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Abstract

The recent advances in Artificial Intelligence (AI) are radically transforming the healthcare sector. Implementing
the related solutions presents significant challenges, ranging from managing data quality and heterogeneity to
compliance with stringent regulations (e.g., GDPR and HIPAA). In this context, MLOps emerges as a crucial
solution to address these issues through a set of practices and tools. As a result, MLOps-based pipelines play a
pivotal role in the effective management of Machine Learning (ML) models, which is vital to support diagnostic
and prognostic activities. On the other hand, the development of healthcare systems should also consider several
cybersecurity aspects required by the same regulations. To this end, the Cybersecurity Framework (CSF) 2.0,
developed by the National Institute of Standards and Technology (NIST), describes updated guidelines to mitigate
cybersecurity risks. Therefore, adopting MLOps with the support of the CSF represents an essential step for
enabling the transition of ML models to enabled devices and improving the security of healthcare systems. For
this reason, in this work, we present the high-level architecture of an MLOps pipeline employed by the DARE
(DigitAl lifelong pRevEntion) foundation. Moreover, we also analyze its feasibility in satisfying CSF requirements,
with particular emphasis on those related to data security, detection, and recovery.
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1. Introduction

In recent years, Artificial Intelligence (AI) and Machine Learning (ML) have revolutionized the healthcare
sector, providing powerful tools to face complex challenges. For instance, many ML-based models
were increasingly experimented to assist physicians in a wide range of activities, such as disease
diagnosis [1, 2], treatment personalization [3, 4], and patient monitoring [5, 6]. However, despite the
excellent results obtained, most of the attempts to employ ML-based approaches have not overcome the
prototypical status [7]. This generally happens because the transition of ML prototypes to ML-enabled
medical devices represents a complex process due to the numerous and strict existing regulations (e.g.,
GDPR and HIPAA) [8]. Moreover, this transition requires a complex interdisciplinary endeavour in
which data scientists need to collaborate with software engineers, operations teams, domain experts,
and end users to build a successful product [9].

For this reason, new ML engineering practices, known under the terminology of Machine Learning
Operations (MLOps), are emerging to support this transition [10, 11]. Consistent with the principles of
DevOps (Development Operations), MLOps aims to bring automation to the development workflow
of ML-enabled systems by streamlining the ML models’ lifecycle [12, 13]. To this end, MLOps can
enhance operational efficiency, allowing teams to focus on innovation and strategic goals rather than
repetitive tasks [14, 15]. Furthermore, the MLOps scalability enables organizations to manage large
datasets and release models more easily [16]. Consequently, MLOps-based pipelines have gained a
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strong interest in the healthcare industry, in which the correct management of the models’ lifecycle is
essential to support diagnostic and prognostic activities [17, 18].

However, despite being crucial in healthcare, only some cybersecurity aspects have been relatively
investigated [19]. Instead, a further effort should concern the exploitation of MLOps to make the related
development environments more compliant with the most notable security frameworks. Moreover, the
increasing complexity and spread of cyber threats force organizations to adopt even more advanced
mitigation strategies. For instance, model inversion attacks represent one of the pressing threats due
to their ability to exploit model outputs and, through several reverse engineering steps, reconstruct
training data or make inferences on them [20, 21]. Consequently, the deployment of ML models also
requires reliable mechanisms of Role-Based Access Control (RBAC), in which each user can access only
to specific data or artifacts, and be logged during the model’s lifecycle [22].

In response to these challenges, the Cybersecurity Framework (CSF) 2.0, defined by the National
Institute of Standards and Technology (NIST), provides updated guidelines to address security challenges
in an ever-evolving technological landscape [23]. The CSF is a strategic tool to protect digital assets,
enhance stakeholder trust, and improve the organizational’s resilience. Since each organization presents
unique risks, varying risk tolerances, specific missions, and desired objectives, the CSF does not embrace
a one-size-fits-all approach. Instead, it recommends its implementation by employing several emerging
technologies and solutions [23].

