CEUR-WS.org/Vol-4109/paper6.pdf

CEUR
E Workshop
Proceedings

published 2025-11-26

SkeltyMLOps: Orchestrating Collaborative MLOps
Activities
Charbel Daoud’, Danielle Azar?, Julie Boiché’, Christelle Urtado’ and Sylvain Vauttier?

!EuroMov Digital Health in Motion, Univ. Montpellier and IMT Mines Ales, Ales, France

?Department of Computer Science & Mathematics, Lebanese American University, Byblos, Lebanon

Abstract

With the increasing adoption of machine learning (ML), the need to manage, in a tailored manner, the complete
lifecycle of this new type of software arises. MLOps (Machine Learning Operations) extends DevOps to address
the specific challenges of development and lifelong management of ML-powered software. Despite the increasing
attention to this domain, practitioners still lack an accessible, modular architecture to support MLOps projects. To
address this lack, this paper proposes SkeltyMLOps, a reference architecture designed to promote collaboration
between the diverse actors involved in MLOps processes. The architecture is derived from a thorough literature
review, from which we extracted and clustered, using a Large Language Model (LLM), a comprehensive list
of MLOps actors and activities. These clusters were then used to guide the architectural decomposition and
component design of SkeltyMLOps. The originality of our proposed reference architecture is (i) that it clearly
aligns its components with the responsibilities of MLOps actors, covering the identified dimensions of MLOps
processes, and (ii) mediates collaboration by orchestrating interactions between the different types of actors. This
architecture provides a foundation for building collaborative ML-powered software.

Keywords
Software Engineering, Machine Learning Operations, MLOps Actors, MLOps Activities, MLOps Reference
Architecture, Collaborative MLOps, Orchestration

1. Introduction

The advent of machine learning (ML) has led to the adaptation of DevOps practices to manage
ML-powered software, resulting in the rise of Machine Learning Operations (MLOps) which is heavily
inspired by DevOps [1, 2]. DevOps, a set of established practices within modern software engineering,
integrates development and operational practices to streamline and shorten software release cycles
through systematic build and deployment processes heavily dependent on automation [3]. Specifically,
the Dev segment in DevOps consists of the Plan, Code, Build, and Test phases, while the Ops segment
consists of the Release, Deploy, Operate, and Monitor phases [4]. As software systems evolve, whether
for corrective or evolutionary maintenance, DevOps emphasizes iterative feedback loops that connect
the Monitor phase back to the Plan phase. MLOps emerged around 2015, significantly influenced
by the foundational work of Sculley et al. [5]. Consequently, the software engineering community
is increasingly addressing ML-specific challenges through MLOps practices. Nevertheless, despite
this increased awareness and adoption, MLOps practitioners continue to face numerous unaddressed
challenges. First, Kolar et al. [6] note the absence of a consolidated MLOps architecture and the
complexity of coordinating multiple technological components. Second, black-box tools with limited
modularity hinder adoption by organizations [7, 8]. A preliminary investigation of open-source
contributions on GitHub confirms this adoption barrier, revealing few accessible frameworks or
reference architectures for practitioners[9]. Third, collaboration is a critical challenge that affects
the success of ML-powered software which typically relies on multidisciplinary team structures [10].
However, many MLOps implementations currently lack the tools and practices needed to effectively

MLOps25: Workshop on Machine Learning Operations. October 25, 2025, Bologna, Italy

& charbel.daoud@mines-ales.fr (C. Daoud); danielle.azar@lau.edu.lb (D. Azar); julie.boiche@umontpellier.fr (J. Boiché);
christelle.urtado@mines-ales.fr (C. Urtado); sylvain.vauttier@mines-ales.fr (S. Vauttier)

® 0009-0009-6364-638X (C. Daoud); 0000-0002-6159-3714 (D. Azar); 0000-0002-1676-0528 (J. Boiché); 0000-0002-6711-8455
(C. Urtado); 0000-0002-5812-1230 (S. Vauttier)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

mailto:charbel.daoud@mines-ales.fr
mailto:danielle.azar@lau.edu.lb
mailto:julie.boiche@umontpellier.fr
mailto:christelle.urtado@mines-ales.fr
mailto:sylvain.vauttier@mines-ales.fr
https://orcid.org/0009-0009-6364-638X
https://orcid.org/0000-0002-6159-3714
https://orcid.org/0000-0002-1676-0528
https://orcid.org/0000-0002-6711-8455
https://orcid.org/0000-0002-5812-1230
https://creativecommons.org/licenses/by/4.0/deed.en

facilitate such collaboration. Uysal et al. [11] emphasize the need for a tailored and holistic project
management framework for ML-powered software. Finally, the engineering rigor in ML-powered
software is still maturing, especially in eliciting requirements, which often depends on project-specific
practices and therefore varies in consistency [12]. This paper proposes SkeltyMLOps, a reference
architecture intended to facilitate the practical adoption of MLOps practices. SkeltyMLOps is structured
around a set of well-scoped actors, each defined by their responsibilities and interactions, and focuses
on orchestrating the core MLOps activities reported in the literature. The approach for designing
SkeltyMLOps includes three main steps: (1) identifying, analyzing, and mapping the different actors
and dimensions of MLOps; (2) identifying the set of activities that constitute an MLOps process; and (3)
clustering these activities into software components to create a reference architecture. In summary,
the contributions of this work are twofold: (a) identification and formalization of the key actors
and activities involved in MLOps; and (b) introduction of SkeltyMLOps, a reference architecture de-
signed to support the orchestration of these activities and to strengthen the collaboration between actors.

