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Abstract
The Architecture, Engineering, and Construction (AEC) industry faces persistent challenges in integrating 
heterogeneous  data  for  structural  health  monitoring  (SHM)  and  facility  management,  specifically  in 
capturing time-dependent degradation, probabilistic models reflecting uncertainty, and damage semantics. 
This paper proposes a Linked Data framework that extends Industry Foundation Classes (IFC) with semantic 
web technologies to address these gaps. By converting IFC data into a Resource Description Framework 
(RDF)  graph via modular  ontologies—including BOT,  SOSA/SSN,  OPM,  DOT,  and a custom LifeMACS 
Ontology (LFM)—the framework enables rich semantic queries, provides inputs for probabilistic analyses, 
and cross-domain interoperability. A Python-based conversion pipeline automates the translation of IFC 
geometry,  sensor  data,  and  inspection  records  into  an  RDF  knowledge  graph,  while  SPARQL queries 
demonstrate advanced capabilities, such as probabilistic crack-length or sensor value assessments and real-
time data integration. A case study on a deteriorating reinforced concrete bridge validates the approach, 
showcasing its potential for improved statistical parsing directly using the RDF graph. Results highlight the  
framework’s potential to connect static infrastructure data with dynamic lifecycle parameters. The work 
highlights the potential of semantic web technologies in advancing digital twin capabilities for the AEC 
industry.
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1. Introduction

The  Architecture,  Engineering,  and  Construction  (AEC)  industry  increasingly  relies  on  digital  
technologies like Building Information Modelling (BIM) to address the complexities of designing, 
building,  and  maintaining  infrastructure  [1,  2].  OpenBIM—particularly  through  the  Industry 
Foundation  Classes  (IFC)—has  emerged  as  a  prominent  standard  for  exchanging  building  and 
infrastructure information, helping to alleviate the persistent issue of data silos  [3]. While direct 
export from BIM authoring tools to Resource Description Framework (RDF) is possible, leveraging the 
IFC standard allows the framework to integrate with diverse existing workflows and tools without 
requiring specific adapters, despite potential information losses inherent in the format conversion 
from native to IFC. However, despite IFC’s widespread adoption, significant challenges remain in 
capturing rich semantics,  facilitating advanced queries,  and enabling flexible data linking across 
heterogeneous sources, especially over a structure’s entire life cycle [4].

A range of research efforts has explored ways to augment IFC with semantic web technologies. 
While direct IFC-to-LBD conversions using schemas like ifcOWL exist [5], integrating domain-specific 
semantics for SHM often requires mapping to broader Linked Building Data (LBD) ontologies [6–9]. 
Nonetheless,  many existing  solutions  still  struggle  with  more  specialized  requirements,  such as 
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damage representation [10], time-dependent degradation [8], and probabilistic models [11], which are 
increasingly relevant for structural health monitoring (SHM) applications [12]. 

This situation becomes especially pressing in the context of facility management, where efficient 
data integration and reliable interoperability play critical roles. Monitoring concrete structures, for 
instance, requires aggregating inspection results, sensor measurements, and predictive simulation 
data—often  from  multiple  specialized  tools—while  also  managing  time-  and  context-sensitive 
information,  such  as  evolving  damage  or  degradation  along  with  associated  uncertainties  [12]. 
Conventional IFC-centric workflows provide robust geometry and basic semantic capabilities but can 
fall  short in representing richer relationships, intricate damage modelling  [13, 14], and real-time 
sensor data stream support [15].

Against this backdrop, Semantic Web Technologies (SWT) and Linked Data (LD) approaches offer 
an appealing solution to extend traditional BIM data with graph-based models and ontologies. By 
converting IFC data to RDF and integrating domain-specific ontologies, stakeholders can use more 
expressive queries,  advanced reasoning, and seamless linking to external knowledge bases. Prior 
research  in  this  space  has  demonstrated  the  potential  for  IFC-to-LBD  conversion  to  address 
interoperability gaps [4, 6, 16, 17], but few solutions provide a comprehensive methodology spanning 
standard ontologies that also includes custom damage and domain concepts.

