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Abstract

The rapid growth of clinical data, driven by advances in medical research and digital health technologies, presents
major challenges in ensuring data interoperability, standardization, and management. Standards such as Fast
Healthcare Interoperability Resources (FHIR) are essential for enabling seamless data exchange. However, convert-
ing raw data into standardized formats remains a complex and resource-intensive task. Existing solutions often
rely on manual processes or rigid rule-based systems, which are time-consuming, error-prone, and difficult to
scale. To address these limitations, we propose a modular framework that employs Natural Language Processing
(NLP) to streamline the FHIR mapping. Additionally, it integrates Large Language Model Operations (LLMOps)
principles to automate and monitor the lifecycle of models involved in the data transformation. The framework
consists of three core modules: (1) extraction of relevant clinical variables from heterogeneous data sources,
(2) validation for anomaly detection and compliance with healthcare standards, and (3) assisted mapping of
variables to FHIR resources. We evaluate the framework by applying it to an existing clinical data harmonization
pipeline. Compared to the baseline process, our approach achieves a 59% reduction in time. This result under-
scores the potential of NLP-assisted frameworks to improve scalability, reliability, and efficiency in clinical data
standardization.
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1. Introduction

The healthcare landscape is rapidly evolving, driven by advancements in medical research and digital
technologies, leading to an unprecedented surge in clinical data. Effectively managing and sharing
this data across heterogeneous healthcare organizations remains a critical challenge impacting patient
care, medical research, and policy development [1]. Seamless data exchange requires both structural
and semantic interoperability, which involves the adoption of standardized vocabularies, formal data
descriptions, and machine-readable formats. Consequently, tools leveraging contemporary clinical
standards for data mapping have become essential, often enabling semi-automated conversion workflows
that would otherwise require substantial manual effort [2].

Interoperability is the foundation of modern digital health initiatives [3, 4], facilitating the prospective
curation of data, efficient communication, and the secondary use of real-world clinical data. The
European Health Data Space (EHDS) exemplifies its economic and strategic value, aiming to establish a
unified health data ecosystem projected to save €11 billion over ten years [5].

Among existing healthcare data standards, the Fast Healthcare Interoperability Resources (FHIR)
framework, developed by Health Level Seven International (HL7), has emerged as a leading approach
for structuring and exchanging clinical information. FHIR ensures flexible and modular data repre-
sentation, facilitating interoperability across clinical trials, hospital information systems, and public
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health networks [6]. Its cost-effectiveness, improved data quality, and analytical flexibility make it
particularly advantageous for reusing medical data in the real world [7]. Increasingly, FHIR is being
adopted in specialized healthcare domains, from chronic disease management and patient-centered
applications [8] to modular platforms that unify heterogeneous data sources and create standardized
Digital Twins [9, 10].

Despite the growing adoption of FHIR, converting raw clinical data into standardized formats remains
a complex, labor-intensive process. Traditional transformation approaches rely heavily on manual
effort and static rules, which limits scalability and introduces inconsistency [11]. Natural Language
Processing (NLP), particularly through Large Language Models (LLMs), offers a promising approach to
automate core tasks such as clinical variable extraction, data validation, and resource mapping [12, 13].

However, LLM-based systems present substantial barriers when transitioning from research to real-
world deployment. The healthcare domain represents a particular case, where data privacy, regulatory
compliance, and model governance are non-negotiable [14]. Consequently, many promising prototypes
remain confined to the experimental phases due to the lack of robust operational infrastructure and
interdisciplinary collaboration [15]. In this context, recent engineering paradigms, such as Machine
Learning Operations (MLOps), offer a practical foundation for ensuring the reliability of Al thereby ad-
dressing these concerns [16, 17]. Based on MLOps features, such as automation, continuous monitoring,
and reproducibility, Large Language Model Operations (LLMOps) frameworks represent a promis-
ing solution to satisfy the operational demands of the LLMs lifecycle, including prompt versioning,
input-output management, and real-time risk mitigation of hallucinations and performance drift [18].

