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Abstract

This paper investigates the scalability of a variant of the well-known Ant Colony Optimization (ACO) algorithm
for search operations in a distributed knowledge graph, with a focus on the algorithm’s performance under
increasing query loads. The data is represented as RDF triples, and the underlying network topology models a
typical edge—fog—cloud architecture, reflecting scenarios relevant to the edge-cloud domain. Assuming nodes
with infinite processing capacity, we show that the hit rate, the primary performance metric, initially increases
with query frequency and eventually saturates. In contrast, when node processing capacity is finite, the hit rate
exhibits a critical threshold after which performance declines. We analyze the behavior of the system under
different query regimes, focusing on network utilization and pheromone-level dynamics. Finally, we discuss the
feasibility of implementing such a system in practice and its potential implications for real-world applications.
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1. Introduction

The Edge-Fog-Cloud continuum represents a transformative paradigm in distributed computing, driven
by the increase of complexity in IoT (Internet of Things) devices, its number in a running system,
and data-intesive applications to be processed. Traditional cloud-centric models face key limitations,
such as latency, privacy concerns, and energy inefficiency. Distributed computation paradigms are
closer to the data sources in the edge and fog layers, thus enhancing overall system performance
and responsiveness [1]. The edge layer, in particular, offers critical advantages that include increased
security, reduced latency and energy consumption, support for autonomous operations, and adaptability
to dynamic data volumes and heterogeneous users [2].

Robustness in such distributed environments is essential due to the dynamic and often unpredictable
nature of edge-fog-cloud networks. Systems must withstand challenges posed by malicious agents that
can disrupt data integrity or routing, nodes that fail unexpectedly, intermittent link breaks, and the
continuous addition or removal of nodes reflecting network mobility and scaling. These factors create a
volatile environment where search and data management operations must adapt to maintain efficiency
and accuracy. Testing for node movement and network changes is thus critical to evaluate the resilience
of algorithms and protocols designed for this continuum. The search in dynamic environments of
distributed knowledge graphs requires scalable, robust, and efficient solutions capable of handling such
uncertainties [1, 2].

1.1. Contribution

Ant Colony Optimization (ACO), inspired by the foraging behavior of ants, offers a promising approach to
address these challenges. By leveraging decentralized, self-organizing mechanisms based on pheromone
trails, ACO algorithms can dynamically adapt to network changes, optimize routing paths, and maintain
high search performance even under varying loads and network conditions [3, 4]. This paper investigates
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the scalability and robustness of an ACO variant applied to search operations over Resource Description
Framework (RDF) triple-based knowledge graphs distributed across an edge-fog-cloud architecture,
analyzing performance under different query loads and network dynamics.

1.2. Outline

The paper is organized as follows: Section 2 gives a general description of the problem and a detailed
system model of the DKG in the edge-fog-cloud continuum. Section 3 summarizes the related work for
RDF (Resource Description Framework), ACO and scalability analyses in swarms. Section 4 presents
the main principles for the ACO-related pheromone search in the network. The evaluation of the hit
rate and network utilization is described in Section 5 forming the base for the actual scalability analysis
in Section 6. The paper is concluded in Section 7.

2. Background

2.1. Problem Statement

We study search and data movement on a distributed knowledge graph (DKG) using the ACO algorithm.
The architecture of our knowledge graph is reflecting an example of the edge-fog-cloud continuum. We
assess the complex system properties, such as scalability, fault tolerance and robustness, and adaptability.
Our approach is compared with other known search algorithms with respect to their efficiency.

