resource orchestration, edge micro data centers, dependency-
aware scheduling

1. Introduction

Efficient workload scheduling across heterogeneous cloud-edge systems is a growing challenge in
modern distributed environments. Key pod orchestration strategies—cloning, dependency-aware
scheduling, and parallel pod processing—optimize resource use, scalability, and fault tolerance. Pod
cloning dynamically replicates workloads to handle traffic spikes or failures, dependency management
ensures correct task sequencing, and parallel processing accelerates execution via Kubernetes-native
mechanisms [1]. Despite addressing challenges like resource contention and coordination latency,
these strategies remain underutilized in adaptive schedulers, especially those leveraging bio-inspired
algorithms. This paper integrates pod cloning, dependency resolution, and parallelization into an
emergent scheduler based on the Artificial Bee Colony (ABC) swarm intelligence algorithm [2]. ABC’s
decentralized resource allocation suits the self-organizing needs of modern infrastructures [3]. We
analyze how pod management techniques affect satisfaction rates. By combining ABC optimization
with Kubernetes pod controls, our scheduler dynamically adjusts cloning, parallelism, and dependency
handling, balancing overhead with performance—vital for real-time edge deployments.

The paper is structured as follows: Section 2 reviews related work. Section 3 details pod optimization
strategies. Section 4 describes the system model and scheduler. Section 5 covers simulation setup
and system behavior analysis. Section 5 discusses key findings, and Section 6 concludes with future
directions.

CPSWS°25: CPS Summer School PhD Workshop, September 22, 2025, Alghero, Sardinia, Italy
& gojkovic@lakeside-labs.com (M. Gojkovié); schranz@lakeside-labs.com (M. Schranz)
® 0009-0002-4618-8929 (M. Gojkovié); https://orcid.org/0009-0002-4618-8929 (M. Schranz)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5y

mailto:gojkovic@lakeside-labs.com
mailto:schranz@lakeside-labs.com
https://orcid.org/0009-0002-4618-8929
https://orcid.org/https://orcid.org/0009-0002-4618-8929
https://creativecommons.org/licenses/by/4.0/deed.en

2. Related Work

Efficient cluster resource management has inspired approaches such as the oversubscription framework
in [4], maximizing utilization. Extending to edge platforms, [5] orchestrate workloads for multi-
tenant IoT services with varying SLOs, but overlook pod interdependencies—critical to performance.
Microservice interdependencies, shown in [6] to degrade performance if unmanaged, are often ignored
by platforms like Kubernetes, which separate deployment and routing despite their latency correlation
[7]. Resource allocation in multi-clouds [8] and communication reduction [9] improve efficiency but
neglect pod-level coordination. Scaling strategies like in [10] vertically aggregate per-task signals and
horizontally replicate tasks, yet remain system-specific and overlook fine-grained interdependencies.
Autoscaling remains central [11], distinguish-
ing between horizontal scaling (adjusting pod XA
count) and vertical scaling (adding resources), (131) 4

but often reacts to metrics rather than SLOs. Hor- /":i.‘ / '\6_1\:‘ \/
\ J . — 4

izontal scaling, as in Kubernetes’ HPA [12], dy-

namically responds to load but mainly operates (i S ©.) \Pa ‘: 7N
at or before the edge. Elastic replica manage- P \ /::E; \« ré{‘.
ment [13] enhances QoS and efficiency, resem- P/ TN
bling pod cloning in our context, but still avoids

. (a) (b)
orchestration beyond the edge.

We focus on fog-layer orchestration, selecting Figure 1: Pod cloning in the emergent sched-
master agents on the cloud side and leveraging uler. (a) Conceptual framework illus-
slack resources from rigid pods to support elastic trating clone generation. (b) Execution
workloads—an area underexplored by current workflow showing how cloned pods are
autoscaling. Edge-edge collaboration [7] and fog scheduled and completed.
computing [14] further highlight the need for
low-latency, flexible deployment in future systems.