To address these technical and operational limitations, we present FLEX-LLM-CARE (FHIR Language
Extraction and Transformation with LLMs for Clinical Automation and Reasoning Engine). This modular
LLM-based transformation framework leverages LLMOps techniques to streamline the standardization
of clinical data into FHIR resources. The proposed solution enhances three key harmonization steps:
(1) the extraction of clinical variables from both structured and unstructured data; (2) the validation
through anomaly detection and compliance with clinical guidelines; and (3) the transformation of
validated content into interoperable FHIR resources.

To demonstrate the effectiveness of the proposed framework, we apply it to an existing standardization
pipeline [2] to enhance the automation level of the overall process. Our results show that FLEX-LLM-
CARE reduces the total manual effort required for data harmonization by 59%, equivalent to saving
over 200 hours of experts’ labor.

These findings highlight FLEX-LLM-CARE’s potential to make large-scale FHIR adoption more
practical and cost-effective. Beyond reducing manual effort, the integration of LLMOps introduces
essential capabilities that support long-term sustainability and reliability. Looking ahead, tools like
FLEX-LLM-CARE can help healthcare organizations adopt data standards more easily, leading to faster
insights, improved data sharing, and more connected, interoperable health systems.

The remainder of this paper is structured as follows: Sec. 3 reviews related NLP-based standardization
efforts. Sec. 2 introduces LLMOps and the baseline pipeline. Sec. 4 details our framework modules.
Sec. 5 presents the experimental results and Sec. 6 concludes with a discussion of findings and future
directions.

2. Background

This section provides an overview of the concepts underlying FLEX-LLM-CARE. We first summarize the
main characteristics of LLMOps, which represent the set of concepts adopted to improve the automation
of our proposal. Then, we briefly recall the high-level structure of the standardization pipeline on which
the framework is applied.

2.1. Large Language Model Operations

Constructing LLMs is a complex task that involves vast amounts of data, High-Performance Computing
(HPC) architectures, and targeted fine-tuning steps [19]. The datasets required to train LLMs typically



contain so many parameters that manual data quality checks become impractical. Consequently, LLMs
can suffer from biases, hallucinations, and outdated knowledge, resulting in inaccurate or misleading
outcomes. For this reason, engineering paradigms based on MLOps are fundamental to face these issues
by ensuring automation, continuous monitoring, and reproducibility [16, 17]. In the context of LLMs,
the solution is represented by LLMOps, which, according to the definition provided by Diaz-De-Arcaya
et al. [19], is an extension of MLOps specifically tailored to manage the LLMs lifecycle effectively.
Since the management of LLMs is more complex than ML models, Shan and Shan [18] defined a
conceptual framework named 4D that, as shown in Fig. 1, takes its name from the following four steps:
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Figure 1: High-Level representation of the 4D framework.

« Discover: it recognizes the need for an LLM and explores its potential use cases. This involves
examining recent developments in LLM technology, understanding their capabilities, and assessing
how they can solve specific issues or improve existing workflows. Hence, this step identifies
relevant data sources, sets objectives, and defines the application scope.

« Distill: it prepares and refines the data employed for the training process. Since data quality
and variety are crucial for the model’s performance, this step involves data cleaning, structuring,
and augmentation. It also includes the initial model training, in which the system learns how to
generate outputs or predictions based on the distilled data.

+ Deploy: it integrates the LLM into the operational environment by making it a part of a broader
system. Hence, this step involves establishing the technical infrastructure, addressing performance
and security requirements, and ensuring smooth interaction with existing tools. It also focuses
on version control, containerization, and API connectivity.

+ Deliver: it delivers the LLM in production. This involves monitoring its performance in real-
world scenarios and refining it continuously based on user feedback and new input data. This step
also includes evaluating the LLM’s impact on business results and user satisfaction by making
ongoing adjustments to optimize its effectiveness.

Since the 4D framework offers a systematic approach for LLM lifecycle management, we adopt it to
automate the data standardization process within our proposal. Note that, due to its conceptual nature,
this framework comprises several substeps. However, to simplify the discussion, we refer to [16, 17] for
more details and specifications.