The remainder of this paper is structured as follows. Section 2 outlines the research questions that
guide this work and the methodology used to address them. Section 3 identifies the main MLOps
actors and dimensions, mapping and naming them through a systematic literature review and semantic
clustering via a Large Language Model. Section 4 examines the activities performed by each actor and
the interactions among them within these dimensions. Section 5 discusses threats to the validity and
reliability of the results. Section 6 presents SkeltyMLOps, a reference architecture that orchestrates
these activities and promotes collaboration among actors. Section 7 positions SkeltyMLOps within the
existing literature, and highlights its novel contributions. Finally, Section 8 describes directions for
future work.

2. Research Questions & Methodology

This section presents the research questions (RQs) that guide this study, describes the methodology
adopted to address them, and explains the rationale for using a Large Language Model (LLM) within
this research.

2.1. Research Questions

This research aims to identify the dimensions, actors, and activities of MLOps and to extract the
fundamental components necessary for designing a reference architecture. The formulated RQs that
refine and guide our study are listed below:

e RQ1: Who are the main actors involved in MLOps?

e RQ2: What are the dimensions of MLOps?
A dimension is a distinct functional area that groups together related actors and activities.

e RQ3: What are the different activities that constitute MLOps processes?

e RQ4: How should an MLOps architecture that effectively integrates the activities identified in RQ3
be designed to facilitate collaboration among the actors identified in RQ1?

2.2. Methodology for RQ1 and RQ3

To address RQ1 and RQ3, a systematic literature review (SLR) is conducted.

Search Strategy. The literature search was carried out via Google Scholar. Using Google Scholar

reduces bias towards specific publishers as suggested by prior comparisons [13, 14]. The search
query was initially formulated from key terms appearing in the RQs, including MLOps, actors,

C= (C= g fgé =
Select Papers |38 papers 16 Actors| Identify 5 Dimensions| _ Cluster Actors Propose Actor
Related to Extract Actors Dimensions by Dimensions Name per
Actors using LLM using LLM Dimension
2P ~ . S Cluster =S =
by Reduce Review &
Activities Per
Articles from Smorcion Redundancy Consolidate
Google Scholar = (&) using LLM using LLM Results
Select Papers 45 Papers Extract 402 Activties
Related to Activities
Activities

" Retrieve

Figure 1: Overview of the systematic literature review process.

activities, processes, and architecture. To enhance coverage and precision, the query was extended
with relevant synonyms and semantically related terms. The final version of the search string is:
allintitle: (MLOps OR "machine learning operations") AND (actor OR actors OR
pipeline OR pipelines OR architecture OR architectures OR architecting OR
activity OR activities OR workflow OR workflows OR process OR processes).

Selection Criteria. To ensure consistency and reliability in the selection process, two authors
independently reviewed a random sample of 10 papers. A consensus meeting was held to align their
interpretations, resolve ambiguities, and finalize the inclusion and exclusion criteria. It was decided
that a paper will be included if it explicitly presents at least one of the following: (i) a list of MLOps
actors, (ii) a figure describing MLOps processes, or (ii) an enumeration of related activities. A paper will
be excluded if it belongs to: (a) non-English publications, (b) citation-only entries (e.g., bibliographic
listings without content), (c) unpublished manuscripts, (d) inaccessible documents (e.g., full-text
unavailable online or behind paywalls without institutional access), and (e) papers retrieved from
subscription-only sources not accessible to the authors at the time of review.

Execution. The Google Scholar search initially' retrieved 51 entries. After applying the inclusion
and exclusion criteria, the dataset was reduced to 35 primary studies. A random sample of 5
papers was selected from this set to refine the data extraction strategy. Data extraction was
conducted independently by two authors and finalized through a consensus meeting. For RQ1,
the set of actors, explicitly mentioned in each paper, were extracted. For RQ3, the described
activities, either from process diagrams or enumerated descriptions in the text, were extracted.
Following this pilot phase, the remaining papers were each assigned to both authors for indepen-
dent extraction. The extracted data were then validated through bilateral discussions to reach consensus.

Snowballing. To complement the initial title-based search and address its limitations, backward
and forward snowballing techniques were applied. Backward snowballing involves reviewing
the reference lists of the initially selected papers to identify additional relevant studies. Forward
snowballing, in turn, identifies studies that cite those papers. Applying the same inclusion and
exclusion criteria, this process yielded 18 additional papers, resulting in a final set of 53 selected publica-
tions. Relevant data to RQ1 and RQ3 were extracted using the same extraction procedures detailed earlier.

Data Synthesis. Out of the 53 retained studies, 38 contribute to answering RQ1 and 45 to RQ3, with
30 papers addressing both. Figure 1 illustrates the review workflow. A data extraction sheet [15] is
used to systematically collect information from the selected studies. The extracted data consists of: (i)
study metadata such as title, authors, and citation; (ii) for RQ1, a list of explicitly mentioned actors;
and (iii) for RQ3, a list of identified activities, whether extracted from described processes or explicitly
enumerated in the text. The subsequent sections describe how this data was analyzed and mapped to
RQ1 and RQ3.

The search was executed in March 2025.

2.3. An LLM-powered Systematic Literature Review

The experiments in this study employ an LLM to systematically cluster and label data extracted
from the systematic literature review. This approach is motivated by recent findings showing that
LLMs can enhance unsupervised clustering by imposing semantic structure on unlabeled data [16, 17].
Zhang et al. [18] propose ClusterLLM, a framework that leverages ChatGPT’s semantic capabilities
to improve clustering outcomes, while maintaining low computational cost. Furthermore, LLMs have
been shown to serve as efficient annotators, capable of producing meaningful semantic labels that
approximate or replace human annotations [19, 20]. Following a comparative evaluation of multiple
LLMs?, we selected OpenAI’s 03 model® based on its superior performance in terms of reasoning
quality, completeness (e.g., no missed entries during clustering), and labeling consistency [21, 22]. The
prompts used throughout the clustering process were iteratively refined according to established prompt
engineering practices [23, 24].