2.2. System Model

The edge-fog-cloud continuum is modeled as a hierarchical network that dynamically maps different
slices of the DKG across the edge, fog, and cloud layers. An example of a hierarchical network is
shown in Figure 1, where the proportion of edge-fog-cloud nodes is 5 : 4 : 1. The DKG is a novel
approach to knowledge representation and data management [5], and provides a real-time perspective
of relevant data distributed throughout the network. Physically, each part of the DKG is stored on a
device such as an IoT device, or a (micro) data center, forming the edge-fog-cloud continuum. The DKG
is represented using the RDF, which stores data as a directed graph. RDF expresses data in the form of
triples: subject-predicate-object [6]. In this work, the DKG triples are distributed across various devices,
without a central overview. Therefore, we model the DKG as an undirected graph G(V, E), where the
vertices V represent the physical nodes N = {ny,na, ..., nx}, and the edges E represent the (physical)
connections between the nodes A/, forming the neighborhoods 8 C N : <= Vn € N:n € N. The
graph is finite, but dynamic, as nodes can be added or removed at runtime. For this study, we consider
a constant number of nodes. The data partitions P = {p1,p2,...,pj,...,pn} are distributed over the

nodes V, where each partition consists of a set of triples p; = Ulfg l {3 tfj, tg;), with [p;| denoting
the number of triples on the node n;. A query () represents a pattern in which one or more positions
of the triple subject-predicate-object are replaced by a wildcard (an asterisk). For example, a query
for an unknown subject with a known predicate p and an object o can be formalized as Qs = (x,p, 0).
Other types of query follow the same logic. If a node n; contains at least one triple that matches the
query pattern, we call it a matching node m;. For each query, there exists a set of all matching nodes,
M = {my,ma,...,mp}, where M C N and M = | M| is the number of matching nodes in the
network. If no matching triples are present on any node, then the set is empty M = (). A node can
hold more than one matching triple.

Each query () maps to a keyword k derived from its predicate p and object o, typically via string
concatenation or hashing. This keyword uniquely identifies a pheromone in the ACO system.

Each node n; maintains: a list of direct neighbors N;; a record of forward ants JF;, tracking which
ants have visited; a pheromone table 7; = U';i‘l AR

ij
lejl 1i, listing the costs to each neighbor.

storing pheromone values for each keyword k

toward neighbor n;; a link cost table £; =



BN | /
_ k/ /o 2
//\ cloud

~ fog
/ / \\ edge

Figure 1: A random network containing 30 nodes in 3 layers. The first layer (cloud) has 3 (red), the second layer
(fog) has 12 nodes (green). The nodes in the second layer with the same parent have a 0.3 probability of being
interconnected. The third layer (edge) has 15 nodes (blue).

3. Related Work

Processing large-scale RDF datasets [7] presents significant challenges that demand modern algorithmic
techniques and optimization strategies, given the ever increasing data volumes. Efficient slicing and
querying of such vast knowledge bases can be achieved through algorithmic improvements [8]. Several
enhancements to these engines have been proposed [9]; for instance, leveraging the FLINK framework
has shown promise for processing distributed RDF stores [10]. In addition, advanced methods such as
evolutionary algorithms have been explored to support efficient search in DKG [11], and the use of
ACO techniques has also been suggested.

Ant optimization is a robust model introduced in seminal works [12, 13]. By employing virtual ants
that navigate a network in search of “food" and deposit pheromone trails, optimal routes between
key resources can be swiftly identified. ACO algorithms represent problems as graphs, where each
solution corresponds to a path. The cost of a solution is determined by the cumulative costs of the
path’s edges, with the objective being to discover the path with the minimum cost. This algorithm has
demonstrated success across diverse applications and variations, including vehicle routing [14], vehicle
routing with pickup and delivery [15], and job-shop scheduling [16]. Also, ACO has been proven to be
successful when used for dynamic routing for mobile networks [17]. Ant optimization has also been
applied effectively within the realm of knowledge graphs. For example, the use of ant optimization
algorithms has been explored to support chained queries for large RDF datasets [18]. We would like to
utilize it for the search for data in DKGs, as already proposed by the authors in [3, 4].

The properties of complex systems, such as scalability, robustness, or fault tolerance, require precise
formulations and measurements [19, 20]. The question of scalability both in computing and in robotics
has attracted much research attention [21]. In these studies, it has been shown that the performance
of a swarming system may increase (to a limit) with increasing the number of involved agents and
that this is an important characteristic of a self-organized swarm system. We are interested to study
whether the ACO algorithm for DKG shows this important property.