3. Types of Pod Optimization Strategies

Pod cloning, dependencies, and parallel pro-

cessing are key to optimizing workload man- (5) (o)
agement across distributed cloud-edge environ- / 3\ =
ments. This boosts resource utilization, reliabil- (3 Nl ()
: . P2 \Py P/
ity, and performance in interconnected systems,

enabling applications to adapt to fluctuating de- ‘:/I’J;\\"

mands and network conditions. () () () (py \‘I’/

Pod Dependencies and Dynamic Resource [
Management: Managing pod dependencies en- ’ " ‘

EMDC

sures correct and efficient execution in Kuber- (a) (b)

netes. In single deployments, independent pods

enable horizontal scaling and resilience [15]. In Figure 2: Key pod orchestration concepts in the
multi-deployment setups, dependencies—e.g., a emergent scheduler. (a) Parallel pod
frontend relying on a backend or database—are processing in the emergent scheduler,
critical. Kubernetes manages these via Services, where pods process simultaneously
DNS, and network policies [15], enabling multi- based on shared constraints. (b) Inter-
tier applications to remain scalable and fault- pod dependencies modeled in the emer-
tolerant. Dynamic resource management tech- gent scheduler, including sequencing
niques, such as pod cloning, integrate with de- and coordination requirements.

pendency handling to enable autoscaling [16].
Thus, applications adjust replicas based on workload changes while preserving dependency constraints.

Pod Cloning and Autoscaling: doesn’t this already N
answer the Q: 3. how would observer mechanism work /"Pi}-'\/'\[)_s)/"

in kubernetes or computing infrastructure

Autoscaling dynamically adjusts computational resources { F) | Ps { Py)
to meet demand [16]. In Kubernetes, pod cloning replicates / j\ : \ \
instances to scale horizontally during workload spikes, while ,{:IS;::_{IS;E (:I’D;__{/ A
load balancing distributes tasks for performance and fault T T - A
tolerance. Cloning introduces scheduling complexity, as all ‘ @1’\)@1"‘) 614:) 6.)
replicas must respect original dependency rules. In complex
workloads, this requires QoS-aware scheduling, as in [17], to EMDC
ensure correct execution sequences. Techniques like topolog-
ical sorting [18] help maintain execution order and optimize Figure 3: Overview of pod process-
performance. ing logic in the emer-
Parallel Pod Processing for Enhanced Performance: gent scheduler, integrat-
Parallel pod processing runs multiple pod instances concur- ing standard, cloned, par-
rently, similar to task parallelism [19]. Computationally in- allel, and dependent pod
tensive tasks are split into subtasks and executed in parallel, behaviors.

improving throughput and reducing latency—vital in areas
like real-time analytics and Al training. This relies on application-level parallelism, as Kubernetes does
not parallelize within a single pod. Developers must implement multithreading or multiprocessing [20]
to exploit concurrent execution effectively.

Efficient orchestration combines parallel processing for speed, cloning for scalability and fault
tolerance, and dependency management for correctness. Together, these strategies enable robust
performance in complex, distributed systems.

4. System Model

We adopt the discrete-time, agent-based simulation framework with all scheduling policies described
in [2]. Therefore our emergent scheduler comprises of a master agent, a worker agent, and dynamically
arriving pod agents. Pods are defined by type (rigid or elastic), resource demand, execution requirements,
and queueing tolerance. The worker manages CPU and RAM allocation, using scheduling policies to
accept or reject pods based on availability. For elastic pods, peer selection is performed via random,
best-match, and a bottom-up resource orchestration algorithm inspired by the Artificial Bee Colony
approach. The master maintains pod queues, coordinates scheduling, and employs a retry mechanism
with a tunable parameter to balance rigid and elastic workloads.