2.2. The considered pipeline

We evaluated the effectiveness of our proposed framework and its modular components (as described
in Sec. 4) by applying it to optimize the FHIR mapping workflow of a pipeline introduced in a previous
study [2]. This workflow follows a classical Extract-Transform-Load (ETL) architecture and comprises
the following five sequential modules:

« Input: gathers input data from a specific source, without applying restrictions on the data model
and format. Additionally, this module addresses data security and regulatory compliance by
ensuring the quality, integrity, and confidentiality of data.



+ Refinement: preprocesses the gathered input data by ensuring a uniform output format (e.g.,
JSON). To this end, this module removes missing data and structures the information to enable
seamless conversion operations in subsequent steps.

« Mapping: converts the refined input data to the target data model (e.g., FHIR). To this end, this
module employs a templating strategy;

« Validation: it performs all the procedures to check the conformity of output resources with
the standard target data model. In the event of undesirable outcomes, this module immediately
performs roll-back actions to ensure the system’s state remains intact.

« Publishing: stores the validated data in an accessible repository. This module also provides
essential debugging functionalities like querying, exporting, and logging.

Validation

Raw I;'> Input Refinement Mapping Publishing ‘:> Standard
Data Syntactic Semantic Resources

Figure 2: Modular representation of the considered pipeline, organized according to the ETL design [2].

Despite its modularity, the pipeline exhibits several limitations due to its reliance on manual in-
tervention. Specifically, the Input module requires domain experts to manually define the relevant
tables and annotate each field with appropriate semantic labels and ontologies. The Refinement module
necessitates expert consultations to identify and resolve missing or inconsistent values. The Mapping
module depends on curated templates developed by experts, while the Validation module operates using
preconfigured static FHIR profiles.

To address these limitations and enhance scalability and consistency, we integrate FLEX-LLM-CARE
into the pipeline. This integration aims to automate critical phases of the standardization process,
thereby minimizing manual effort and reducing the risk of data inconsistencies. A comparative analysis
of processing times between the original pipeline and the enhanced version incorporating our framework
is presented in Sec. 5.2.

3. Related Work

Efforts to standardize clinical data have led to the development of several pipelines aimed at enhancing
interoperability and transforming heterogeneous data formats into structured models such as HL7
FHIR [6, 7, 8]. For example, Bennett et al. [20] converted the MIMIC-IV dataset into FHIR, creating a
widely used resource for research. Montazeri et al. [21] developed a FHIR-based dataset to support
cardiovascular CPOE integration within Electronic Health Record (EHR) systems.

Beyond these datasets, several approaches have targeted the technical aspects of FHIR mapping.
Sinaci et al. [22] proposed a GUI-based method, Simon et al. [23] developed a metadata repository
enabling automated data conversion through a REST APL, and Marfoglia et al. [2] introduced a modular
ETL pipeline using template-based mappings to enhance platform independence and reusability.

While these approaches mark progress toward interoperability, key limitations persist. Most notably,
the lack of full automation necessitates manual data curation and validation, which slows down the
mapping process and increases the risk of errors. Additionally, reliance on custom scripts and opaque
logic reduces portability across healthcare contexts.

Natural Language Processing (NLP) and, more recently, Large Language Models (LLMs), have shown
promise in healthcare for processing unstructured data [24, 12, 13]. For instance, NLP has supported
clinical trial automation by extracting patient data from EHRs and identifying adverse drug events [25].



Within Clinical Decision Support Systems (CDSS), Klug et al. [26] applied NLP to extract actionable
insights from clinical notes. Remmer et al. [27] leveraged NLP for the multi-label classification of medical
summaries, combining clinical and linguistic embeddings. Instead, Gulum et al. [28] combined Deep
Learning (DL) with NLP to enhance cancer decision-making, providing more accurate diagnoses and
personalized treatment recommendations. Despite their success, these NLP solutions primarily address
classification, summarization, or prediction tasks rather than the challenge of converting structured
clinical data into FHIR-compliant formats.