4. Pheromone-based Search

The ACO-based search algorithm operates through two primary mechanisms: trail following and
trail laying.

Trail following When a query reaches a node n;, it generates a forward ant that follows one of
two strategies: exploration or exploitation. The ant randomly selects between these strategies with
probability w. In the exploration strategy, the ant probabilistically selects its next node n; € N; based
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Figure 2: Steady state hit rate as function of query frequency v for different values of the evaporation coefficient
p, given in the legend, for two different values of matching nodes number, M. Total number of the nodes in the
network, N = 150. Data averaged over 100 simulation runs.

(k)

on local pheromone levels A; j and link costs 7;;, as defined by:

LI
pk) A i

ij :W’
S AL ma

where 3 controls how strongly the pheromone level influences the decision. In this study, we set 8 =1
and the link costs to 1. Future extensions could dynamically adjust these costs based on experience, e.g.,
increasing the cost for links with high latency or low computational performance. The probability in
Eq. (1) is calculated across all neighbors of n;, meaning that the forward ant can split and send clones
to multiple neighbors simultaneously. In the exploitation strategy, the ant selects all neighbors n;
satisfying:

(1)

k k
AP > A 2)
thus focusing only on the best-performing options. In this study, the probability of choosing either
strategy is set to 0.5. When a forward ant arrives at node n;, it checks the forward ant record of the
node (F;) and terminates if a clone of the same ant has already visited that node, preventing redundant
exploration.

Trail laying As the query traverses the network, a backward ant is launched to retrace the route and
update pheromone levels, reinforcing successful paths. The pheromone value at node 7, is updated as:

)\;I;) — )\;I;) + Z , where Z = deMO +(1—wy)- Q.tt(j" . Here, wy is the weighting factor (with wy = 0.5
in this study), M is the number of matching triples, My = 10 and ¢y = 3 are constants, and ¢, is the
query response time. This ensures that the amount of pheromones is proportional to both the quality
of the resources found and the efficiency of the path. Pheromone trails evaporate over time with an

evaporation factor p € [0, 1), gradually removing less optimal paths: A(t + 1) = A(¢)(1 — p).

5. Hit Rate and Network Utilization

Hit Rate The global hit rate is a key performance metric as it reflects the proportion of matching
nodes found on average. Long-time behavior shows that time-dependent hit rate reaches a steady state,
h :=lim;_,o(h(t)), where (... ) stands for the average over different simulation runs. In Figure 2 we
report h for two different matching node numbers: M = 15 and M = 60, with a total number of nodes
N = 150. For each of them we consider the curves h(v) for selected values of evaporation coefficient p:
we consider three small values, p = 0.009, 0.05, 0.1, one intermediate, p = 0.5, and one large, p = 0.9.
For small values of p, we see high hit rates, which increase only very slightly with v and decrease
steadily with M. The behavior at intermediate values of p is notable: it begins with low hit rates at
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Figure 3: Reduced forward ants number ng as function of v for different p and M. Black dashed line shows a
baseline value of M/N.

small v, but increases rapidly as the query frequency increases. At the largest p, it exhibits quite large
hit rates, comparable to low p values. Then, as v increases, the hit rate quickly drops. Further increase
of v leads to a steady growth of the hit rate, again associated with the crossing of a critical threshold.
This drastic difference in h() behavior can be explained if we refer to the characteristic time, 7 = 1/p,
after which a significant quantity of the pheromone evaporates. For p < 0.1, it is 7 > 10 ticks, which is
enough to traverse the largest distance in the network, n = 5, twice. This ensures a stable pheromone
network and good performance reflected in hit rate even for low query frequencies. However, for
p = 0.5, the characteristic time is 7 = 2, which is small, but might be enough for the pheromones to
stay on the short paths with the situation improving when the query frequency increases. For p = 0.9
the characteristic time 7 ~ 1.11. This leads to a very quick pheromone evaporation. Higher frequencies
are beneficial for the pheromone routes as they allow pheromone tables to be updated many times per
time step to resist evaporation.

