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Abstract

Training neural networks at the edge enables self-adaptive and evolving systems through on-device and federated
learning. However, memory and computational constraints make such training approaches, often based on
backpropagation, challenging, particularly on MicroController Units (MCUs). In this work, we investigate the
deployment of on-device training, based on Direct-Feedback Alignment (DFA), a biologically plausible method
that replaces weight-symmetric error propagation with fixed random feedback connections. We present a
baseline implementation of DFA on Parallel Ultra-Low Power (PULP) MicroController Units (MCUs), based on
the PULP-TrainLib framework, analyzing its computational and memory costs for resource-efficient deployment.
Experiments on the MNIST dataset demonstrate the feasibility of DFA-based training on resource-constrained
devices, achieving competitive accuracy, latency and memory usage compared to standard approaches. We
further discuss strategies for latency and memory optimization, including sparse update and buffer reuse, and
outline a path toward resource-efficient deployment of DFA-based training on edge ultra-low-power MCUs.
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1. Introduction

Modern embedded and cyber-physical systems often run Deep Neural Networks (DNNs) to enhance
their in-field operability [1]. DNNs are trained on powerful, Graphics Processing Unit (GPU)-equipped
servers and subsequently deployed at the edge. While this approach enables accurate models on
resource-constrained devices such as MicroController Units (MCUs), the deployed DNNs remain static
and can suffer accuracy degradation under domain shifts. Hence, in modern ubiquitous applications,
adapting to new local data is crucial, motivating paradigms such as Continual [2] and Federated [3]
Learning, which often require resource-demanding backpropagation on-device.

The rising field of On-Device Learning (ODL) has recently advanced with firmwares enabling back-
propagation on MCUs [4, 5]. Yet, the high memory and computation costs of backpropagation hinder its
widespread adoption on such devices. To mitigate this, “forward-only” training techniques have been
proposed, which bypass the backward pass and reduce memory by avoiding activation storage during
the forward pass [6, 7, 8]. Among these, Direct-Feedback Alignment (DFA) stands out as a promising
and biologically plausible method: instead of requiring symmetric forward and backward weights as in
Backpropagation (BP), it propagates error signals through fixed random feedback connections.

In this work, we propose a novel implementation of DFA to enable lightweight training on state-
of-the-art Parallel Ultra-Low Power (PULP) MCUs. Our code leverages the optimized linear algebra
operators of PULP-TrainLib [4], providing a starting point for floating-point-based DFA on PULP.
Although DFA has been successfully applied in federated learning [9, 10], to the best of our knowledge
it has not yet been explored for direct, fully on-device training on edge MCUs. To support deployment
on such constrained devices, we also provide a computational and memory analysis of DFA for small
fully-connected DNNs, demonstrating competitive accuracy with standard BP on MNIST. Finally, we
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discuss, with reference to prior work, the envisioned latency and memory optimizations toward practical
deployment of DFA-based training at the edge.

2. Background

2.1. Direct Feedback Alignment

The majority of modern DNNs is trained using the backpropagation algorithm, which iteratively
computes the optimization parameters of every DNN layer by propagating the prediction error through
every layer. After performing a forward step, which computes the DNN prediction with respect to
a batch of input data, a loss function L is called to compute the prediction error with respect to the
labels associated with the input data. During the forward step, the input activations of every layer
are stored for the following steps. Given the gradient of the loss function with respect to the DNN
prediction (error), the backward step computes the optimization parameters (weight gradients) of every
layer, whose weights are updated by an optimizer (e.g., Stochastic Gradient Descent). We depict BP
flow in Fig. 2a. While showing state-of-the-art accuracy, the backpropagation algorithm requires high
memory storage (i.e., for DNN activations and gradients) and computation, since the compute cost of
the backward step is attested as = 2x the one of the forward.