The LifeMACS (life-cycle methodology for the assessment of existing concrete structures) project 
aims, among other things, to address these challenges by developing a comprehensive framework to 
aid decision-making in facility management and structural health monitoring [12, 18]. By integrating 
data from inspections and sensor measurements,  the project  enables  a  deep understanding of  a 
structure's performance using Bayesian material degradation and damage evolution models [18], as 
well as Finite Element (FE) models for structural performance and temporal degradation prediction 
[19].  These  models  lead  to  performance-based  optimization  of  preventive  as  well  as  predictive 
maintenance strategies [20]. The project involves a multidisciplinary team of researchers and industry 
partners, ensuring the development of a robust, complete, and practical solution.

In this paper, a Linked Data framework is presented that complements existing IFC workflows by 
incorporating explicit semantic modeling of structural damage, sensor measurements, and other life-
cycle parameters—aligned with the needs of LifeMACS. Our approach extends and integrates standard 
ontologies (BOT [7], SSN/SOSA [21], OPM [8], OMG/FOG [22, 23] or GeoSPARQL [24], OWL-Time, 
DOT [10]) as well as introduce new concepts in the custom LifeMACS Ontology (LFM). By illustrating 
the method through a reinforced concrete bridge case study, we show how IFC-to-LBD translation 
simplifies  complex  data  exchange  while  enabling  deeper  statistical  analyses  for  predictive 
maintenance and asset management. IFC-to-LBD approaches already exist [5, 25], but are out of the 
box not aligned to the custom ontologies in the project, thus a custom solution was created. Ultimately, 
this paper contributes a novel, ontology-driven methodology for harnessing Bayesian modeling based 
on digital building models, reinforcing the broader role of Linked Data and other SWT in the LCM 
phase of construction.

2. Methodology

2.1. Overall Architecture

The proposed data integration framework adopts a layered architecture designed to transform IFC 
files  into  an  RDF representation,  while  accommodating  domain-specific  extensions  required  for 
structural health monitoring and facility management. Figure 1 illustrates the conversion workflow 
which includes: (1) the IFC data ingestion and processing module, (2) the semantic mapping and 
ontology alignment steps, and (3) the linked data and query interface. This structure ensures that 
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geometric and semantic information from IFC is  retained,  processed into specialized ontological  
constructs, and made available for analysis or integration with external data sources.

Figure 1: The overall workflow

In the first  step,  IFC files are collected from existing BIM-based workflows.  Then the parser  
identifies  relevant  IFC entities  (e.g.,  IfcWall,  IfcBeam,  IfcSlab,  IfcSensor…),  extracts  the  required 
attributes,  and prepares them for conversion.  If  necessary, partial  geometry processing could be 
performed to determine high-level spatial information, such as element boundaries or positioning, by 
using for example the GeoSPARQL [24] or OMG/FOG ontologies [22, 23, 26].

The second step addresses the semantic alignment challenge by mapping extracted IFC data to 
suitable vocabularies and ontologies. This process employs domain ontologies including BOT [7, 27], 
SOSA/SSN  [21], and DOT  [10]. Where no suitable classes or properties are available in existing 
ontologies, custom extensions are defined using the LifeMACS Ontology (LFM) to represent aspects 
such as Bayesian uncertainties and concrete properties. The mapping engine implements rule-based 
transformations that convert IFC identifiers and relationships into corresponding triples, ensuring 
consistent naming conventions and stable Uniform Resource Identifiers (URIs) across the dataset as  
well as keeping the one-to-one connection to the original IFC object via its global ID (GUID).

The third step stores and serves the resulting RDF graphs through a triple store or linked data 
platform. This component provides interfaces for data querying and manipulation (e.g., via SPARQL), 
supporting integrations with other semantic resources. For example, if structural monitoring data—
such as strain and temperature measurements—reside in separate repositories, alignment with SOSA 
properties enables cross-dataset inference and retrieval. 

By  combining  separate  data  ingestion,  ontology  alignment,  and  linked  data  interaction,  this 
architecture  accommodates  evolving  domain  requirements  and  facilitates  future  extensions.  In 
particular, time-varying data or probabilistic model outputs were incorporated without extensive 
modifications to the existing IFC data or underlying ontological models. This approach thus creates a 
scalable and interoperable foundation for integrating BIM-based geometry and semantic data with 
specialized workflows in asset management and structural health monitoring.
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2.2. Ontology Stack and Custom Extensions

The LifeMACS (LFM) ontology adopts a modular design by importing and extending a series of widely 
used ontologies to capture both general  and specialized aspects of  structural  health monitoring, 
building topology, and facility management. As shown in the ontology definition, the following key 
ontological components are included:

Building  Topology  Ontology  (BOT) provides  a  concise  hierarchy  for  built-environment 
concepts, modeling relationships such as adjacency and containment. In the LifeMACS ontology, 
elements representing physical infrastructure are aligned with bot:Element. 