To handle the pod processing methods outlined in Section 3, we implement a logic layer that
pre-processes incoming pods. This step resolves their complexities—parallelism, cloning, and depen-
dencies—transforming them into the sequential input format required by the emergent scheduler [2].

Parallel Pod Processing: If a pod p; requires parallel processing, it is divided into n sub-pods [19]
Pip, s Pipy» - - - + Pip, » Where n is randomly selected from the range (1,10). Since each p; must be processed
by a single Edge Micro Data Center (EMDC), all its sub-pods are routed to the same queue, as described
in [2]. To satisfy the sequential input requirement, the sub-pods are randomly ordered before insertion.

Pod Cloning: To simulate dynamic resource availability [16], the scheduler supports processing
of cloned pods. If cloning is triggered, p; is replicated n times, producing p; ,, pig, - - -, Piy, With n
randomly chosen between 1 and 10. Clones are placed in the same queue and randomly ordered for
sequential scheduling. Each clone is assigned an observer, o; ,, 0;, . . . , 0;,,, Which monitors its status.
Once one clone (e.g., p; ,) finishes, its observer notifies the others, causing them to terminate—mimicking
unexpected resource release in the emergent scheduler.

Pod Dependencies: When p; depends on other pods, meaning it cannot start until its prerequisites
finish, dependencies are modeled as a DAG [18], with pods as nodes and dependencies as directed edges.
For example, if p; depends on p; and py, edges go from p; to p; and py, to p;.

To ensure the scheduler’s sequential input respects dependencies, we apply topological sorting [21].
This produces a linear order in which each pod appears after all its prerequisites. For example, if p;
depends on p; and py, and p; depends on p;, the resulting order could be p;, p;, px, p;, guaranteeing
that all constraints are satisfied before execution.

5. System Behavior Analysis

This section analyzes how system performance evolves under different scheduling strategies and work-
load conditions. Through agent-based simulation, we evaluate the dynamic behavior of a distributed
edge environment subjected to varying pod elasticity levels, inter-pod dependencies, and traffic in-
tensities. The goal is to reveal how these factors influence pod satisfaction rate, i.e., how many of
the available resources in the EMDC can a pod use (as rigid) and reuse (as elastic) before its assigned
waiting time runs out [2].

Simulation Setup: The simulation environment is built using the MESA agent-based modeling
framework in Python [22]. Its modular design enables custom agent classes with specific behaviors and
decentralized execution, allowing each agent to operate independently. MESA’s built-in tools facilitate
modeling complex, interactive systems in a scalable way. Simulations run for 12,000 discrete time steps,
tracking pod satisfaction rate under varying pod arrival rates A from 0.55 (light load) to 0.75 and 0.95
(heavy load). This progression allows us to evaluate the scalability and robustness of the bottom-up
scheduling strategy as the system approaches saturation. Two main factors are explored: pod elasticity
and pod coordination constraints. We compare datasets with 30% elastic pods and with 70% elastic pods.
Elastic pods provide scheduling flexibility but can also introduce overhead or contention with rigid
workloads. To examine how coordination complexity interacts with elasticity, three pod-level features
are included: parallel processing (10% of pods, grouped randomly between 1 and 10), cloning (10%),
and inter-pod dependencies (20%). These extensions are evaluated against baseline scenarios from [2],
which reflect elastic scheduling without additional pod dependencies.

Insights from Experimental Results: The results in Fig. 4-5 show pod elasticity, inter-pod
dependencies, and varying A influencing scheduling performance in terms of pod satisfaction rate.
This is directly reflecting the cost of having introduced pod-dependency processing (compared against
non-dependent pods), as well as the synchornization, i.e., pod coordination, costs.

Our analysis proceeds along three key dimensions: (1) the impact of pod elasticity, (2) the effect of
increasing A, and (3) the role of pod coordination constraints such as parallel processing, cloning, and
inter-pod dependencies. These perspectives together provide a detailed understanding of the trade-offs
involved in bottom-up scheduling across diverse edge workload scenarios.