To reduce such memory and computation demands, Lillicrap et al. [11] demonstrated that DNNs can
be effectively trained using fixed random feedback connections. Building on such an approach, Nekland
introduced DFA [12], in which the DNN prediction error is directly broadcast to every layer through
fixed random connections, rather than being backpropagated sequentially through each layer. More
specifically, given a DNN composed of fully-connected layers, the error 8 at layer [is directly derived
from the error of the entire network §°"PUt through a fixed, random noise matrix B of appropriate size:

8=
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where d! is the input activation at layer I, o’ the derivative of layer’s [ activation function (e.g., ReLU),
and - indicates the Hadamard product. Note that, in the case of BP, g—jl = wihtl. 5l+1, where Wit are
the weights of the following layer, which impose sequential error computation.

Thanks to DFA, all hidden layers receive the error information in parallel, effectively decoupling their
weight updates, which are sequentially computed in case of BP, as depicted in Fig. 2b. Moreover, DFA
increases the biological plausibility of deep learning models and offers greater architectural flexibility,
since learning does not rely on perfectly mirrored feedforward and feedback pathways. DFA has been
shown to achieve competitive performance (e.g. on MNIST and CIFAR-10) that approaches the accuracy
of conventional BP, validating it as an effective alternative for training neural networks [13].
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(a) Training steps with BP. (b) Training steps with DFA.

Figure 1: Comparison of the BP and DFA training algorithms.

2.2. PULP and PULP-TrainLib

We benchmark our ODL implementation on a System on a Chip (SoC) based on a Parallel Ultra-Low
Power architecture. PULP is a scalable edge computing platform built for energy-efficient computation,



based on RISC-V cores. We target a SoC inspired by Vega [14], a 10-core MCU featuring a single
core for system control tasks, and a 9-core cluster, designed to accelerate compute-intensive tasks.
At the system level, the SoC features 2 MB of L2 memory, accessible by the single core, while the
cluster is equipped with 128 kB of L1 memory, accessible in a single cycle by the parallel cores. Data
stored in L2 can be accessed by the cluster via a reserved DMA. Every core implements a standard
RV32IMFC instruction set, extended with a custom DSP ISA (Xpulp) to reduce overheads in highly
uniform workloads, such as matrix multiplications, including post-increment load/store instructions
and 2-level hardware loops. Finally, each cluster core is equipped with a mixed-precision Floating-Point
Unit, supporting single-cycle DSP instructions, like Fused-Multiply-Accumulate.

We develop our DFA training kernels on top of PULP-TrainLib [4], an ODL software library for PULP
SoCs featuring latency- and hardware-optimized training kernels to support BP on ultra-low-power
edge devices. We profile our code using GVSoC [15], a behavioural event-based simulator capable of
simulating our SoC’s latency within 10% error compared to real hardware.

3. Baseline Implementation

We implement the baseline kernels of DFA on a PULP architecture. Furthermore, we analyze the
computational and memory costs of a single fully-connected layer (Tab. 1) , comparing them with BP.

Fully connected layer:
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Table 1

Comparison of the main calculations involved in the Forward and Backward/Feedback passes with BP and DFA
on fully connected layer. We assume the kernel Whas A rows and B cols, and an output of O classes. The Memory
columns highlights the tensors that would need to be stored in a straightforward implementation.

The forward pass consists of a matrix-vector multiplication for both methods, while the potential
computational advantage of DFA over BP is assessed in the backward step. In such phase, BP computes
a dot product between the transposed weight kernel and the propagated error vector, whereas DFA
replaces this step with a multiplication of the output error by the noise matrix B. Notably, the compu-
tational cost of the feedback pass in DFA depends on the dimensionality of the output layer, i.e., the
number of output classes. Given a DNN model with L layers, indeed, the matrix-vector multiplication
of layer I, during the feedback pass, features a size of dim(a") x dim(ab), where dim(d)) indicates the
dimensionality of the activation at layer a’ and a! the DNN’s prediction. In contrast, the BP feedback
pass of every layer scales with the size of the succeeding layer’s kernel. After the layer error is computed,
both algorithms derive the weight gradient with the same vector multiplication. Regarding the memory
needed to execute the two training algorithms, DFA introduces an additional memory requirement to
store the feedback matrix B, which needs to be persistently stored throughout training.