Moreover, deploying Al systems in real-world healthcare settings requires strict attention to gover-
nance, reproducibility, and regulatory compliance [14]. In response, MLOps has emerged to support
continuous monitoring and operational scalability. LLMOps, an evolution of MLOps for LLMs, extends
these capabilities to the management of large-scale language models [16, 17]. In this context, we propose

Ref. | Automation Validation Governance | Scalability| Limitation
Manual  configura- Hard-coded  map-
[20] | tion with internal | None None Low pings; non-reusable
mapping logic across datasets
GUI-based, Expert-mediated via Dependent on expert
[22] | expert-driven constrained  FHIR None Low availability; rigid pro-
mapping profiles file constraints
. . . R Portable templates
Semi-automated via | Static validation us- . p.
[2] ) S . None Medium | but lack adaptability
predefined templates | ing fixed profiles .
to new domains
E:xijSSISteria i(iy- Built-in anomaly de- Higher complexity
Ours with NLP—lF))Eseg tection & FHIR com- L'LMOPS High and resource de-
. pliance checks lifecycle mand
extraction
Table 1

Comparative summary of FHIR mapping frameworks across key dimensions.

FLEX-LLM-CARE, a modular LLM-based transformation framework that applies LLMOps principles to
streamline the FHIR data standardization process. In contrast to prior work (see Table 1), our approach
minimizes manual intervention, avoids static configurations, and enables more scalable, reusable, and
transparent data standardization pipelines.

4. The proposed framework

This section introduces the proposed FLEX-LLM-CARE framework, which leverages recent advances in
LLMs to enable the automated standardization and semantic enrichment of clinical data in compliance
with the FHIR specification. To this end, we define three core modules, which are respectively focused
on: (1) the extraction of clinical variables from both structured and unstructured data; (2) the validation
through anomaly detection and compliance with clinical guidelines; and (3) the mapping of validated
content into interoperable FHIR resources. Subsequently, we describe how LLMOps (i.e., the 4D
framework) is applied in FLEX-LLM-CARE to automate the data mapping. Fig. 3 illustrates the FLEX-
LLM-CARE framework, highlighting its modules, employed strategies, and considered input and output
data formats.

4.1. Clinical Data Extraction Module (CDE-M)

CDE-M extracts clinical concepts from unstructured and semi-structured text using domain-specific
Named Entity Recognition (NER) models. Then, a specialized LLM links the extracted entities to
standardized clinical ontologies. In detail, this association is possible by combining the LLM with
the Retrieval-Augmented Generation (RAG) technique. RAG integrates external facts by retrieving
relevant information from a pre-built knowledge base to improve the accuracy of the output. In
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Figure 3: Overview of the FLEX-LLM-CARE and its three modules: CDE-M, CVV-ADM, and FRMT-M.

this case, the knowledge corresponds to the embedding representation of clinical ontology concepts
stored in a vectorial database. Therefore, this approach resolves ambiguities and improves contextual
understanding, making the extracted data more usable for seamless conversion into FHIR resources.

4.2. Clinical Variable Validation and Anomaly Detection Module (CVV-ADM)

CVV-ADM ensures that the structured data is clinically consistent and semantically valid within the
related medical context. In detail, its core is represented by an LLM capable of understanding clinical
logic, domain-specific terminology, and guideline-based reasoning. For this reason, CVV-ADM supports
two sequential validation strategies:

+ Guideline-Aware: the employed LLM directly evaluates the structured data by referencing
medical best practices and clinical guidelines. Moreover, this strategy validates data by check-
ing anomalies, such as incompatible medications, implausible lab values, missing context, and
elements falling outside the expected clinical norms;

« Ontology-Driven: it converts validated data into graph-based structures (i.e., semantic nodes and
relationships) linked to medical ontologies, enriching their semantics. This strategy enables sym-
bolic reasoning and logical inference across the graph, allowing the detection of inconsistencies,
redundancies, or missing connections.