Satisfaction rate: (1) In panel (a), Fig. 4 (30% elastic pods), which includes pod dependencies, both
the best-match and swarm intelligence (SI) strategies initially underperform compared to the random
baseline. In panel (b), with independent pods, SI performs between random and best-match—a trend
that continues as A increases. (2) In panel (a), Fig. 5 (70% elastic pods), SI outperforms both baselines
after timestep 5000, maintaining a satisfaction rate above 95%. For independent pods (panel b), all
strategies achieve nearly perfect satisfaction, close to 100%, with minimal differences across schedulers.

Elastic pods improve performance notably under high load and elasticity, but only with adaptive
scheduling. The SI method shows strong resilience and consistently outperforms others in complex
scenarios. For simpler, independent workloads, advanced strategies offer little extra advantage.

Impacts and Observations: The simulation study reveals that pod elasticity and coordination
requirements significantly influence satisfaction rates under varying traffic conditions. At moderate to
high), elastic pods enable more flexible resource allocation, improving satisfaction rates—especially
under the SI strategy. The addition of coordination mechanisms—such as parallel processing, cloning,
and inter-pod dependencies—introduces extra complexity and can moderately reduce satisfaction in
some scenarios. Nevertheless, the SI strategy shows resilience, maintaining relatively high satisfaction
even under complex workloads. Interestingly, dependencies can sometimes improve stability in SI by
preventing overly aggressive pod placement, resulting in more consistent satisfaction rates.

Figure 4: Satisfaction rates with 30% elastic pods under increasing arrival rates A € 0.55,0.75,0.95.
Panels (a),(c) and (e) include pods with coordination constraints—cloning, parallelism, and interdepen-
dencies—while panel (b),(d) and (f) show results for independent pods. Results are shown for random,
best-match, and Sl scheduling strategies.

Dependent pods for lambda=0.55 Non-dependent pods for lambda=0.55
1.0 —— Best Elastic 1.0 —— Best Elastic
—— Best Rigid —— Best Rigid
—— Random Elastic —— Random Elastic
08 —— Random Rigid 08 —— Random Rigid
—— Bottom-Up Elastic —— Bottom-Up Elastic
Q ~—— Bottom-Up Rigid] ~— Bottom-Up Rigid
T T
< 0.6 0.6
c c
)]
=1 =1
8 8
o4 B 04
=3 =1
© ©
@ @
0.2 0.2
0.0{ 0.0
[2000 4000 6000 8000 10000 12000 [} 2000 4000 6000 8000 10000 12000
Steps Steps
(a) (b)
Dependent pods for lambda=0.75 Non-dependent pods for lambda=0.75
1.0 —— Best Elastic 1.0 —— Best Elastic
—— Best Rigid —— Best Rigid
—— Random Elastic —— Random Elastic
08 —— Random Rigid 08 —— Random Rigid
—— Bottom-Up Elastic —— Bottom-Up Elastic
o —— Bottom-Up Rigid o —— Bottom-Up Rigid
8 2
© T
< 0.6 0.6
c c
(<3 (=3
k= =1
8 8
o4 Bo04
= =1
© ©
12 wn
0.2 0.2
0.0{ 0.0
0 2000 4000 6000 8000 10000 12000 [} 2000 4000 6000 8000 10000 12000
Steps Steps
(© (@
Dependent pods for lambda=0.95 Non-dependent pods for lambda=0.95
1.0 —— Best Elastic 1.0 —— Best Elastic
—— Best Rigid —— Best Rigid
—— Random Elastic —— Random Elastic
08 —— Random Rigid 08 —— Random Rigid
—— Bottom-Up Elastic —— Bottom-Up Elastic
o —— Bottom-Up Rigid o —— Bottom-Up Rigid
2 2
© T
< 0.6 0.6
c c
S S
i} T
& £
Boa Boa
=3 =1
© ©
wn w
0.2 0.2
0.0+ 0.0
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Steps Steps
(e) (f)

Overall, the results indicate that no single strategy dominates across all conditions. Best-match
performs well in stable, predictable environments, while SI excels in elastic, dynamic, and uncertain
conditions. These findings can inform the design of adaptive, decentralized orchestration frameworks
for heterogeneous and evolving edge—cloud deployments.