Forward Ants We measure the average number of forward ants N (t) present in the system at each
time step. This quantity serves as a proxy for network utilization, as each ant can be interpreted as a
message sent between nodes. To make things comparable, we introduce relative number of forward
ants, np(t) := NVF ]\(,t) , we normalize the number of forward ants Nr(¢) by the number of nodes NV
and by query frequency v. We measure the long-term average values of ny(t) and show them for
different parameter values in Figure 3. The curves for small p < 0.1 values all follow each other at
the value of ny ~ 0.2 for M = 15 and the value of ny ~ 0.45 for M = 60. This can be compared
with a baseline value of M /N. For a small number of matching nodes, M = 15, we see that the actual
values of the forward ants are twice higher. For large M = 60, the value of ns is much closer to the
baseline. The intermediate value, p = 0.5, shows a consistently small number of forward ants, which
grows with v. For the case of M = 15, the n¢(v) values are still higher than the baseline. The behavior
of the curve n¢(v) for the highest value of the evaporation coefficient, p = 0.9, is the most peculiar.
At first, we see a large number of forward ants, especially when M is relatively small. Thus, one can
speculate that the relatively higher hit rate for p = 0.9 at low v is connected to the fact that many
forward ants are created, while it is relatively low for p = 0.5, so there are very few forward ants. At
low query frequency and large evaporation coefficient, we might see the behavior of the algorithm
where it produces too many forward ants.

6. Scalability

We follow [19] for scalability and adopt the general formula S := %ﬁﬁ , where % AP is the change

in performance and %AN is the change in agent number. Our performance is measured as the hit
rate h. Then, we can use v as a proxy for the number of agents N. We then re-write the formula as

§ = Uhussh)ihy

Scalability, S exhibits a different behavior for different sets of parameters (see Figure 4). We know
that for low p values, there is almost no dependence of h on v, so scalability stays around zero in
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Figure 4: Scalability of the system, S, for increasing frequency of queries, . Case of infinite capacity. Three
numbers of matching nodes are considered, M = 15, 30, 60. Total number of nodes N = 150. Different values
of evaporation coefficient are given in the legend.

this case. Since the system already performs well at low values of v, increasing the query frequency
does not produce significant performance gains. Furthermore, because nodes are assumed to have
infinite processing capacity, higher values of 7 do not lead to any performance degradation. For the
intermediate value of p = 0.5 we see that scalability goes above zero and in some cases even above one
as v increases highlighting the emergence of the pheromone routes which facilitate the search. For the
highest value of the evaporation coefficient p = 0.9, the picture is even more interesting. As we know,
for very little v values a large number of forward ants is present, resulting in relatively high values of h
and overall performance of the search algorithm. Thus, increasing v marks a transition from many to
few forward ants, while the routes are not stable enough to guide the ants. Then, with increasing v,
stable pheromone routes start to appear, and the scalability not only becomes positive but also S > 1,
indicating super-critical growth. For even higher values of v, the scalability steadily approaches zero,
which means that the system is reaching its peak performance.

7. Conclusion

In this work, we applied the Ant Colony Optimization (ACO) algorithm to the problem of searching
in distributed knowledge graphs (DKGs) structured according to an edge—fog—cloud continuum. We
demonstrated that in systems with infinite processing capacity, increasing the query frequency leads to
more efficient pheromone trails and improved hit rates. In particular, in settings with a high evaporation
coefficient, we observed an emergent scalability effect, where higher query frequency reinforced
pheromone-based routing.

Future work will examine this hypothesis, along with the model’s robustness and fault tolerance,
such as resilience to node or link failures or to errors in pheromone signal interpretation. Another
key direction is the practical implementation of this search mechanism in real-world edge-cloud
infrastructures. Our ongoing work focuses on implementing ACO using forward and backward ants as
messages exchanged between nodes, dynamically updating local pheromone tables.
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