Therefore, adopting MLOps with the support of the CSF represents an essential investment to help
the transition of ML-based models to enabled devices. Moreover, their employment also improves the
security of healthcare organizations like DARE (DigitAl lifelong pRevEntion) [24], a foundation financed
by the Italian Ministry for University & Research (MUR) to foster collaboration between healthcare,
academia, industry, and policymakers. In detail, DARE aims to become a national reference for digital
prevention technologies, enhance health promotion, and enable lifelong prevention. To achieve such
goals, DAREF needs a compliant infrastructure capable of hosting different research studies, managing
healthcare data securely, and developing reliable AI models.

For this reason, in order to study the feasibility of MLOps pipelines in ensuring several cybersecurity
aspects, we first define a high-level MLOps pipeline employed by the DARE foundation. Then, by
adopting the CSF, we analyze its validity in ensuring different requirements, with particular emphasis
on those related to data security, detection, and recovery.

The main contributions of this work can be summarized as follows:

1. We define the high-level architecture of an MLOps pipeline employed in a healthcare foundation;
2. We adopt the CSF to analyze the pipeline’s feasibility in ensuring different requirements, namely
data security, detection, and recovery.

The remainder of the paper is organized as follows. Sec. 2 will present the related works on MLOps
pipelines employed in healthcare scenarios. Sec. 3 will report an overview of the CSF’s structure
and MLOps. Then, Sec. 4 will define the architecture of our MLOps pipeline employed for the DARE
foundation. Finally, Sec. 5 will analyze the feasibility of the pipeline in ensuring CSF requirements,
while Sec. 6 will present the conclusions and future work.

2. Related Works

Several studies have explored the application of MLOps frameworks in healthcare with the aim of
enhancing the development, deployment, and management of ML models in clinical settings [25, 10, 11].
These contributions are essential for bridging the gap between prototypical research and practical
implementation in such domains, which are typically highly regulated [8, 26]. MLOps practices can
thus provide crucial benefits such as reproducibility, maintainability, trackability, and regulatory
compliance [12, 13].

To this end, A. Basile et al. [27] have proposed a comprehensive MLOps pipeline by integrating
many famous tools for version control, experiment tracking, and continuous monitoring. Instead, V.



Moskalenko et al. [17] have introduced several practices designed to enhance the robustness of medical
diagnostic systems. In detail, they have implemented additional pipeline stages to face prevalent issues
related to healthcare environments, such as the risks associated with adversarial attacks, fault injections,
and distribution shifts.

Moreover, an additional effort has been made by implementing several MLOps-based tools, such
as that proposed by A. Krishnan et al. [28]. In detail, they have developed CyclOps, an open-source
framework to address the fragmented nature of ML tools in healthcare units. The achieved results,
derived by predicting in-hospital and decompensation mortality, have proven the effectiveness of
CyclOps in ensuring the adaptability, scalability, and reliability of the developed ML models. Similar
outcomes have been shown by Advanced Notebook (ADVN), a tool proposed by G. Danciu et al. [29] to
standardize data ingestion and manage ML models in two major EU projects: iHELP and RETENTION.
In such studies, the authors have employed ADVN to predict the risk of pancreatic cancer using urinary
biomarkers (in iHELP) and estimate heart failure survival (in RETENTION). The related use cases
have highlighted the versatility of ADVM in handling various medical challenges and improving the
development process. Finally, T. Granlund et al. [30] have employed Oravizio, a CE-certified software
used in joint replacement surgery risk assessments, to demonstrate how MLOps can ensure data privacy
laws and regulatory standards without compromising performance. To accomplish this, the authors
have designed a continuous training pipeline to automate data validation, model re-training, and the
generation of regulatory-compliant reports.

However, as shown in Tab. 1, only some cybersecurity aspects have been relatively investigated [19].
Instead, since the adoption of CSF with MLOps represents an essential investment to support the
transition of ML-based models to enabled devices, this study aims to analyze the feasibility of MLOps
healthcare pipelines in ensuring several cybersecurity requirements.