6. Conclusion

Efficient workload scheduling across heterogeneous cloud-edge infrastructures is increasingly critical
for modern distributed systems. Pod-level orchestration techniques—cloning, parallel processing, and
dependency-aware execution—are essential for managing complexity, scalability, and fault tolerance,
yet remain underutilized in decentralized schedulers. This work integrates these mechanisms into
a swarm-intelligence-based scheduler using the Artificial Bee Colony (ABC) algorithm. Simulations

Figure 5: Satisfaction rates with 70% elastic pods under increasing arrival rates A € 0.55,0.75,0.95.
Panels (a),(c) and (e) include pod coordination mechanisms; panel (b),(d) and (f) depict scenarios with
independent pods. The Sl strategy shows increased performance under high elasticity.

Dependent pods for lambda=0.55

Non-dependent pods for lambda=0.55

1.0 1.0 —
0.8 0.8
9 N] ’
5 —— Best Elastic] —— Best Elastic
i 0.6 —— Best Rigid 0:1 0.6 —— Best Rigid
o —— Random Elastic =] —— Random Elastic
g —— Random Rigid ‘g —— Random Rigid
D04 —— Bottom-Up Elastic 604 —— Bottom-Up Elastic
° —— Bottom-Up Rigid ° —— Bottom-Up Rigid
w w
0.2 0.2
0.0 0.0
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Steps Steps
(a) (b)
Dependent pods for lambda=0.75 Non-dependent pods for lambda=0.75
1.0 1.0
e ———— 1%
0.8 0.8
[. [}
= —— Best Elastic 5 —— Best Elastic
n:f 0.6 —— Best Rigid ﬂcﬁ 0.6 —— Best Rigid
<] —— Random Elastic] —— Random Elastic
E —— Random Rigid f,; —— Random Rigid
G 0.4 —— Bottom-Up Elastic ‘G 0.4 —— Bottom-Up Elastic
" —— Bottom-Up Rigid k] —— Bottom-Up Rigid
w w
0.2 0.2
0.0 0.0
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Steps Steps
(© ()
Dependent pods for lambda=0.95 Non-dependent pods for lambda=0.95
1.0 1.0
e ——————] 1%
0.8 0.8
Q Q
= —— Best Elastic = —— Best Elastic
DEC 0.6 —— Best Rigid z 0.6 —— Best Rigid
Kl —— Random Elastic] —— Random Elastic
g —— Random Rigid g —— Random Rigid
04 —— Bottom-Up Elastic % 0.4 —— Bottom-Up Elastic
® —— Bottom-Up Rigid ® —— Bottom-Up Rigid
w w
0.2 0.2
0.0 0.0
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Steps Steps
(e) (f)

show that pod elasticity and coordination requirements strongly impact performance under high load.
Elastic pods improve satisfaction rates with the SI strategy, though they may increase queue lengths.
Best-match effectively controls queues but can struggle with slack estimation errors and complex
coordination. Notably, dependencies like parallelism and sequencing can reduce queue buildup by
moderating placement aggressiveness, providing a self-regularizing effect for SI. No single strategy
dominates: best-match fits tightly constrained settings, while SI is more robust in dynamic, elastic, and
uncertain environments. These insights guide the design of resilient, adaptive orchestration systems
balancing flexibility, efficiency, and stability amid evolving workloads.