Ontology for Properties and Materials (OPM) is employed to capture material characteristics 
and property states. In the LifeMACS ontology, the object property lfm:hasPropertyState references 
opm:PropertyState,  enabling  time-dependent  descriptions  of  evolving  material  or  structural 
properties.

Semantic Sensor Network and Sensor, Observation, Sample, and Actuator (SSN/SOSA) are 
used to describe sensor networks, their observations, and more generally measurements or inspections 
done.  The  LifeMACS  ontology  extends  this  framework  through  properties  including 
lfm:hasUncertainty.

Damage Topology Ontology (DOT) is  imported to  represent  damage phenomena,  such as 
cracking or spalling. Instances of dot:Damage can be linked to specific structural components using 
lfm:hasDamageAssessment.

OWL-Time  supplies  constructs  for  representing  temporal  concepts,  such  as  intervals  using 
time:Interval and specific time points via time:Instant. The LifeMACS ontology references for example 
time:Interval through properties like lfm:hasValidityPeriod or lfm:hasTimeInterval.

Domain-Specific Extensions (LifeMACS Ontology LFM). Classes such as lfm:BayesianModel 
and  lfm:DegradationModel  capture  the  computational  models  used  for  predicting  structural 
performance, while lfm:Parameter and lfm:ProbabilityDistribution enable descriptions of uncertainty 
in material or model parameters. Furthermore, properties such as lfm:hasIfcRepresentation support  
linking  each  LFM  individual  to  its  corresponding  IFC  entity.  Additional  relationships  like 
lfm:hasFiniteElementModel  and  lfm:hasCorrosionLevel,  ensure  that  specialized  engineering 
workflows and advanced simulation models are integrated into the overall knowledge graph. The full 
ontology is available on GitHub1, as well as an overview of the classes and properties2.

2.3. IFC-to-TTL Conversion Pipeline

The conversion pipeline from IFC to RDF leverages a Python-based workflow, based on Figure 1, that 
combines the IfcOpenShell library3 for parsing IFC data with the RDFLib framework for creating and 
managing RDF triples. The pipeline is composed of the following sequential stages:

2.3.1. Initialization of Namespaces and Graph Context

The pipeline initializes an empty RDF graph and binds the prefixes mentioned earlier in the ontology 
stack.

2.3.2. Spatial Structure Extraction

The first task is to extract the hierarchy of spatial entities (e.g., sites, buildings, storeys, and spaces)  
from the IFC file. In the provided implementation, IfcSite, IfcBuilding, IfcBuildingStorey, and IfcSpace 

1 https://github.com/CedricDriesen92/LifeMACS_LD/blob/main/LFM.ttl
2 https://github.com/CedricDriesen92/LifeMACS_LD/blob/main/LFM.txt
3 https://ifcopenshell.org/
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elements are iterated to create corresponding instances of BOT concepts (e.g., bot:Site, bot:Building, 
bot:Storey, and bot:Zone). Relationships such as bot:hasBuilding, bot:hasStorey, and bot:hasZone are 
then assigned based on the IFC decomposition structure. This process forms a backbone that captures 
the building’s topology and enables downstream steps to attach new entities (e.g., building elements 
or sensors) to the appropriate location.

2.3.3. Building-Element Conversion

Following the creation of the spatial hierarchy, the pipeline identifies the relevant concrete structural 
components in the model, such as beams, columns, slabs, and walls. Each element is classified under 
bot:Element  and  further  specialized  to  lfm:ConcreteElement  to  indicate  domain  relevance  for 
reinforced  concrete  structures.  Where  available,  the  pipeline  retrieves  references  to  associated 
materials  (e.g.,  IfcMaterial)  and  stores  them  as  property  states  within  the  OPM  framework 
(opm:PropertyState).  These  associations  allow explicit  representation  of  each element’s  material 
composition and extend potential analyses with domain-specific attributes (e.g., corrosion resistance). 
Values that have Bayesian properties, such as an uncertainty distribution, are tackled by the LFM 
ontology  via  lfm:hasProbabilityDistribution,  lfm:mean,  lfm:standardDeviation…  Finally,  each 
converted  entity  (including  sensor  and  damage  entities)  references  the  original  IFC  GUID  via 
lfm:hasIfcGlobalId, enabling round-trip interoperability with authoring tools.