Reference Feature Gap & Novelty
X No use of well-known cybersecurity
— Enhance the robustness of techniques or protocols
V- Moskalenko et al. [17] medical diagnostic systems v Analyze risks like adversarial attacks,

fault injections, and distribution shifts

X No cybersecurity analysis is done
(just some considerations)
v Employ anonymized data

— Integration of ADVN to manage

G. Danciu et al. [29] data ingestion and ML models

X No cybersecurity analysis is done
- Continuous generation of (just some considerations)
regulatory-compliant reports v Ensure data privacy laws and
regulatory standards

T. Granlund et al. [30]

v Feasibility analysis of data security,

Our proposal - Adoption of the CSF 2.0 detection, and recovery

Table 1
Security-oriented comparison between the existing MLOps-based solutions and our proposal. For each Reference,
the following table highlights the related Feature (-), Gap (X), and Novelty (V).

3. Background

This section provides an overview of the fundamental concepts related to the proposed pipeline. For
this reason, we first recall the structure of CSF and the related Functions. Then, we briefly summarize
the main characteristics of MLOps, which represent the adopted framework.



3.1. The Cybersecurity Framework 2.0

The Cybersecurity Framework (CSF) 2.0, defined by NIST, is designed to help organizations of all
sizes and sectors to manage and reduce their cybersecurity risks [23]. Since each organization has
different risks and desired objectives, the CSF does not embrace a one-size-fits-all approach. Instead,
the way how organizations implement CSF can vary and involve different emerging solutions. For this
reason, the CSF describes the cybersecurity outcomes and requirements for a broad audience, including
executives, managers, and practitioners, regardless of their cybersecurity expertise. As shown in Fig. 1,
such outcomes are mapped into a dedicated list known as Core, and which consists of 6 Functions,
namely Govern (GV), Identify (ID), Protect (PR), Detect (DT), Respond (RS), and Recover (RC).

I Cybersecurity Framework Core |
|

Functions | Categories | ‘ Subcategories |

| i |

Figure 1: The high-level Core’s structure [23].

These outcomes do not represent a checklist of actions to perform but, instead, high-level requirements
that an organization should ensure in relationship with its use cases. In detail, each Function is divided
into Categories that represent a subset of cybersecurity outcomes. Finally, subcategories further divide
each Category into more specific outcomes. Fig. 2 reports the Categories associated with each Function
and the related identifiers.

Funetion Category |Dlllmldu|ﬂer
Govern (GV) Organizational Context IEUDE
Risk Managerment Strategy |Ei|.I'RM
Roles, Responsibilities, and Autharities IE'.I'RH
Palicy ||s|.rm
Oversight |m.rmr
Cybersecurity Supply Chain Risk Managerment

Figure 2: The CSF Categories with the related identifiers [23].



3.2. Machine Learning Operations

The acronym MLOps (Machine Learning Operations) represents the evolution of DevOps (Development
Operations) practices applied to the lifecycle of ML models [12, 15]. MLOps offers significant advantages
by streamlining and automating the complex lifecycle of ML models [12, 13]. For instance, MLOps
enhances operational efficiency, allowing teams to focus on innovation and strategic goals rather than
repetitive tasks [14, 15]. MLOps ensures that models are continuously updated, tested, and monitored for
optimal performance [14]. Moreover, it minimizes risks, performance degradation, and data drift [13],
enabling organizations to manage large datasets and released models [16].

Therefore, MLOps focuses on all aspects of ML models, from the requirement analysis to monitoring in
production. In detail, the lifecycle involves several stages, each closely tied to monitoring, maintenance,
and continuous updates. In MLOps, the lifecycle does not end with the initial training phase but
extends to ongoing management and optimization, enhancing the model’s ability to adapt to dynamic
changes. Also, the employment of a Continuous Integration and Continuous Delivery (CI/CD) approach
significantly contributes to the model’s stability and reliability over time [31].