3. MLOps Actors & Dimensions

This section jointly addresses RQ1 and RQ2 by identifying actors and dimensions involved in MLOps.
The analysis follows an iterative process in which the dimensions are inferred from the initially identified
actors. These dimensions are then used to re-examine the actors, allowing for the refinement of the
actor set. This process ensures that both RQs cross-validate each other.

3.1. MLOps Actors

The actors identified when addressing RQ1 (Section 2.2) are analyzed. Table 1 summarizes actors
referenced in multiple sources along with their corresponding references. Actors mentioned only in a
single study are excluded from the table (such as Data Provider [38] or ML Owner [56]), as their limited
appearance suggests they are not widely recognized. During the extraction process, inconsistencies
in how actors and their responsibilities were defined across studies were noted. For example, while
most papers assign Data Scientists to data-centric tasks, others also associate them with model
development responsibilities. Similarly, the role of Software Engineers varies significantly: some
sources limit their involvement in software development, whereas others include operational and ML
tasks. To systematically reduce such ambiguities and identify actor groups, we apply a clustering
approach based on the LLM selected in Section 2.3. This approach is described in the next subsection.

3.2. MLOps Dimensions

To address the ambiguities stemming from unclear actor responsibilities, dimensions are formally
identified and used to structure actors. We define an MLOps dimension as a conceptual axis that
characterizes a specific concern in MLOps. Together, these dimensions form a conceptual space in
which actors can be situated based on their responsibilities along each axis. This representation
facilitates a structured understanding of collaboration across MLOps. This process is carried out using
the 03-model through a three-step process: (1) identify relevant dimensions from a predefined actor set,
(2) cluster actors according to these dimensions, and (3) propose representative actor name for each
cluster. The exact prompt provided to the 03 model is included below:

You’re an expert in machine learning operations (MLOps). You will find below a list that contains 16 Actors who
appear in different activities in an MLOps process. I want you to:
+ Identify dimensions from the provided actors.
« Cluster actors according to these dimensions.
+ Propose a leading actor for each dimension.
« Format the final output as a structured table with three columns: Dimension, List of Actors, Proposed
Leading Actor.

*See the replication package for full details of the LLM comparison.
*OpenAl’s 03 model (see link: https://openai.com/index/introducing-03-and-o04-mini/)

https://openai.com/index/introducing-o3-and-o4-mini/

Table 1

Mentioned actors in reviewed papers.

Actor Citations Count
Business Stakeholder [1, 38, 63] 3
Solution Architect [1,63] 2
Domain Expert [32, 38, 45, 55, 59] 5
Manager [38, 45] 2
Data Scientist [1, 29, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, | 31
52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64]

Data Engineer [1, 31, 32, 33, 36, 38, 39, 40, 43, 45, 47, 49, 50, 55, 57, 62, 63] 17
Data Steward [43, 55] 2
ML Engineer / Developer [60, 31, 34, 35, 40, 41, 42, 51, 56] 9
Scientist [38, 58] 2
Software Developer [35, 51, 50, 52] 4
Software Engineer [1, 32, 38, 50, 53, 55, 56, 63] 8
Application Developer [45, 46, 59] 3
DevOps Engineer [1, 31, 34, 38, 55, 56, 57, 63] 8
MLOps Engineer [1, 38, 43, 53, 55, 63] 6
Operations Engineer [32, 36, 39, 41, 48, 55, 56] 7
IT Operations / Professional | [34, 50, 57] 3

Table 2

Proposed dimensions and actor clusters derived from the LLM.

Dimension Name

Actor Cluster

Leading Actor

Plan Business Stakeholder, Manager, Domain Expert

Product Owner

Data Engineering

Data Scientist, Data Engineer, Data Steward, Scientist

Data Engineer

Model Engineering

ML Engineer / Developer

Model Engineer

Software Engineering

Solution Architect, Software Engineer, Software Developer,
Application Developer

Software Engineer

Operations

DevOps Engineer, MLOps Engineer, Operations Engineer, IT
Operations / Professional

Operations Engineer

A manual review is conducted on the raw output generated by the prompt. One adjustment involves renaming
the first dimension from Business & Domain to Plan, to align it with the standard DevOps phases (Plan, Code,
Build, etc.). The actor clusters were also reviewed and updated: the leading actor in the Plan dimension was
changed from Business Lead to Product Owner to reflect the inclusion of software engineering activities
alongside business concerns. Importantly, the Product Owner actively collaborates, within this dimension,
with all other identified actors ensuring alignment and collaboration during the planning phase. All manual
modifications are documented in the replication package [15]. The final adjusted set of dimensions and leading

actors is presented in Table 2.

Highlights (RQ1 & RQ2). In response to RQ1, we identify 5 actors that lead MLOps dimensions: Product
Owner, Data Engineer, Model Engineer, Software Engineer, and Operations Engineer. Addressing RQ2, we
propose 5 MLOps dimensions: Plan, Data Engineering (Data), Model Engineering (Model), Software

Engineering (Soft), and Operations (Ops).

4. MLOps Activities

This section further addresses RQ3, investigating how MLOps activities can be systematically identified and
structured. Given that MLOps has no widely accepted standardized set of activities, a six-step methodology is

proposed to fill this gap:

- Activity Extraction. The extraction process, described in Section 2.2, produces a matrix with 402 activities
(rows) across 45 publications (columns).

- Grouping by Dimensions. The 402 recorded activities are then clustered according to the 5 dimensions
introduced in Section 3.2 (Plan, Data, Model, Soft, and Ops). To automate this mapping, the 03 model is reused.
The complete list of activities is fed into the model, leveraging its language understanding capabilities to classify
each activity under one of the 5 dimensions. The prompt used is:

You’re an expert in machine learning operations (MLOps). You will find, at the end, a list that contains 402
Activities that appear in different MLOps processes. I want you to:

« Categorize these Activities into these 5 dimensions: Plan, Data engineering, Model engineering, Software
engineering, and Operations.
« Ensure activities are not mistakenly categorized: e.g., Differentiate what’s Software and what’s Operations.

