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Abstract
Anomaly-based network intrusion detection is a critical and challenging task. Some anomaly detection techniques
apply neural networks, benefiting from their ability to recognize patterns associated with malicious activity. The
increasing complexity of anomaly detection models requires hardware platforms that offer high performance and
real-time processing capabilities. Field-Programmable Gate Arrays (FPGAs) prove to be an effective solution for
real-time inference acceleration, outperforming conventional choices such as Central Processing Units (CPUs)
and Graphics Processing Units (GPUs). In this paper, we accelerate a Fully-Connected Neural Network (FCNN)
and a one-dimensional Convolutional Neural Network (CNN). Both models are trained on the CIDDS-001 dataset
and deployed on the PYNQ-Z2 FPGA. To streamline hardware design, high-level synthesis with hls4ml is utilized.
We evaluate and compare the classification and deployment performance of both models with those deployed on
the Intel Core i7-9750H CPU and the NVIDIA GeForce RTX 2080 Ti GPU. The results indicate that both FPGA
deployments outperform the CPU and GPU. The FCNN FPGA deployment achieves 193.50× faster inference
and 170.56× higher throughput than the CPU, and 898.50× faster inference and 792.07× higher throughput than
the GPU. Compared to the CPU, the CNN FPGA deployment achieves 64.00× faster inference and 72.67× higher
throughput, and 574.00× faster inference and 650.58× higher throughput compared to the GPU.
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1. Introduction

Anomaly-based Network Intrusion Detection Systems (NIDSs) are essential for identifying and miti-
gating cybersecurity anomalies in network traffic. The evolving and complex nature of cyber threats
makes real-time anomaly detection a crucial and challenging task. Some anomaly detection techniques
integrate concepts from machine learning, including neural networks, as these models can efficiently
extract complex features and recognize patterns associated with malicious behavior [1, 2, 3, 4]. While
traditionally deployed on Central Processing Units (CPUs) and Graphics Processing Units (GPUs),
the increasing complexity of anomaly detection models requires the target platforms to meet higher
performance demands. To mitigate these challenges, Field-Programmable Gate Arrays (FPGAs) have
become increasingly popular over the years. Their key characteristics, such as data parallelism, energy
efficiency, and the ability to achieve low inference latency and high throughput simultaneously, provide
a significant performance advantage over conventional hardware platforms [5, 6].
To validate this claim, this research evaluates the classification and deployment performance of

neural networks on FPGAs compared to CPU and GPU applications. We train a Fully-Connected
Neural Network (FCNN) and a one-dimensional Convolutional Neural Network (CNN) on the Coburg
Intrusion Detection Data Set (CIDDS-001), created for the evaluation of anomaly-based NIDSs [7, 8]. To
facilitate the hardware design process, we use High-Level Synthesis (HLS) with hls4ml, an open-source
framework that efficiently translates neural networks into FPGA implementations [9, 10, 11, 12, 13, 14].
Both models are deployed on the PYNQ-Z2 FPGA development board featuring Xilinx Zynq-7020 SoC,
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the Intel Core i7-9750H CPU, and the NVIDIA GeForce RTX 2080 Ti GPU. Our analysis is mainly focused
on the inference latency and throughput metrics.

1.1. Related Work

Ioannou et al. introduce a flexible FPGA-based network intrusion detection approach using neural
networks on the NSL-KDD dataset. Their deployment on the Xilinx Zynq Z-7020 FPGA achieves
approximately 26.6× acceleration over previous research on intrusion detection systemswhile identifying
not only Denial-of-Service (DoS) attacks but also new threats, including Probe, U2R, and R2L [15]. In a
more recent study, Pham-Quoc et al. propose an Artificial Intelligence (AI)-powered framework for
anomaly-based NIDSs, suitable for real-time deployment. Twomodels, Anomaly-Detection Autoencoder
(ADA) and Artificial Neural Classification (ANC), are trained and evaluated on the NSL-KDD, UNSW-
NB15, and CIC-IDS2017 datasets with respect to latency, throughput, and accuracy metrics. Results
show that the proposed architecture efficiently utilizes the hardware resources of the NetFPGA-SUME
platform while achieving higher throughput than the GPU and CPU deployments. On the NSL-KDD
dataset, the ADA model achieves a slightly lower training accuracy of 90.87% compared to Ioannou et
al.’s approach, which achieves an accuracy of 96.02% [16].
Ngadiuba et al. discuss the application of Binary Neural Networks (BNNs) and Ternary Neural