However, due to the growth of cybersecurity threats, it has become essential for MLOps to manage
security aspects. In such cases, the adopted terminology is known as SecMLOps or MLSecOps [22].
Although it is difficult to identify a common and widely accepted definition, we can refer to that provided
by B. Ghosh [32]. In detail, he defined MLSecOps as “implementing and managing a set of processes,
tools, and best practices that are designed to secure machine learning models and the systems that
support them. It aims to address the unique challenges of securing ML models at scale”

4. The proposed MLOps pipeline

As previously mentioned, the integration of MLOps represents a crucial step towards adopting safe,
reliable, and effective ML-based approaches, which are increasingly experimented in the healthcare
domain to assist physicians in a wide range of activities, such as disease diagnosis [1, 2], treatment
personalization [3, 4], and patient monitoring [5, 6]. However, despite the excellent results, these
approaches require rigorous management to ensure data quality, model robustness, and compliance
with privacy and security regulations [19]. For this reason, we first present the high-level architecture of
a pipeline employed in a real healthcare foundation. Then, we introduce the MLOps development cycle
inside our pipeline by mapping the related steps. For clarity, since it would be out of the scope of this
work, the provided definition refers only to a high-level architecture. Consequently, we do not report a
technical definition of the pipeline, but remand to [17, 27, 33] for more detailed implementations.

Toolchain
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Figure 3: The High-level pipeline architecture and the related toolchain.



4.1. High-Level Architecture

The proposed pipeline aims to securely manage healthcare data and deploy reliable AI models while
ensuring adherence to regulatory and ethical standards. Therefore, intending to provide a compliant
infrastructure capable of hosting different research studies for the DARE foundation [24], we structured
our pipeline into the following steps shown in Fig. 3:

1. Data Collection: data are systematically gathered from multiple sources, including table data,
DICOM medical imaging files, and other structured or unstructured datasets. Furthermore, this
step incorporates rigorous provenance tracking to ensure compliance with consent protocols and
legal approvals before data ingestion;

2. Data Processing: once gathered, data undergoes comprehensive processing activities to ensure
its suitability for the research goals. In detail, this step involves systematic cleaning and transfor-
mation procedures to enhance the data quality and consistency, addressing also issues related
to missing values and inaccuracies. The processed data is thus standardized and aligned with
established clinical frameworks, including Fast Healthcare Interoperability Resources (FHIR) and
Observational Medical Outcomes Partnership (OMOP), to facilitate seamless interoperability;

3. Model Management: next, the processed data are péeriodically organized and stored within a
data lake infrastructure, which is capable of handling several data formats. To this end, the Model
Management integrates relational databases, Picture Archiving and Communication Systems
(PACS), and servers that adhere to widely recognized clinical standards. This step also incorporates
mechanisms for controlled data retention, avoiding unnecessary storage prolongation. However,
the primary aim of this step is the development of Al and ML models. For this reason, these
models leverage the processed data to extract relevant insights for the decision-making activities;

4. Results Visualization: finally, the developed models are deployed inside real healthcare appli-
cations to face different tasks. For this reason, it is crucial to monitor the related performance
by tracking each execution along with the associated input configurations. Consequently, the
pipeline must also incorporate specific monitoring tools, such as interactive dashboards and
decision-support systems. These tools become pivotal in providing a comprehensive visualization
of the results, enabling physicians and Al experts to assess the models’ performance.

4.2. The role of MLOps

During our experience inside the DARE foundation, we encountered several challenges related to the
development environment. To face them and be compliant with existing regulations, we thought that
MLOps was the best solution to ensure high-quality data and release safe models. For instance, thanks
to its CI/CD nature, MLOps can monitor the related outcomes by providing accurate prediction tools
for the diagnostic and prognostic processes [12].