« Format the final output as a structured table with two columns: Dimension, Activity. I should get 402 rows
(other than the header)

- Dimension-Specific Clustering. After executing the prompt, the 03 model produces clusters for the Plan (26
activities), Data (101 activities), Model (113 activities), Soft (59 activities), and Ops (103 activities) dimensions.

- Redundancy Reduction. To refine the activity sets extracted per dimension, a dedicated prompt is applied to
each one. This step aims to: (1) group semantically similar activities and eliminate redundancies, and (2) assign a
representative label and generate a concise description for each resulting cluster. The procedure is repeated
independently for each of the 5 dimensions. The prompt used in this step is as follows:

You’'re an expert in machine learning operations (MLOps). You will find, at the end, a list of activities related to
<dimension_name> Dimension. You are asked to:

« Group similar activities and propose new activity name. The proposed activity name should start with a
verb. Use concise verb phrase, for example I prefer "Review Code" instead of "perform code review".

« Ensure activities are not mistakenly merged if they represent distinct tasks

« Format the final output as a structured table with three columns: Proposed Activity Name, Grouped
Activities, A brief explanation. Order the activities in the table in a chronological order.

This step reduces the total number of distinct activities in Plan, Data, Model, Soft, and Ops dimensions to 7, 8, 9,
5, and 9, respectively (38 activities in total).

- Manual Review and Merging. A manual review of these 38 activities is conducted to refine the activity set
and reduce redundancy®. For example, Diagram Deployment Model was merged with Design Architecture.

- Final Consolidation. The consolidated list of activities, each with a description and frequency across the 45
analyzed publications, is included in the replication package. A visual summary of these activities is provided in
Figure 2, which organizes them according to the 5 proposed MLOps dimensions. Each dimension is color-coded
and annotated with the lead actors responsible for executing their associated activities.

Highlights (RQ3). In response to RQ3, 38 activities are identified, distributed across the five MLOps
dimensions. These activities constitute the foundation of SkeltyMLOps ’s architectural design.

5. Threats to Validity

Despite our methodical approach and the rigor with which the extraction, processing, and analysis of data were
handled, there are still potential threats to validity regarding the obtained results.

External validity. Our study is based on a selection of academic research papers. This may omit relevant
alternative sources, such as white papers and online articles published by practitioners. However, it is a deliberate

*The details of this manual refinement are provided in the replication package: https://anonymous.4open.science/r/mlops_
ecai25-EB68/

https://anonymous.4open.science/r/mlops_ecai25-EB68/
https://anonymous.4open.science/r/mlops_ecai25-EB68/

? MI. Run Experiments

M2. Design Model
") Ma3. Develop Model
< M4. Train Model

&
N
D1. Collect Data MS. Tune Model o{:(':)}

D2. Ingest Data M6. Validate Model

D3. Preprocess Data M?7. Evaluate & Test Model o1 Confi P
. .. 1. Configure CI/CD
Dd. Validate Data MS8. Optimize Model

D5, Engineer Features M. Register Model O2. Manage Infrastructure
D6. Label Data

D7. Analyze Data
D8. Manage Data

O3. Execute Pipelines
Od. Deploy to Testing
O5. Deploy to Production

8 Model Engineer

06. Serve Inference
8 Data Engineer Q7. Monitor Performance
08. Trigger Retraining
09. Operate & Maintain

& Operations Engineer

P1. Conceptualize Project

P2. Define Requirements
P3. Formulate ML Problem
P4. Analyze Data Sources
P5. Design Architecture

P6. Plan Project

P7. Initialize Repositories

S1. Develop Code

S2. Build Components
S3. Package Artifacts
S4. Test Solution

S5. Release Solution

o Pr oflucr Owne.:, Data Engineer : Model anmum, & Software Engineer
Software Engineer, and Operations Engineer

Figure 2: MLOps infinite loop showing dimensions, actors and associated activities.

design choice to only retain peer-reviewed papers, corresponding to established practices. Moreover, these
papers are retrieved from a single search engine. We mitigate this threat by relying on Google Scholar, which is
reputed for its agnostic and wide-ranging indexing of publications, and by applying backward and forward
snowballing techniques to cover as many relevant studies as possible.

Internal validity. The proposed lists of actors, dimensions, and activities may reflect biases introduced by our
backgrounds in software engineering, machine learning, and operations. To reduce these biases, we used an
LLM to group the extracted information. While this approach minimizes subjective manual interpretations, it
introduces new risks inherent to LLMs, such as hallucinations. We partially mitigate this by manually reviewing
and refining the model’s output to ensure coherence and accuracy.

Reliability. Our results depend on the choice of the LLM and are influenced by the design of the prompts. This
is especially true for the activity clustering task, which involves a large and diverse set of items. LLM responses
can vary across runs or model versions and may lack reproducibility if prompt designs are not well-documented.
Furthermore, since LLMs are trained on vast and heterogeneous data, they might introduce contextually irrelevant
groupings. To address these issues, we iteratively refined the prompts and ensured that outputs were reproducible
under stable conditions. Our final manual adjustments were minimal and limited to coherence and clarity, not
conceptual alterations.