4.3. FHIR Resource Mapping and Transformation Module (FRMT-M)

FRMT-M streamlines the mapping process of validated and cleaned data to the corresponding FHIR
resources. In detail, this module employs an LLM that can learn the mapping logic through an In-Context
Learning (ICL) approach or a targeted fine-tuning. Moreover, the LLM integrates a RAG mechanism
that accesses a vector database populated with the FHIR documentation, related specifications, and
examples of validated mappings. Therefore, this approach enables the generation of outputs validated
against authoritative sources, thereby enhancing the explainability and reliability of the resulting FHIR

mapping.
4.4. LLMOps trought the 4D framework

Since the defined modules introduce new challenges regarding intermediate datasets, additional data
structures, and various LLMs, LLMOps becomes paramount to improve the automation level of the



entire FHIR mapping process. To this end, according to the definition provided in Sec. 2.1, we describe
how the 4D framework enhances the defined modules (i.e., CDE-M, CVV-ADM, and FRMT-M):

« Discover: Since we face different specific tasks (i.e., data extraction from unstructured text,
data validation to detect anomalies, and FHIR mapping), it becomes crucial to select the most
appropriate LLM. To this end, referring to existing LLM benchmarkings, such as the rankings
provided by Hugging Face, can help choose the most suitable model for our tasks.

« Distill: Since it is essential to improve the prediction logic and the possible training of the
LLMs chosen, selecting the data cleaning, structuring, and augmentation techniques becomes
pivotal. For example, for the CDE-M and FRMT-M, we can use the RAG and prompt engineering
techniques previously mentioned. In the case of CVV-ADM, since the LLM model is fine-tuned
on medical knowledge and anomaly detection tasks, we can employ PEFT, LoRA, or QLoRA to
adapt models with minimal computational resources efficiently. When training from scratch or at
scale, Composer (by MosaicML) and datasets from LLMDataHub can be used.

« Deploy: Since we use different LLMs and techniques, the resulting hyperparameter combinations
and model versions can be numerous. For this reason, we ensure that all experiments are
rigorously tracked throughout the deployment process. It is essential to leverage open-source
platforms such as MLFlow for lifecycle management, and orchestrators like Kubeflow or Apache
Airflow for pipeline automation. Containerization with Docker and orchestration via Kubernetes
further enhances scalability and portability across deployment environments.

+ Deliver: Since high-quality clinical data is often limited and not directly accessible, continuous
post-deployment monitoring is essential to assess model robustness and reliability over time. To
this end, we can integrate monitoring tools such as Evidently Al for model evaluation and drift
detection. Prometheus and Grafana can be used for real-time metric collection and visualization.
Furthermore, LangSmith offers tools for debugging and testing LLM-based applications, while
OpenLLMetry and LangKit enhance observability and governance by extracting key metrics from
LLM input/output behavior.

However, due to the numerous application scenarios, the mentioned technologies represent only a
small subset of the existing ones. For this reason, we refer to [18, 29] for a more exhaustive overview.

5. Results

This section presents the evaluation of FLEX-LLM-CARE in automating clinical data harmonization
using the FHIR standard. We begin by detailing the technical implementation of each module—CDE-M,
CVV-ADM, and FRMT-M—within the data standardization pipeline shown in Fig.2. We then assess the
practical impact of our framework by comparing it to the baseline pipeline introduced by Marfoglia et
al.[2], focusing on the harmonization of a public dataset [30].

5.1. Modules implementations

According to the limitations discussed in Sec. 2.2, we applied FLEX-LLM-CARE’s modules to the
standardization pipeline depicted in Fig. 2. To this end, as shown in Fig. 4, we made the following
associations: (CDE-M — Input), (CVV-ADM > Refinement), and (FRMT-M — Mapping).

Fig. 4 allows us to appreciate how the application of FLEX-LLM-CARE enhances the automation level
of the Input, Refinement, and Mapping steps. This is followed by the Validation and Publishing steps,
which, although fully automated, depend on the results of the first three steps. Finally, the Semantic
module is highlighted in orange but is not explored in this study, as it is outside the scope.