Therefore, starting from the healthcare pipeline shown in Fig. 3, we continue its definition by
explaining the role played by MLOps. To this end, we first describe the main MLOps steps. Then, we
conceptually map such steps over our pipeline and show how MLOps fully supports the entire workflow.
According to the definition provided by Moskalenko et al. [17], the MLOps development cycle, however
complex it is, can be summarized in the following steps shown in Fig. 4:

Continual and Active Learning Loop

Model
Data Development & Model Performance
Preparation Training & Deployment Monitoring

Evaluatlon

I Data, meta data and model storage I

Figure 4: The development cycle of MLOps pipelines [17].



1. Data Preparation: it is responsible for data management and ensures that the employed datasets
comply with all healthcare standards and regulations [8, 34]. To this end, several tools, such as
DVC [35], Deepchecks [36], and Great Expectations [37], can support developers in collecting,
gathering, cleaning, and transforming data before the training process;

2. Model Development: it iteratively builds models by tracking all related hyperparameters.
Typically, thanks to their large communities, MLflow [38] and ClearML [39] are two of the most
famous platforms employed to manage this step;

3. Model Deployment: it integrates the developed models into specific services or diagnostic tools.
For this purpose, MLOps frameworks rely on CI/CD pipelines (e.g., built by combining the tools
mentioned above) to deploy ML models into production environments [14];

4. Performance Monitoring: it monitors the reliability of the deployed models. During this step,
tools like Prometheus [40] and Grafana [41] can provide visual dashboards to detect model drift
through the analysis of the related inputs, outputs, and metrics [12].

According to the given definitions, these steps are overlappable with those shown in Fig. 3. More
precisely, Data Preparation covers the same roles as Data Collection. They are responsible for data
collection, cleaning, and transformation that may come from different healthcare scenarios. Follows the
Model Development step, which covers some functions of Data Processing and Model Management.
Thanks to the most famous MLOps platforms (i.e., MLflow [38] and ClearML [39]), Model Development
ensures that the collected data are continuously stored and monitored. Similarly, the Model Deployment
step also covers some functions of Data Processing and Model Management. In detail, it rigorously
manages models in production by following a CI/CD logic. For this reason, the stored data do not
represent only those coming from patients but also those related to models (e.g., provided outputs,
considered hyperparameters, and tracked metrics). Finally, the Performance Monitoring and Results
Visualization steps aim to monitor the models’ drift and data quality through dedicated graphical
interfaces, as well as the data related to new patients (i.e., those not considered during the training
process). Ultimately, adopting an MLOps framework not only supports the development of a healthcare
pipeline but also provides additional benefits for the involved models.

5. Ensure the CSF requirements

This section aims to examine the feasibility of MLOps in ensuring CSF requirements. To this end, starting
from the defined pipeline, we show how MLOps can enable one of the most important Categories of
the Protect (PR) Function, namely Data Security. Then, we also highlight that our pipeline ensures
other CSF Categories, focusing on those related to Detect (DT) and Recover (RC) Functions. For each
Category, we report the related results through checklist tables containing the Subcategory ID (ID),
the Subcategory definition (Definition), and the ensure type (i.e., direct, indirect, and no). Notice that
we derived such tables by faithfully following those reported by CSF [23]. Furthermore, we use the
term direct for those requirements that MLOps ensures, together with best practices, without further
implementation steps. Instead, with indirect, we refer to all those requirements in which MLOps needs
to interface with additional implementations or unrelated tools.

5.1. MLOps in ensuring Data Security

With reference to Fig. 2, we start our discussion by showing how MLOps can ensure Data Security (DS).
To this end, we assume that our pipeline complies with all cybersecurity best practices (i.e., effectively
implements and employs communication protocols, access controls, and encryption techniques) [19,
42]. Inadequate data protection measures can lead to unauthorized access to sensitive information,
resulting in potential legal and financial consequences. Not surprisingly, one of the primary concerns is
represented by data breaches, which can occur in different stages [43]. For this reason, the following
assumption also provides a fertile ground for MLOps to collect, process, and store data securely. From a
practical point of view, this means employing the CI/CD nature to encrypt sensitive data during all



lifecycle (i.e., at rest, in transit, and in use) and conduct regular audits to monitor compliance with data
protection regulations [43].