6. A Reference MLOps Architecture Promoting Collaboration

This section introduces SkeltyMLOps, a reference architecture for MLOps, that explicitly supports the actors
and activities identified in Sections 3 and 4. A Reference Architecture is a reusable blueprint that encapsulates
essential design principles, best practices, and structural guidelines for a given domain [25, 26]. It serves as a
foundation for developing concrete MLOps frameworks. SkeltyMLOps is a reference architecture for MLOps
that integrates relevant domain-specific knowledge, and standardizes activities within the MLOps process. The
motivation behind SkeltyMLOps is to emphasize and orchestrate collaboration among the various actors involved.

Plan

Domain & End-user
Tickets [Issues

u

c

Data Project Management | —
«Component» g] Soft
—1 Data Storage &
Versioning Ops (L
Processes. Tickets 2 |
Processed () C”““‘“’g «Component»
Data™ L Data API Development
—
Feedha:k Commands
C=m CEET Br=Srals MLOps Process O Deployment & Source
ata Acquisition Orchestration Monitoring) Feedback Code
New Q
Dt Feedha:k !
Runtime
Mnnimring]i, «Component» $:|
| «Components i"“/‘:ji‘;::;
Data Processing &
Feature Engineering Command
cnmmandi
Selected E Model
= Feedback
eatures % L
«Component» E Generated Legend
Feature Storage @ Model(s) @ ” —(_ :Required interface
& Versioning «Componenty «Components

—() + Provided interface

Model Development. oL Model Storage + Provi
& Training & Varsioning 0] +ren

Figure 3: UML component diagram of SkeltyMLOps.

Table 3
Mapping between SkeltyMLOps components and activities.

Component Activities

Conceptualize Project, Define Requirements, Formulate ML Problem, Analyze Data
Sources, Design Architecture, Plan Project, Initialize Repositories

Data Acquisition Collect Data, Ingest Data

Data Processing

& Feature Engineering
Model Development Run Experiments, Design Model, Develop Model, Train Model, Tune Model, Validate Model,

Project Management

Preprocess Data, Validate Data, Engineer Features, Label Data, Analyze Data, Manage Data

& Training Evaluate & Test Model, Optimize Model, Register Model

API Development Develop Code, Build Components, Package Artifacts, Test Solution, Release Solution
Deployment Configure CI/CD, Manage Infrastructure, Deploy to Testing, Deploy to Production, Serve
& Monitoring Inference, Monitor Performance, Operate & Maintain

MLOps Process

Execute Pipelines, Trigger Retraining

Orchestrator

6.1. From Actors & Dimensions to an MLOps Reference Architecture

To design the architecture of SkeltyMLOps, a modular decomposition is adopted, aligned with MLOps identified
dimensions. Each module corresponds to one of the 5 MLOps dimensions and is structured to serve the needs of
its actors. This design follows a domain-driven approach, where each module represents a distinct sub-domain of
MLOps. Within each module, finer-grained components are defined to support the execution of specific activities
identified in Section 4. The overall architecture, with its modules and their internal components, is presented
in Figure 3, while Table 3 details the correspondence between components and the activities they support. At
the core of the architecture is the MLOps Process Orchestration (MPO) component. It manages both control
and data flows among all components, and ensures coordinated execution of the MLOps process. The Project
Management component, which handles requirements engineering and planning tasks, supplies the MPO with
issue tickets [27, 28]. These tickets are then resolved automatically via a translation into executable commands
that involve the appropriate components. A key aspect of SkeltyMLOps is that it versions not only code, but data
and ML models as well. This versioning capability supports reproducibility, allows for rollback when needed,

and can be used to support audits and explanations. Moreover, the architecture separates two complementary
components: APl Development and Deployment & Monitoring. The API Development component focuses on
implementing and exposing model functionalities. In parallel, the Deployment & Monitoring component ensures
that these models are monitored and maintained in production environments. This separation clarifies the
boundary between development and operations. The architecture further incorporates components to manage
Data and ML models. The Data Acquisition component provides interfaces for ingesting data from diverse
sources. The Data Processing & Feature Engineering component manages the cleaning and transformations of
raw data, and performs feature engineering. The Model Development & Training component groups services
related to building, training, validating, and optimizing models. The proposed reference architecture allows
updates and recovery procedures to have a minimal impact on other components. To support software evolution,
SkeltyMLOps incorporates feedback loops at multiple levels. The Deployment & Monitoring component enables
continuous monitoring and rollback mechanisms. In addition, it reports operational insights, such as data and
concept drift, back to Project Management, where they are tracked as issue tickets. This feedback loop triggers
maintenance actions within the MLOps process. In addition, end-user feedback collected through the Project
Management interface is systematically integrated into the iterative development process. The Data Acquisition
component further enhances adaptability by exposing interfaces for ingesting new data, thereby supporting
feedback from production, enabling continuous training, and facilitating adaptation to evolving datasets. Finally,
SkeltyMLOps offers client-facing interfaces that support integration with external tools, including IDEs. The
modular nature of SkeltyMLOps makes it extensible and customizable. Components can be individually adapted,
replaced, or omitted according to project-specific needs such as swapping the Model Storage implementation or
disabling API Development in batch-only pipelines. This modularity enhances the architecture’s maintainability,
reusability, and adaptability.

6.2. Emphasis on MLOps Project Management & Process Orchestration

The core contribution of SkeltyMLOps lies in its explicit support for actor collaboration and activity orchestration
across the MLOps processes. Unlike existing approaches that treat MLOps as a loosely connected set of
tools and practices, the proposed design introduces structured components that enforce coordination and
operational continuity between dimensions. At the core of this architecture are two central components: Project
Management and MLOps Process Orchestration. The Project Management component initiates MLOps activities.
It ingests BPMN processes and feeds them into the orchestration layer to automate process execution. The
Product Owner, acting as a liaison across all actors, defines the MLOps processes by capturing requirements,
aligning them with business goals, formulating the problem statement, and ensuring communication among
actors. The Product Owner also supervises the MLOps backlog and issue tickets, ensuring alignment between
evolving project needs and technical execution. Complementing this, the MPO component operationalizes the
strategic decisions defined during project planning. Functioning as an execution layer, it continuously monitors
process execution, handles feedback from runtime operations, and adapts system behavior when necessary.
Through this mechanism, the MPO enforces ongoing coordination, ensuring that collaborative intentions are
reflected in actual system behavior. Together, these components form the collaborative and orchestration
backbone of the presented reference architecture. Their multicolored representation in Figure 3 specifically
highlights the interaction and cooperation among the various actors involved within these two components.