Networks (TNNs) as possible quantization approaches in integration with hls4ml. They deploy these
models, trained on MNIST and Jet Tagging datasets, on the Xilinx Virtex Ultrascale 9+ FPGA. Results
indicate that both BNNs and TNNs retain good accuracy (with TNNs being slightly more accurate)
and latency (~100 ns) while achieving a significant reduction in hardware resource utilization [17].
In their study, Aarrestad et al. extend prototype models trained and evaluated on the SVHN dataset
to explore the acceleration of convolutional networks on FPGAs using hls4ml. They apply model
optimization techniques such as quantization and pruning, and discuss how FPGA resource utilization
can be minimized by at least 97%, if compromising accuracy is justified. They successfully deploy
the model on the PYNQ-Z2 FPGA with low latency and power demand, defining a benchmark in the
integration of the convolutional network architecture with hls4ml [18].
While several studies have analyzed the acceleration of intrusion detection systems on FPGAs, and

separately, the acceleration of neural networks on FPGAs using HLS with hls4ml, to the best of our
knowledge, no previous research has applied HLS with hls4ml specifically in the anomaly detection
domain. What sets this research apart is the integration of HLS with hls4ml for real-time anomaly-based
intrusion detection in network traffic, specifically targeting port scan, ping scan, DoS, and brute force
attacks.

2. Methodology

The first part of this research is conducted in a virtual environment running Ubuntu 18.04.2, hosted on
Oracle VirtualBox 7.0.18. The virtual machine is allocated 12 GB of RAM, 4 CPU cores, and approximately
300 GB of disk space.

2.1. Dataset

The dataset chosen for this research is CIDDS-001, published by Hochschule Coburg, Germany, in
2017. The dataset is created for the evaluation of anomaly-based NIDSs and contains approximately
32 million network flows and 92 recorded attack instances categorized as port scan, ping scan, DoS,
and brute force, captured over four weeks. To gather the data, the team developed a simple cloud
environment using OpenStack, as well as deployed an external server on the internet, and monitored
the network flow on these two server points. 60% of the attacks targeted at the OpenStack environment
occurred during week 1, while the remaining attacks were launched in week 2. The flows captured
during week 3 and week 4 would worsen the dataset imbalance, if considered for our research, and are
therefore ignored. At the external server, only port scan and brute force attacks occurred [7, 8]. Given



the distribution of attacks and due to resource constraints, only the traffic recorded in the OpenStack
environment during week 1 is considered for this research. Additional preprocessing, dataset balancing,
and normalization techniques are applied to a partially cleaned and formatted version of this dataset
[19]. 75% of the dataset is allocated for training the models, while the remaining 25% is allocated for
evaluation.

2.2. Keras-Based Neural Network Implementations

The first proposed model architecture, described in Figure 1 (left), is an FCNN consisting of four layers.
The input layer receives 14 inputs corresponding to the number of features in the dataset. The fully-
connected dense layers contain 32 and 16 units, respectively. A ReLU activation function is applied to
both hidden layers. Lastly, the output dense layer consists of three units for multi-class classification,
using a softmax activation function [20]. The second proposed model architecture, visualized in Figure 1
(right), is a one-dimensional CNN consisting of five layers. The input layer receives a sequence of
14 features. The Conv1D layer applies four filters to sliding windows of three input features to learn
patterns from potentially meaningful, local relationships between features. This layer outputs a set
of four 12-unit vectors. The next layer flattens the output of the convolutional layer into one 48-unit
vector, followed by a fully-connected layer with eight units and a ReLU activation function. The output
layer consists of three units with a softmax activation function, similar to the FCNN architecture [20].