For this reason, as shown in Tab. 2, MLOps allows the consistent management of data with risk
management strategies [23], by directly ensuring confidentiality, integrity, and availability throughout
the development cycle (see PR.DS-01, PR.DS-02, and PR.DS-10). As discussed in Sec. 4, the role played
by MLOps becomes more pivotal because it forces organizations to adopt a multi-dimensional approach
that includes a range of advanced techniques and tools [43], such as MLFlow [38], DVC [35], and
Great Expectations [37]. All this is possible because these tools give MLOps pipelines the fundamental
ability to track any aspect (i.e., data, hyperparameters, metrics, and models) [44], minimize performance
degradation, and manage data drift [13]. As a result, the following ability also makes the creation of
uniquely identified and rigorously maintained backups (see PR.DS-11). Therefore, we can state that the
application of MLOps within our pipeline can directly ensure the DS requirements reported in Tab. 2.

ID Definition Ensure type
PROSO by of dataatrest e protected 97t
PROS02iabiiy of deta-m ransit e protected 97
PROSTO ity of dete-imuse ae protected 97t
PR.DS-11 Backups of data are created, direct

protected, maintained, and tested

Table 2
Requirements related to Data Security (DS).

5.2. MLOps compared to other CSF Functions

Subsequently, by adopting the same methodology, we also focused on the remaining Functions (i.e.,
Govern - GV, Identify - ID, Detect - DT, Respond - RS, and Recover - RC). With reference to Fig. 2, the
results of this iterative process have highlighted interesting evidence for some Categories of DT and RC
Functions. Concerning DT, we have found some correspondences in the Continuous Monitoring (CM)
Category. As shown in Tab. 3, CM defines some requirements for ensuring that assets are monitored
to find anomalies, indicators of compromise, and other potentially adverse events [23]. Among the
requirements identified with DE.CM, only two are indirectly ensured: DE.CM-01 and DE.CM-09. More
precisely, the ability to monitor models in production allows to count the number of interactions made.
For instance, during a Denial-of-Service (DoS) attack, there could be numerous "unnecessary" requests
aimed at saturating the responsiveness of the hosting asset. Therefore, by employing dedicated user
interfaces, such as those implemented with Prometheus [40] and Grafana [41], it is possible to monitor
networks and the related services (see DE.CM-01) by considering the number of requests, the received
inputs, and the provided outputs. Consequently, together with the ability to record any experimental
aspect, this also allows MLOps to monitor runtime environments and the employed data (see DE.CM-09).
Instead, for the RC Function, we have found some correspondences in the Incident Recovery Plan
Execution (RP) Category. As shown in Tab. 4, RP defines some requirements for the correct restoration
activities, which are performed to ensure the operational availability of systems and services affected by
cybersecurity incidents [23]. Among the requirements identified with RC.RP, only three are indirectly
ensured: RC.RP-01, RC.RP-02, and RC.RP-03. More precisely, thanks again to its ability to record any
aspect of the development lifecycle, MLOps indirectly generates backups of the employed dataset
and models. Such backups can be useful when the recovery portion of the incident response plan is
executed (see RC.RP-01). Moreover, this ability also supports the selection, prioritization, and execution
of recovery actions (see RC.RP-02). For example, running a pipeline’s step rather than or before another.
Finally, with the support of some notable technologies (e.g., DVC [35], Deepchecks [36], and Great
Expectations [37]), MLOps can verify the backup integrity before the recovery (see RC.RP-03).