Highlights (RQ4). SkeltyMLOps is an MLOps reference architecture designed to promote collaboration
through the orchestration of activities. These activities are extracted from the literature, associated with
identified MLOps actors from the literature review, and organized into components. The components are
grouped into modules that reflect MLOps dimensions.

7. State of the Art on Reference Architectures for MLOps

This section examines recent MLOps reference architectures to contextualize SkeltyMLOps within the broader
literature. Wozniak et al. [29] propose an MLOps reference architecture derived from a systematic literature review,
identifying key components, tools, processes, and metrics. Although their proposed process explicitly integrates
data-related activities, the final presented architecture itself lacks clearly defined data management components.
This omission contrasts with our previous findings, which emphasize the importance of data management as
critical to MLOps processes, a gap explicitly addressed by SkeltyMLOps. In contrast, Najafabadi et al. [30] conduct
a systematic mapping study, identifying 35 architectural components. While their work shares motivations

with SkeltyMLOps, it lists components without defining clear responsibilities or actors among them, causing
overlap and potential confusion. Although Najafabadi et al. highlight the necessity of an orchestrator to manage
interactions among components, their final architecture does not explicitly depict or detail this orchestrator. In
contrast, SkeltyMLOps explicitly defines actors and their interactions based on collaboration, clearly integrating
a central orchestrator into the architecture to coordinate the activities. Kreuzberger et al. [1] present an end-to-
end MLOps architecture detailing various components and associated actors. However, their data versioning
strategy primarily focuses on features while neglecting raw data and training/test dataset versioning, which
are critical for reproducibility and traceability in MLOps. Additionally, their monitoring primarily covers model
performance without addressing data drift, resource utilization, or overall infrastructure health, potentially
hindering proactive issue detection and automated retraining processes. SkeltyMLOps addresses these limitations
by providing explicit data versioning strategies across all stages of data lifecycle management and implementing
comprehensive monitoring to proactively manage and adapt to performance, dataset, and model changes. In
SkeltyMLOps, components are systematically organized by actors to facilitate clear and effective collaboration.
At the core of SkeltyMLOps is a central orchestrator designed to coordinate interactions and ensure efficient
execution across components. Additionally, SkeltyMLOps explicitly includes structured monitoring with clearly
defined feedback loops, enabling systematic initiation of retraining or adaptation processes.

8. Conclusion & Perspectives

Recognizing the specific challenges posed by development and lifelong management of ML-powered software, we
introduce SkeltyMLOps, a reference architecture tailored to address these challenges. The design of SkeltyMLOps
follows a structured methodology: first, identifying and mapping the diverse actors and dimensions involved in
MLOps, second, defining the core set of activities necessary for an MLOps process, and third, organizing these
activities into software components assembled in a reference architecture. Compared to the existing literature,
SkeltyMLOps stands out by focusing on actors and promoting a holistic project management and collaboration
through its architecture design. We envision several extensions to this work. First, we aim to provide the LLM
with the papers from the literature review as context to facilitate more precise reasoning. Second, we will
design generic collaborative MLOps processes and their variants using BPMN. Third, we plan to implement a
BPMN-based orchestrator for SkeltyMLOps to automate and coordinate the modeled MLOps processes. Fourth,
we have initiated the development of an open-source version of SkeltyMLOps. This framework will integrate
widely adopted tools and libraries. Finally, we intend to evaluate SkeltyMLOps in continuous training scenarios.

Acknowledgments. This research was partially supported by Région Occitanie (PLANETS project), which funds
Charbel Daoud’s PhD, and by the French National Research Agency (ANR) (AdaptiveMLOps, ANR-24-IAS2-0004),
which supports the work of Christelle Urtado and Sylvain Vauttier.

Declaration on Generative Al

As discussed in Section 2.3, a large language model was used to cluster data extracted from the systematic
literature review.

References

(1]

(10]

(11]
(12]

(13]

D. Kreuzberger, N. Kiihl, S. Hirschl, Machine Learning Operations (MLOps): Overview, Definition, and
Architecture, IEEE Access 11 (2023) 31866—31879. d0i:10.1109/ACCESS.2023.3262138.

D. A. Tamburri, Sustainable MLOps: Trends and Challenges, in: The 22nd International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC, IEEE, Online, 2020, pp. 17-23.
doi:10.1109/SYNASC51798.2020.00015.

L. Zhu, L. Bass, G. Champlin-Scharff, DevOps and Its Practices, IEEE Software 33 (2016) 32-34. doi:10.
1109/MS.2016.81.

B. S. Farroha, D. L. Farroha, A Framework for Managing Mission Needs, Compliance, and Trust in the
DevOps Environment, in: IEEE Military Communications Conference (MILCOM), IEEE, Baltimore, MD,
USA, 2014, pp. 288-293. d0i:10.1109/MILCOM. 2014 . 54.

D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, Machine
Learning: The High-Interest Credit Card of Technical Debt, in: SE4ML: Software Engineering for Ma-
chine Learning (NeurIPS 2014 Workshop), Montréal, QC, Canada, 2014. URL: https://research.google/pubs/
machine-learning-the-high-interest-credit-card-of-technical-debt/.