Figure 1: Proposed FCNN (left) and 1D CNN (right) architectures.

Both architectures are kept simple with small layer sizes to ensure that the computational complexity
during HLS is reduced before applying model optimization techniques and adjusting the reuse factor per
layer. The model weights and activations are quantized using quantization-aware training with QKeras
with a precision of 6 bits and pruned to a target sparsity of 80% [21, 22, 23]. The models are trained
using the Adam optimizer with the default learning rate of 0.001 [24]. The categorical cross-entropy
loss function is utilized during training. Each model is trained over 10 epochs with a batch size of
32. To promote generalization on new, unseen data, the L1, EarlyStopping, and ReduceLROnPlateau
regularization and callback techniques are applied [20].

2.3. From Keras to hls4ml

Each Keras model is loaded to generate its corresponding HLS configurations. For the FCNN HLS
configuration, the default fixed-point precision of < 16, 6 > is applied, and the reuse factor is set to 16
for all model layers. For the CNN HLS configuration, the fixed-point precision is reduced to < 12, 4 >,
and the reuse factor is reset to its default value of one, except for the dense layer hdl1, which is set to a
reuse factor of 64. For the softmax layers, the fixed-point precision formats for the exponential and
inverse LUTs are set to < 18, 8 > and < 18, 4 >, respectively, in the FCNN HLS configuration, and to



< 14, 6 > and < 14, 8 > in the CNNHLS configuration. The FPGA optimization strategy is set to Latency
for both configurations to help achieve the lowest possible inference latency. For the hdl1 layer, the
strategy is set to Resource to minimize the utilization of the FPGA resources. This sacrifices latency
within tolerable limits [11]. Both models are converted into hls4ml models and compiled successfully
in preparation for synthesis. We could successfully synthesize both neural networks and generate each
custom intellectual property core and bitstream file necessary for programming the FPGA.

2.4. Hardware Deployments

The same virtual setup is utilized to deploy the models on the Intel Core i7-9750H CPU. For GPU
deployment, a JupyterHub server instance provided by the University of Passau’s InnKube Infrastructure
Group is utilized. It is configured with 2 CPU cores, 16 GB of RAM, 100 GB of storage, and one NVIDIA
GeForce RTX 2080 Ti GPUwith 12 GB of memory [25]. To measure the inference latency and throughput
on hardware, we first load the pre-trained models and the respective test files, then measure the time
it takes each model to make predictions on new, unseen data, and lastly calculate the results for both
metrics accordingly [5]. For the GPU deployment, we enforce CPU utilization on a few operations
before loading the pre-trained models to avoid GPU just-in-time compilation failures. As a result, only
about 70% of the GPU is utilized for this deployment. The code snippet executed for deploying the
models on the PYNQ-Z2 FPGA is based on the tutorial notebooks for hls4ml [26]. An instance of the
NeuralNetworkOverlay class is created, including the bitstream and test files for temporary memory
allocation before running the inference.

3. Results and Evaluation

Our results demonstrate that the non-quantized FCNN and CNN models achieve accuracies of 98.16%
and 98.21% on the CPU, respectively. The precision, recall, and F1-score results for each class - normal,
attacker, and victim - are presented in Table 1. From an anomaly detection point of view, since 93.17%
and 90.57% of the attacks in the test set are detected, these results are considered acceptable.

Table 1
Evaluation metrics (%) for both neural networks on the CIDDS-001 dataset.

Category
FCNN CNN

Precision Recall F1-score Precision Recall F1-score

Normal 100.00 100.00 100.00 100.00 100.00 100.00
Attacker 89.25 93.17 91.17 91.76 90.57 91.16
Victim 89.18 83.37 86.18 86.29 87.95 87.11