Acknowledgments

This work was performed in the course of the EU-project ACES supported by EU’s Horizon Europe
under the grant agreement No. 101093126 (HORIZON-CL4-2022-DATA-01-02).

https://www.aces-edge.eu/

Declaration on Generative Al

During the preparation of this work, the author(s) used Chat-GPT-4 and Grammarly in order to:
Grammar and spelling check. After using these tool(s)/service(s), the author(s) reviewed and edited the
content as needed and take(s) full responsibility for the publication’s content.

References

(1]
(2]

(3]
[4]

(5]

(6]

Kubernetes, Fine parallel processing using a work queue, 2025. URL: https://kubernetes.io/docs/
tasks/job/fine-parallel-processing-work-queue/.

A. Ghasemi, M. Schranz, Bottom-up resource orchestration in edge computing: An agent-based
modeling approach, in: 2024 IEEE 12th International Conference on Intelligent Systems (IS), IEEE,
2024, pp. 1-7.

M. Umlauft, M. Gojkovic, K. Harshina, M. Schranz, Bottom-up bio-inspired algorithms for opti-
mizing industrial plants., in: ICAART (1), 2023, pp. 59-70.

X. Sun, C. Hu, R. Yang, P. Garraghan, T. Wo, J. Xu, J. Zhu, C. Li, Rose: Cluster resource scheduling
via speculative over-subscription, in: 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), 2018, pp. 949-960. doi:10.1109/ICDCS.2018.00096.

F. Guim, T. Metsch, H. Moustafa, T. Verrall, D. Carrera, N. Cadenelli, J. Chen, D. Doria, C. Ghadie,
R. G. Prats, Autonomous lifecycle management for resource-efficient workload orchestration for
green edge computing, IEEE Transactions on Green Communications and Networking 6 (2022)
571-582. doi:10.1109/TGCN. 2021.3127531.

M. Hu, Z. Guo, H. Wen, Z. Wang, B. Xu, J. Xu, K. Peng, Collaborative deployment and routing of
industrial microservices in smart factories, IEEE Transactions on Industrial Informatics 20 (2024)
12758-12770. doi:10.1109/TI1.2024.3424347.

[7] J. Oi, H. Zhang, X. Li, H. Ji, X. Shao, Edge-edge collaboration based micro-service deployment in

(8]

[9]

[10]

[11]

[14]

edge computing networks, in: 2023 IEEE Wireless Communications and Networking Conference
(WCNC), 2023, pp. 1-6. doi:10.1109/WCNC55385.2023.10119013.

H. X. Nguyen, S. Zhu, M. Liu, Graph-phpa: Graph-based proactive horizontal pod autoscaling for
microservices using Istm-gnn, in: 2022 IEEE 11th International Conference on Cloud Networking
(CloudNet), 2022, pp. 237-241. do0i:10.1109/CloudNet55617.2022.9978781.

W. Lv, Q. Wang, P. Yang, Y. Ding, B. Yi, Z. Wang, C. Lin, Microservice deployment in edge
computing based on deep q learning, IEEE Transactions on Parallel and Distributed Systems 33
(2022) 2968-2978. doi:10.1109/TPDS.2022.3150311.

K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. D. M. Kusmierek, P. K. Nowak, B. Strack,
P. Witusowski, S. Hand, J. Wilkes, Autopilot: workload autoscaling at google, Proceedings of the
Fifteenth European Conference on Computer Systems (2020). URL: https://api.semanticscholar.
org/CorpuslD:218489692.

A. A. Pramesti, A. L Kistijantoro, Autoscaling based on response time prediction for microservice
application in kubernetes, in: 2022 9th International Conference on Advanced Informatics:
Concepts, Theory and Applications ICAICTA), 2022, pp. 1-6. doi:10.1109/ICAICTA56449.
2022.9932943.

L. H. Phuc, L.-A. Phan, T. Kim, Traffic-aware horizontal pod autoscaler in kubernetes-based
edge computing infrastructure, IEEE Access 10 (2022) 18966—18977. doi:10.1109/ACCESS. 2022
3150867.