A. K. Narayanappa, C. Amrit, An Analysis of the Barriers Preventing the Implementation of MLOps,
in: S. K. Sharma, Y. K. Dwivedi, B. Metri, B. Lal, A. Elbanna (Eds.), Transfer, Diffusion and Adoption of
Next-Generation Digital Technologies, volume 697 of IFIP Advances in Information and Communication
Technology, Springer, Cham, 2024, pp. 101-114. doi:10.1007/978-3-031-50188-3_10.

A. M. Burguefio-Romero, A. Benitez-Hidalgo, C. Barba-Gonzalez, J. F. Aldana-Montes, Toward an Open
Source MLOps Architecture, IEEE Software 42 (2025) 59-64. doi:10.1109/MS. 2024 .3421675.

A. Melde, M. Madan, P. Gavrikov, D. Hoof, A. Laubenheimer, J. Keuper, C. Reich, Tackling Key Challenges
of AI Development—Insights from an Industry—Academia Collaboration, in: C. Reich, U. Mescheder
(Eds.), The Upper-Rhine Artificial Intelligence Symposium (UR-AI 2022): Al Applications in Medicine
and Manufacturing, Furtwangen University, Villingen-Schwenningen, Germany, 2022, pp. 112-121. URL:
https://opus.hs-furtwangen.de/files/8624/Tackling.pdf.

F. Calefato, F. Lanubile, L. Quaranta, A Preliminary Investigation of MLOps Practices in GitHub, in: 16th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM, ACM,
Helsinki, Finland, 2022, pp. 283-288. doi:10.1145/3544902.3546636

A. Serban, K. van der Blom, H. Hoos, J. Visser, Software Engineering Practices for Machine Learn-
ing—Adoption, Effects, and Team Assessment, Journal of Systems and Software 209 (2024) 111907.
doi:10.1016/3.jss.2023.111907.

M. P. Uysal, E. Akturk, A Systemic Approach to Machine Learning Project Management, IEEE Engineering
Management Review 52 (2024) 1-17. doi:10.1109/EMR. 2024 .3503677.

M. Zarour, H. Alzabut, K. T. Al-Sarayreh, MLOps Best Practices, Challenges and Maturity Models: A
Systematic Literature Review, Information and Software Technology 183 (2025) 107733. doi:10.1016/3 .
infsof.2025.107733.

A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek, A. Chatzigeorgiou, Identifying, Categorizing and
Mitigating Threats to Validity in Software Engineering Secondary Studies, Information and Software
Technology 106 (2019) 201-230. doi:10.1016/j.infsof.2018.10.006.

A. Martin-Martin, E. Ordufia-Malea, M. Thelwall, E. D. Lopez-Cézar, Google Scholar, Web of Science, and
Scopus: A systematic comparison of citations in 252 subject categories, Journal of Informetrics 12 (2018)
1160-1177. doi:10.1016/j.j0i.2018.09.002

C. Daoud, D. Azar, J. Boiché, C. Urtado, S. Vauttier, SkeltyMLOps: Orchestrating Collaborative MLOps
Activities, Zenodo, Version 0.1, 2025. doi:10.5281/zenodo. 17094711, [Dataset].

P. Trivedi, N. Choudhary, E. W. Huang, V. N. Ioannidis, K. Subbian, D. Koutra, Large Language Model
Guided Graph Clustering, in: Learning on Graphs Conference (LoG), Virtual Event, 2024.

V. Viswanathan, K. Gashteovski, C. Lawrence, T. Wu, G. Neubig, Large Language Models Enable Few-Shot
Clustering, Transactions of the Association for Computational Linguistics 12 (2024) 321-333. doi:10.1162/
tacl a 00648.

Y. Zhang, Z. Wang, J. Shang, ClusterLLM: Large Language Models as a Guide for Text Clustering, in:
Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics,
Singapore, 2023, pp. 13903-13920. doi:10.18653/v1/2023.emnlp-main. 858.

M. J. Mirza, L. Karlinsky, W. Lin, H. Possegger, M. Kozinski, R. Feris, H. Bischof, LaFTer: Label-Free tuning of
Zero-shot classifier using language and unlabeled image collections, in: A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, S. Levine (Eds.), Advances in Neural Information Processing Systems 36 (NeurIPS),
volume 36, Curran Associates, Inc., New Orleans, LA, USA, 2023, pp. 5765-5777. URL: https://proceedings.

http://dx.doi.org/10.1109/ACCESS.2023.3262138
http://dx.doi.org/10.1109/SYNASC51798.2020.00015
http://dx.doi.org/10.1109/MS.2016.81
http://dx.doi.org/10.1109/MS.2016.81
http://dx.doi.org/10.1109/MILCOM.2014.54
https://research.google/pubs/machine-learning-the-high-interest-credit-card-of-technical-debt/
https://research.google/pubs/machine-learning-the-high-interest-credit-card-of-technical-debt/
http://dx.doi.org/10.1007/978-3-031-50188-3_10
http://dx.doi.org/10.1109/MS.2024.3421675
https://opus.hs-furtwangen.de/files/8624/Tackling.pdf
http://dx.doi.org/10.1145/3544902.3546636
http://dx.doi.org/10.1016/j.jss.2023.111907
http://dx.doi.org/10.1109/EMR.2024.3503677
http://dx.doi.org/10.1016/j.infsof.2025.107733
http://dx.doi.org/10.1016/j.infsof.2025.107733
http://dx.doi.org/10.1016/j.infsof.2018.10.006
http://dx.doi.org/10.1016/j.joi.2018.09.002
http://dx.doi.org/10.5281/zenodo.17094711
http://dx.doi.org/10.1162/tacl_a_00648
http://dx.doi.org/10.1162/tacl_a_00648
http://dx.doi.org/10.18653/v1/2023.emnlp-main.858
https://proceedings.neurips.cc/paper_files/paper/2023/file/123a18dfd821c8b440f42a00a27648d6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/123a18dfd821c8b440f42a00a27648d6-Paper-Conference.pdf

(21]

[22]

(23]

(27]

neurips.cc/paper_files/paper/2023/file/123a18dfd821c8b440f42a00a27648d6-Paper-Conference.pdf.