In detail, to extract clinical concepts from the unstructured and semi-structured text, we implemented
the CDE-Module by employing BioBERT [31] to identify clinical entities. Then, we mapped such entities
into standardized ontologies using BioMistral-7B [32], a biomedical LLM capable of interpreting column
headers and field contents. To support this mapping, we also integrated a RAG technique to perform a
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Figure 4: FLEX-LLM-CARE modular representation applied to the pipeline shown in Fig. 2. Modules highlighted
in orange involve manual operations optimized through the proposed framework at each step: CDE-M for Input,
CVV-ADM for Refinement, and FRMT-M for Mapping.

semantic search through the Facebook AI Similarity Search (FAISS) library, which allowed us to retrieve
embeddings of standardized ontology terms (e.g., from SNOMED-CT and LOINC).

Subsequently, we focused on ensuring that the structured data was considered clinically consistent
and semantically valid. To this end, we based the CVV-AD Module on ClinicalBERTand, above all,
by implementing the related validation strategies (i.e., Guideline-Aware and Ontology-Driven). More
precisely, for the Guideline-Aware, we employed ClinicalBERT to flag inconsistent entries, such as
abnormal value ranges, contradictory clinical assertions, and missing dependencies. Instead, for the
Ontology-Driven approach, we leveraged Apache Jena to convert validated data into Resource Descrip-
tion Framework (RDF) triples and utilized BioPortal to link them to various repositories of biomedical
ontologies.

To streamline the mapping of validated data to the corresponding FHIR resources, we devel-
oped the FRMT module. This module leverages BioMistral-7B [32], guided by a few-shot learning
approach. By providing illustrative examples—such as (ProstheticKnee, CommercialName)
(DeviceDefinition)—the model adapts to the mapping logic with minimal supervision. To further
improve accuracy and contextual relevance, we incorporated a RAG technique, similar to that used
in the CDE module. This technique accesses a vector database populated with FHIR documentation,
which supports BioMistral-7B during generation.

Finally, as described in Sec. 4.4, we enhanced the automation level of our modules using the 4D
framework. Therefore, we used MLFlow to track our experiments, from the considered hyperparameters
to the achieved performance metrics. However, all this has been made possible thanks to Hugging
Face, which allowed us to download and employ the LLMs mentioned above. Additionally, we used
LangChain to retrieve the required data (i.e., datasets and documentation) and support their conversion
into corresponding embedding vectors.

5.2. Impact of FLEX-LLM-CARE Automation on Clinical Data Harmonization

We evaluated the performance of FLEX-LLM-CARE by applying it to the harmonization pipeline
proposed by Marfoglia et al.[2]. Specifically, we assessed the reduction in manual effort by comparing
the original process with the FLEX-LLM-CARE-enhanced pipeline. This evaluation was based on a



mapping task involving a public dataset containing longitudinal clinical data on prosthetic patients
[30].

Although the dataset being considered was already structured and well-documented, it lacked
consistent semantic descriptions for many fields, making standardization and schema interpretation
non-trivial. Additionally, data integrity checks were carried out using manually written Python scripts.
These factors contributed to residual manual effort despite the dataset’s relative maturity.

FLEX-LLM-CARE introduced automation in three modules—Input, Refinement, and Map-
ping—targeting the most labor-intensive steps: Schema interpretation, Data cleaning, Anomaly detection,
and FHIR resource mapping. A first version of the FRMT module, leveraging BioMistral-7B, achieved
approximately 60% accuracy in recommending appropriate FHIR resources for each source term. While
this level of accuracy does not eliminate the need for manual review, it provides meaningful suggestions
that significantly reduce expert time through partial matches, narrowed search spaces, and reduced
cognitive load. Based on these benefits, we conservatively estimate a 60-65% reduction in mapping
time.

Table 2 summarizes the estimated expert time required for each task in the original versus FLEX-LLM-
CARE-assisted workflows. These estimates are based on historical project timelines [33] and expert
feedback from the dataset curation process, during which four domain experts collectively contributed
approximately 360 hours through a combination of collaborative sessions and individual annotation
efforts. Task-level time allocations reflect this prior experience. While schema interpretation was
relatively efficient due to the dataset’s structured format, FHIR resource mapping remained the most
demanding step, owing to the inherent complexity of aligning clinical terms with appropriate FHIR
constructs.