P. Zhao, P. Wang, X. Yang, J. Lin, Towards cost-efficient edge intelligent computing with elastic
deployment of container-based microservices, IEEE Access 8 (2020) 102947-102957. doi:10.1109/
ACCESS . 2020.2998767.

A.J. Fahs, G. Pierre, E. Elmroth, Voila: Tail-latency-aware fog application replicas autoscaler,
in: 2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and

https://kubernetes.io/docs/tasks/job/fine-parallel-processing-work-queue/
https://kubernetes.io/docs/tasks/job/fine-parallel-processing-work-queue/
http://dx.doi.org/10.1109/ICDCS.2018.00096
http://dx.doi.org/10.1109/TGCN.2021.3127531
http://dx.doi.org/10.1109/TII.2024.3424347
http://dx.doi.org/10.1109/WCNC55385.2023.10119013
http://dx.doi.org/10.1109/CloudNet55617.2022.9978781
http://dx.doi.org/10.1109/TPDS.2022.3150311
https://api.semanticscholar.org/CorpusID:218489692
https://api.semanticscholar.org/CorpusID:218489692
http://dx.doi.org/10.1109/ICAICTA56449.2022.9932943
http://dx.doi.org/10.1109/ICAICTA56449.2022.9932943
http://dx.doi.org/10.1109/ACCESS.2022.3150867
http://dx.doi.org/10.1109/ACCESS.2022.3150867
http://dx.doi.org/10.1109/ACCESS.2020.2998767
http://dx.doi.org/10.1109/ACCESS.2020.2998767

[15]
[16]

[17]

[18]

Telecommunication Systems (MASCOTS), 2020, pp. 1-8. doi:10.1109/MASCOTS50786.2020.
9285953.

Kubernetes, Pods, 2025. URL: https://kubernetes.io/docs/concepts/workloads/pods/.

T. Lorido-Botran, R. N. Calheiros, R. M. Rodriguez, R. Buyya, C. Vecchiola, Autoscaling in the
cloud: A survey, IEEE Transactions on Services Computing 8 (2015) 947-969. doi:10.1109/TSC.
2014.2350938.

J. Yu, R. Buyya, K. Ramamohanarao, Workflow scheduling algorithms for service-oriented cloud
computing with blending of deadline and budget constraints, Proceedings of the 2008 IEEE
International Symposium on Cluster Computing and the Grid (CCGRID) (2008) 427-436. doi:10.
1109/CCGRID.2008. 46.

S. Even, Graph Algorithms, Cambridge University Press, 2011. Chapters on Directed Acyclic
Graphs.

S. Manvi, G. Shyam, Cloud Computing: Concepts and Technologies, 1st ed., CRC Press, 2021.
d0i:10.1201/9781003093671.

P. S. Pacheco, An introduction to parallel programming, Morgan Kaufmann, 2011.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 3rd ed., MIT Press,
2009. Section 22.4: Topological Sort.

D. Masad, J. L. Kazil, Mesa: An agent-based modeling framework, 2015. URL: https://github.com/
projectmesa/mesa/blob/master/CITATION.bib.

http://dx.doi.org/10.1109/MASCOTS50786.2020.9285953
http://dx.doi.org/10.1109/MASCOTS50786.2020.9285953
https://kubernetes.io/docs/concepts/workloads/pods/
http://dx.doi.org/10.1109/TSC.2014.2350938
http://dx.doi.org/10.1109/TSC.2014.2350938
http://dx.doi.org/10.1109/CCGRID.2008.46
http://dx.doi.org/10.1109/CCGRID.2008.46
http://dx.doi.org/10.1201/9781003093671
https://github.com/projectmesa/mesa/blob/master/CITATION.bib
https://github.com/projectmesa/mesa/blob/master/CITATION.bib

	1 Introduction
	2 Related Work
	3 Types of Pod Optimization Strategies
	4 System Model
	5 System Behavior Analysis
	6 Conclusion