The accuracy of the QKeras-quantized models decreases to 93.10% and 91.41% relative to their non-
quantized baselines as a result of applying 6-bit quantization. We analyze the accuracy and classification
performance of the QKeras-quantized models deployed on the CPU against (1) the QKeras-quantized
models deployed on the GPU and (2) the corresponding hls4ml implementations deployed on the FPGA.
When deployed on the GPU, the accuracy of the QKeras-quantized FCNN model decreases by 0.24%
to 92.88%, while the QKeras-quantized CNN model performs 1.01× faster with an accuracy of 92.09%.
The hls4ml implementations achieve accuracies of 91.64% and 86.91% on the FPGA, respectively. The
accuracy drop comes from the reduced fixed-point precision of the HLS configurations before model
synthesis. Furthermore, to validate the predictions run on the GPU and FPGA, the deployment outputs
are saved and checked against the QKeras-quantized outputs captured on the CPU. Figures 2 and 3 show
the ROC curves, comparing the performance of the three classes, denoted as taggers on the graphs.
We measure the inference latency and calculate the throughput of both neural networks across the

three hardware platforms. The test data consists of 15000 samples. The results are shown in Table 2.
Compared to the CPU, the FPGA achieves 193.50× faster inference and 170.56× higher throughput



Figure 2: ROC curves for the FCNN (left) and CNN (right) models, i7-9750H CPU vs. RTX 2080 Ti GPU.

Figure 3: ROC curves for the FCNN (left) and CNN (right) models, i7-9750H CPU vs. PYNQ-Z2 FPGA.

for the FCNN model, and 64.00× faster inference and 72.67× higher throughput for the CNN model.
Compared to the GPU, the FPGA achieves 898.50× faster inference and 792.07× higher throughput
for the FCNN model, and 574.00× faster inference and 650.58× higher throughput for the CNN model.
Contrary to our expectation, both neural network deployments on the CPU outperform the GPU. For
the FCNN model deployment, the CPU achieves 4.64× faster inference and 4.65× higher throughput,
while for the CNN model, it achieves 8.97× faster inference and 8.95× higher throughput. The research
by Lind et al. concludes that while complex neural networks take advantage of the parallel computing
capabilities of GPUs, this advantage is insignificant when working with simpler neural networks [27].
This observation seems to support our results. It should be noted that a fair comparison of our results
with similar research on anomaly detection is not possible due to the different datasets used.



Table 2
Inference latency (s) and throughput (inferences/second).

Target Deployment Platform
FCNN CNN

Latency Throughput Latency Throughput

i7-9750H CPU 3.87 3879.09 1.92 7797.37
RTX 2080 Ti GPU 17.97 834.90 17.22 870.95
PYNQ-Z2 FPGA 0.02 661404.82 0.03 566615.04

4. Conclusion

In this paper, the acceleration of an FCNN and a one-dimensional CNN is presented for anomaly-based
network intrusion detection on FPGAs. We integrate HLS with hls4ml to translate the neural networks
into FPGA implementations. The research is conducted across a virtual machine running Ubuntu, a
JupyterHub server instance, and the PYNQ-Z2 FPGA development board. These working environments
support dataset preprocessing, model training and synthesis, and hardware deployments. The CIDDS-
001 dataset is used to train and evaluate the neural networks. We measure and evaluate the classification
accuracy and deployment performance in terms of inference latency and throughput on the PYNQ-Z2
FPGA, comparing it with the Intel Core i7-9750H CPU and the NVIDIA GeForce RTX 2080 Ti GPU. The
results indicate that the FPGA deployment outperforms both the CPU and GPU deployments.

4.1. Limitations & Future Work

Restricted access to appropriate hardware equipment limits our work capacity. One challenge is
the limited RAM allocation on the virtual machine, which slows down synthesis for complex neural
networks. As a result, simpler neural architectures need to be used to avoid costly computations and fit
within the available resources. Another issue is that resource-constrained FPGA boards, such as the
PYNQ-Z2, limit the capability to work with larger datasets like NSL-KDD or CIC-IDS2017. Our future
work includes exploring methods to improve the classification accuracy of the neural networks on the
PYNQ-Z2 FPGA and possibly reimplementing this research on less resource-constrained hardware to
enable extended research with more complex models and larger datasets for anomaly-based intrusion
detection, as well as vulnerability detection. A comparison of the power consumption of the neural
network deployments across all three hardware platforms could be a potential extension of this research.
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