ID Definition Ensure type
Networks and network services
DE.CM-01 are monitored to find potentially indirect
adverse events
The physical environment is
DE.CM-02 monitored to find potentially no
adverse events
Personnel activity and technology
DE.CM-03 usage are monitored to find no
potentially adverse events
External service provider activities and
DE.CM-06 services are monitored to find no
potentially adverse events
Computing hardware and software,
runtime environments, and their

DE.CM-09 . . indirect
data are monitored to find tndirec
potentially adverse events

Table 3
Requirements related to Continuous Monitoring (CM).
ID Definition Ensure type
The recovery portion of the incident
RC.RP-01 response plan is executed once initiated indirect
from the incident response process
RC.RP-02 Recovery actions are selected, scoped, indirect

prioritized, and performed
The integrity of backups and other resto-
RC.RP-03 ration assets is verified before using indirect
them for restoration
Critical mission functions and cyber-
RC.RP-04 security risk management are considered no
to establish post-incident operational norms
The integrity of restored assets is verified,
RC.RP-05 systems and services are restored, and no
normal operating status is confirmed
The end of incident recovery is declared
RC.RP-06 based on criteria, and incident-related no
documentation is completed

Table 4
Requirements related to Incident Recovery Plan Execution (RP).

Despite the contribution highlighted in this work, it appears that the proposed MLOps pipeline
ensures only a few requirements (i.e., Subcategories). However, according to the definition provided by
CSF, this aspect does not necessarily represent a limitation. Regardless of the size or importance of the
organization concerned, the CSF should be used in conjunction with other resources (e.g., frameworks,
standards, guidelines, and leading practices) to manage cybersecurity risks as well as possible [23].
Moreover, from a practical point of view, it is impossible to cover all cybersecurity aspects by employing
only one technology [45]. Therefore, on the basis of the discussed outcomes, we consider essential to
investigate the remaining CSF Functions (i.e., those not covered) by considering different scenarios or
enhanced frameworks (e.g., the Machine Learning Security Operations [46]). Finally, the feasibility of
MLOps pipelines should be evaluated with respect to legal requirements, such as those defined by the
AT Act [47] and European Regulation (2017/745) [48].



6. Conclusions and Future Work

Implementing Machine Learning (ML) models for healthcare scenarios represents a challenging activity,
ranging from data quality management to compliance with stringent regulations. In this context,
MLOps pipelines emerge as promising solutions for managing the lifecycle of developed models, which
is vital for diagnostic and prognostic activities. On the other hand, the development of healthcare
systems should also consider several cybersecurity aspects strictly related to such regulations. In
response to these additional challenges, the Cybersecurity Framework (CSF) 2.0, defined by the National
Institute of Standards and Technology (NIST), provides updated guidelines to address security issues in
an ever-evolving technological landscape. For this reason, we investigated the feasibility of MLOps
pipelines in ensuring the requirements defined by CSF. To this end, we first presented an overview of
the fundamental concepts employed, namely the CSF-related structure (i.e., Functions and Categories)
and the main characteristics of MLOps. Then, based on our experience with the DARE foundation, we
presented the high-level architecture of a healthcare MLOps pipeline. Finally, by adopting the CSF, we
discussed the feasibility of our pipeline in ensuring Data Security, which represents one of the most
important Categories of the Protect (PR) Function. Moreover, by iteratively analyzing the remaining
CSF Functions, we have also highlighted that MLOps might indirectly ensure other CSF Categories,
with particular emphasis on those of Detect (DT) and Recover (RC).

However, due to the numerous, heterogeneous, and high-level requirements defined in CSF, it is
impossible to cover all related aspects in the following study. For this reason, we will investigate MLOps
pipelines and their benefits by considering other healthcare scenarios. This first contribution will allow
us to analyze the remaining CSF Functions. Moreover, to improve the achieved outcomes, we will also
combine enhanced frameworks, such as Machine Learning Security Operations (MLSecOps), with the
implementations of real use cases. Finally, since we presented a pipeline employed by a real healthcare
foundation, we will also analyze the feasibility of MLOps in ensuring legal requirements, such as those
defined by the AI Act and European Regulation (2017/745).
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