R. Zhang, Y. Li, Y. Ma, M. Zhou, L. Zou, LLMaAA: Making Large Language Models as Active Annotators,
in: Findings of the Association for Computational Linguistics: EMNLP, Association for Computational
Linguistics, Singapore, 2023, pp. 13088-13103. doi:10.18653/v1/2023.findings-emnlp.872.
DeepSeek-Al D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.,
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning, arXiv preprint
(2025). d0i:10.48550/arXiv.2501.12948. arXiv:2501.129438.

S. Wu, Z. Peng, X. Du, T. Zheng, M. Liu,]J. Wu, J. Ma, Y. Li, J. Yang, W. Zhou, Q. Lin, J. Zhao, Z. Zhang,
W. Huang, G. Zhang, C. Lin, J. H. Liu, A Comparative Study on Reasoning Patterns of OpenAI’'s o1 Model,
arXiv preprint (2024). doi:10.48550/arXiv.2410.13639. arXiv:2410.13639.

M. Ggaliwango, H. Nakayiza, D. Jjingo, J. Nakatumba-Nabende, Prompt Engineering in Large Language
Models, in: L J. Jacob, S. Piramuthu, P. Falkowski-Gilski (Eds.), International Conference on Data Intelligence
and Cognitive Informatics ICDICI, Algorithms for Intelligent Systems, Springer Singapore, Tirunelveli,
India, 2024, pp. 387-402. d0i:10.1007/978-981-99-7962-2_30.

J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar, J. Spencer-Smith, D. C. Schmidt,
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT, arXiv preprint (2023). doi:10.
48550/arXiv.2302.11382. arXiv:2302.11382.

R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, M. Bone, The Concept of Reference Architectures,
Systems Engineering 13 (2010) 14-27. doi:10.1002/sys.20124.

E. Y. Nakagawa, Reference Architectures and Variability: Current Status and Future Perspectives, in:
T. Méannisto, M. A. Babar, C. E. Cuesta,]. E. Savolainen (Eds.), WICSA/ECSA Companion Volume, number
704 in ACM International Conference Proceeding Series, ACM, Helsinki, Finland, 2012, pp. 159-162. doi:10.
1145/2361999.2362032.

T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillere, J. Klein, Y. L. Traon, Got Issues? Who Cares About It? A Large
Scale Investigation of Issue Trackers from GitHub, in: IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE), IEEE, Pasadena, CA, USA, 2013, pp. 188-197. doi:10.1109/ISSRE. 2013.
6698918.

D. Falessi, F. Hernandez, F. Khosmood, Issue Tracking Systems: What Developers Want and Use, in: The
13th International Conference on Software Technologies (ICSOFT, INSTICC, SciTePress, Porto, Portugal,
2018, pp. 543-548. doi:10.5220/0006818405430548.

A.P. Wozniak, M. Milczarek, J. Wozniak, MLOps Components, Tools, Process and Metrics—A Systematic
Literature Review, IEEE Access 13 (2025) 22166-22175. doi:10.1109/ACCESS.2025.3534990.

F. A. Najafabadi, J. Bogner, I. Gerostathopoulos, P. Lago, An Analysis of MLOps Architectures: A Systematic
Mapping Study, in: M. Galster, P. Scandurra, T. Mikkonen, P. O. Antonino, E. Y. Nakagawa, E. Navarro (Eds.),
Software Architecture: 18th European Conference, ECSA, Luxembourg City, Luxembourg, volume 14889 of
Lecture Notes in Computer Science, Springer, Cham, 2024, pp. 69-85. d0i:10.1007/978-3-031-70797-1_5.

https://proceedings.neurips.cc/paper_files/paper/2023/file/123a18dfd821c8b440f42a00a27648d6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/123a18dfd821c8b440f42a00a27648d6-Paper-Conference.pdf
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.872
http://dx.doi.org/10.48550/arXiv.2501.12948
http://arxiv.org/abs/2501.12948
http://dx.doi.org/10.48550/arXiv.2410.13639
http://arxiv.org/abs/2410.13639
http://dx.doi.org/10.1007/978-981-99-7962-2_30
http://dx.doi.org/10.48550/arXiv.2302.11382
http://dx.doi.org/10.48550/arXiv.2302.11382
http://arxiv.org/abs/2302.11382
http://dx.doi.org/10.1002/sys.20124
http://dx.doi.org/10.1145/2361999.2362032
http://dx.doi.org/10.1145/2361999.2362032
http://dx.doi.org/10.1109/ISSRE.2013.6698918
http://dx.doi.org/10.1109/ISSRE.2013.6698918
http://dx.doi.org/10.5220/0006818405430548
http://dx.doi.org/10.1109/ACCESS.2025.3534990
http://dx.doi.org/10.1007/978-3-031-70797-1_5

	1 Introduction
	2 Research Questions & Methodology
	2.1 Research Questions
	2.2 Methodology for RQ1 and RQ3
	2.3 An LLM-powered Systematic Literature Review

	3 MLOps Actors & Dimensions
	3.1 MLOps Actors
	3.2 MLOps Dimensions

	4 MLOps Activities
	5 Threats to Validity
	6 A Reference MLOps Architecture Promoting Collaboration
	6.1 From Actors & Dimensions to an MLOps Reference Architecture
	6.2 Emphasis on MLOps Project Management & Process Orchestration

	7 State of the Art on Reference Architectures for MLOps
	8 Conclusion & Perspectives