Task Description Pipeline FLEX-LLM- Manual| Auto Saved
p Step[2] | CARE Module | (hrs) | (hrs) (hrs)
Schema inter- Interpret tables and
. define semantic Input CDE-M ~40 ~12 ~28 (70%)
pretation
roles.
Normalize formats,
Data cleaning | handle missing | Refinement CVV-ADM ~15 ~3 ~12 (80%)
values.
Anomaly de- Identify implausible
maty or inconsistent val- | Refinement CVV-ADM ~15 ~4 ~11 (73%)
tection
ues.
FHIR .resource Select resources, de- Mapping FRMT-M ~250 ~90 ~160 (64%)
mapping fine templates.
Syn.tactlc vali- | Ensure FHIR struc- Validation _ -0 -0 _
dation tural correctness.
Semantic vali- | Conformance to —
dation FHIR profiles. Validation (Out of scope) 40 40 0 (0%)
Store and expose .
Storage FHIR resources. Publishing — ~0 ~0 —
Total ~360 | ~149 | ~211 (59%)
Table 2

Comparison of estimated expert time per task in the considered mapping process using the original
pipeline [2] versus FLEX-LLM-CARE.

Despite the structured nature of the dataset, the automation introduced by FLEX-LLM-CARE led
to significant time savings across all major stages of harmonization. The most substantial gains were
observed in the FHIR resource mapping step, which was reduced by approximately 64%, primarily due
to partial mapping assistance and structured suggestion triage. Overall, the framework reduced the
estimated manual effort by approximately 211 hours, resulting in a 59% reduction in curation time.

These results underscore the potential of LLM-driven systems in enhancing the efficiency of clinical
data harmonization, thereby making the adoption of th FHIR standard more accessible. While the



reported time savings reflect the most tangible benefit, the integration of LLMOps through the 4D
framework (see Sec. 4.4) also introduces critical operational advantages. These include robust experiment
tracking, model versioning, and post-deployment monitoring, which collectively support reproducibility,
transparency, and long-term maintainability. Although not directly reflected in the labor-hour estimates,
these capabilities further strengthen the scalability and reliability of the FLEX-LLM-CARE approach,
reinforcing its suitability for real-world observational research settings.

6. Conclusions

We introduced FLEX-LLM-CARE, a modular framework for clinical data standardization powered
by LLMs and operationalized through the 4D LLMOps lifecycle. The framework includes three key
modules: (1) clinical variable extraction from heterogeneous sources (CDE-M), (2) validation and
anomaly detection (CVV-ADM), and (3) FHIR resource mapping through assisted selection (FRMT-M).
Integrated into an existing pipeline and evaluated on a public dataset, FLEX-LLM-CARE can reduce
manual curation effort by up to 59% while improving automation across key standardization stages.

A key insight is that coupling LLMs with structured operational support significantly lowers the
manual burden of clinical data mapping while enhancing traceability, reproducibility, and maintainability.
This combination enhances adaptability and reduces data integration overhead in complex environments,
such as healthcare.

However, challenges remain, particularly in semantic validation, which was not deeply explored due
to the computational cost of fine-tuning. Improving semantic precision remains difficult, especially
when clinical relationships are subtle or implicit.

Looking forward, future work will explore: (a) enhancing retrieval-augmented generation (RAG)
strategies to incorporate domain-specific knowledge better; (b) applying advanced embedding tech-
niques to improve contextual understanding and output fidelity; and (c) benchmarking FLEX-LLM-CARE
across diverse LLMs to assess robustness in real-world deployments.

As LLM ecosystems evolve, managing model versions, hyperparameters, and intermediate data will
grow more complex. In this context, LLMOps will remain foundational, enabling dynamic experimen-
tation, reproducibility, and safe deployment. Future work will continue to build on this operational
backbone to advance scalable and semantically accurate FHIR harmonization.
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