We implement the training kernels of DFA for fully-connected layers on top of the FP32 primitives of
PULP-TrainLib. In particular, we implement the feedback step functions of DFA, while the forward step
functions are shared with BP. Our feedback step functions are implemented using PULP-TrainLib’s
latency-optimized matrix multiplication fuction, to exploit loop unrolling and multi-core parallelization
over the PULP cluster. This requires creating the data structures and buffers to exploit these functions.
For every layer [, the respective B matrix is allocated in the L2 memory of the PULP MCU and initialized
with random coeflicients, which exported from the trained model the same way as the layers weights.
Finally, we reuse PULP-TrainLib’s stochastic Gradient Descent (SGD) optimizer.

Fig. 4 reports the results of an experimental assessment of our implementation over single layers



with growing input and output sizes, measuring actual execution times and memory footprint. For
DFA, we assume an output error referred to a 10-class problem, like MNIST and CIFAR-10. As both
BP and DFA use the same matrix multiplication kernel, we measure the same forward latency. In
the feedback/backward phase, however, DFA consistently outperforms BP: the feedback pass is faster
since the B matrix is smaller than the transposed weight matrix W. This advantage grows with the
kernel size, reducing latency from -36% to -41% compared to BP. Nevertheless, the overall speed-up in
training is constrained by the weight gradient computation, which is identical for both algorithms, and
remains the dominant cost in the backward/feedback stage. The B matrix also slightly increases the
total memory footprint, being an order of magnitude smaller than W and its gradient, which has the
same size.
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Figure 2: Comparison of BP and DFA over single layers in terms of latency and memory needed.

We benchmark the performances of a full DNN by deploying a model featuring two fully connected
layers (first layer with 784x36 kernel and ReLU activation, second layer 36x10 with softmax activation
for classification) to our simulated PULP platform and evaluated its training performance on the MNIST
dataset. We trained this network using Biotorch!, a PyTorch-based library specializing in biologically
plausible learning algorithms that supports DFA among other training algorithms. We trained the
model using Crossentropy loss function, SGD with optimizer with 10™* learning rate for both the DFA
and BP. For the DFA we used a xavier distribution for noise matrix initialization. Results are shown
in Table 2, where the proposed DFA approach is compared with the BP obtained with a PyTorch
training and deployment with PULP-TrainLib. The results in Table 2 from this baseline show that:
i) classification accuracy at convergence is comparable between BP and DFA, confirming that DFA
can be used effectively even in networks trained directly on microcontrollers without degradation
in final performance. ii) training latency and memory occupation is also comparable between the
two approaches. This is largely due to both methods relying on the same highly optimized matrix
multiplication routines, and the relatively small size of the feedback matrices in this shallow network.

Training Accuracy Forward Latency ~ Backward/Feedback Latency =~ Memory

Method  with 15epochs 1 Core 8 Cores 1 Core 8 Cores occupation

BP 98.2 248K cc  39Kcc 34.5Kcc 70K cc 242 KB

DFA 97.9 24.6Kcc  4.0Kcc 345K cc 6.9K cc 246 KB

Variation +0.3% -0,5% +1,0% -0,1% -2,7% +2,1%
Table 2

Results over a tiny DNN.

'https://github.com/jsalbert/biotorch



4. Envisioned DFA Optimizations

In Section 3, we demonstrated the feasibility of DFA deployment on PULP MCUs. Results on a tiny DNN
show only limited advantages of DFA over BP, although these benefits increase with larger layers, as
confirmed by our tests. Nonetheless, the envisioned optimizations described in this section, which will
be implemented over the proposed baseline DFA, can deliver significant latency and memory reduction
compared to BP.

Update Parallelization One of the often-cited advantages of DFA over BP is its inherent parallelism.
In BP, the computation of gradients is inherently sequential, as each layer depends on the error signal
propagated from the subsequent layer. In contrast, DFA allows each layer to calculate its weight gradient
independently, using the same global output error and its own feedback matrix B. This characteristic
makes DFA an attractive candidate for parallel execution in multiple computingnits. However, PULP-
TrainLib backpropagation kernels are able to exploit fine-grained intra-layer parallelism, achieving
up to 7.5x speedup when running a single-layer BP over 8 cores. This leaves limited headroom for
additional speedup through inter-layer parallelism, as would be enabled by DFA. Since the theoretical
maximum speedup for parallelizing DFA across 8 layers (or cores) is 8x, the benefit over the existing
implementation is marginal at best. Therefore, we did not pursue a parallel DFA implementation on this
platform, as it would offer negligible gains over the already optimized BP kernels. That said, the situation
may differ significantly on other microcontroller-class platforms where optimized training libraries are
not available, or where compilers and runtime support do not automatically extract parallelism from
BP. In such cases, DFA could provide a clean and hardware-friendly strategy for exploiting parallelism
in on-device training. By enabling independent, concurrent weight updates across layers, DFA could
better utilize idle cores or distributed computing elements, especially in platforms with limited support
for shared-memory parallelism.

Unique Noise matrix According to Launay et al. [16], a single global feedback matrix B can be
shared across all layers in Direct Feedback Alignment (DFA), provided that appropriate slicing is applied
to match each layer’s shape. Specifically, rather than assigning a separate noise matrix B; to each layer,
a unique B of sufficient size can be statically allocated, and each layer can use a dedicated slice of it
for its gradient computation. This approach, depicted in Fig. 3 reduces the total memory required for
storing feedback matrices from ) ; dimout x dimin, i to just the maximum slice needed. On MCUs with
tight memory budgets, this optimization is especially beneficial when scaling to deeper networks. This
approach is showing to achieve optimal accuracy with fully connected layers, but it is limited with deep
convolutional ones.
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Figure 3: DFA with a shared noise matrix B.

Memory buffer sharing for activations In standard backpropagation (BP), each layer’s input
activations must be stored during the forward pass, since they are later required to compute gradients
in the backward pass. This causes the memory footprint to grow with network depth. DFA) relaxes
this requirement. Since each weight update depends only on the current layer’s input activations
and the global output error, layers weights can be updated in any order. As illustrated in Fig. 4a, we



propose reusing a single memory buffer, sized for the largest activation vector in the network. During
the forward pass, depicted in red, activations are not stored but simply overwritten layer by layer,
with the sole purpose of computing the network output and the global error §,,,. Once the error is
available, training can proceed layer by layer in forward order. For layer I — 1, the input activations are
recomputed on-the-fly, immediately used to compute the weights gradient. Now activation for layer /
can be computed and then the layer / — 1 updated and its activation discarded. The procedure continues
for layer [, then I + 1, and so forth. In this way, activations are never accumulated in memory, and the
buffer can be reused across all layers. Such scheduling would be prohibitive for BP. Because weight
updates must start from the last layer and proceed backwards, omitting stored activations would require
repeatedly recomputing large portions of the forward pass, as shown in Fig. 4b. Each earlier layer would
therefore add considerable overhead. The advantage of DFA becomes more pronounced as the network
depth increases. While this approach introduces additional computation due to repeated forward steps,
execution time is often a soft constraint in ODL, whereas memory is a hard one to accomodate large
networks.
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Figure 4: Comparison of the BP and DFA training algorithms implemented without storing activation vectors.

Sparse Weight Update and Layers Freezing In [17], sparse weight update and layer freezing are
identified as common ODL techniques to reduce training computation. Sparse weight update uses a
sparse feedback matrix to modify only weights that are expected to be more sensitive. This approach
has be demonstrated when combined with DFA [18], suggesting a potential path to further reduce
computational cost without significantly impacting accuracy. Layer freezing focuses on updating only
a subset of layers during training. Besides for ODL, it has been shown to work effectively with BP also
in a federated learning context [19]. A layer freezing strategy could be particularly effective with DFA,
as weight updates are parallel and independent; thus, one could adjust the number of updated layers
according to the available time or energy budget. Further investigation is required to assess the efficacy
of this approach in combination with DFA.

5. Conclusion

In this work, we presented a baseline implementation of the DFA algorithm on the PULP platform,
which, to the best of our knowledge, represents the first implementation on MCUs. The implementation
exploits the optimized kernels available in the PULP Train-Lib, combining it with DFA training available
in Biotoch. This approach achieves comparable latency results to standard BP already available in
PULP-TrainLib. Moreover, we envision some possible optimization techniques to improve latency or
reduce the training memory by exploiting the independence of every layer update provided by DFA.
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