2.3.4. Sensor Integration

Sensor data stored as IfcSensor objects are converted to corresponding SOSA classes, labeling each  
sensor instance with sosa:Sensor. The pipeline also checks IFC property sets for additional metadata 
(e.g.,  SensorID,  current  readings),  which  is  used  to  create  sosa:Observation  triples.  Temporally 
relevant data are further annotated using constructs from the Time Ontology (time:Instant), enabling 
queries about when a measurement was taken. Finally, Bayesian concepts are handled similar to the 
building elements.  This linkage of  sensor readings with Bayesian properties to specific  building 
elements or zones supports real-time structural health monitoring use cases.

2.3.5. Damage Modeling

The  final  conversion  step  addresses  damage  information  that  may  be  embedded  in 
IfcBuildingElementProxy objects. Properties such as crack length, crack width, and crack depth are 
detected from relevant IFC property sets. A new dot:Damage instance is generated for each identified 
defect, and the pipeline associates that instance with its host element through a property such as  
lfm:hasDamageAssessment. Uncertainties and other Bayesian properties are handled similar to the 
building elements and sensors. By adopting DOT concepts and linking them to BOT elements, the 
pipeline preserves both the location and nature of each damage instance.

2.3.6. Output Generation

Once the hierarchical, elemental, sensor, and damage information has been converted, the pipeline 
serializes the complete RDF graph to Turtle format. This final output may be stored locally for offline 
analysis or ingested into a triple store for SPARQL-based queries. The serialization step ensures that 
geometry, topology, and domain-specific attributes are accessible within a single, standards-compliant 
graph.
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2.3.7. Conclusion

Through these discrete stages, the pipeline maintains a separation of concerns between data parsing, 
semantic enrichment, and RDF output. Specialized Python classes manage the consistency of URIs, 
while modular functions handle conversions for spatial structure, building elements, sensors, and 
damages in a reproducible manner. In this manner, the resulting RDF representation reflects both 
standard building information (in line with IFC and BOT) and specialized life-cycle aspects (e.g., crack 
measurements,  time-stamped sensor observations,  probability distributions),  allowing for  flexible 
queries and analytics in structural health monitoring and facility management contexts. The full code 
is available on GitHub4.

3. Experimental Setup and Evaluation

This section outlines the experimental procedure adopted for converting IFC data to a Linked Data 
representation within a real-world context. The evaluation focuses on a reinforced concrete bridge 
case study, selected for its representative structural configuration, active monitoring regime, and the 
presence  of  measurable  deterioration processes.  After  describing the test  environment  and data 
preparation steps, key outcomes of the IFC-to-LBD conversion are presented.

3.1. Case Study: Reinforced Concrete Bridge

The experimental  validation centered on a  Belgian mid-20th-century reinforced  concrete  bridge 
known to exhibit multiple forms of damage (cracks, spalling, rebar corrosion…). This structure was 
constructed in the late 1950s and has been subjected to incremental retrofitting and repairs, making it 
an ideal candidate for testing the capacity of the Linked Data approach to capture both historical  
and newly acquired data. Examples of the damage can be seen in Figure 2.

Figure 2: Deterioration of the bridge.

A digital model of the bridge was compiled from historical plans and laser scanning. The resulting IFC 
file served as the starting point for the IFC-to-LBD conversion pipeline. In parallel, a set of sensor  
measurements—collected via strain gauges and temperature probes distributed over critical structural 
regions—provided  time-series  observations  indicative  of  the  bridge’s  real-time  performance. 

4 https://github.com/CedricDriesen92/LifeMACS_LD/blob/main/IFCtoLD.py
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Additional  inspection  data,  including  detail  on  crack  dimensions  and  material  properties,  were 
collected during visual assessments and stored in specialized property sets within the IFC model. The 
resulting IFC model can be seen in Figure 3,  with the cubes representing the sensors and their  
coloration showing the current sensor strains.

Figure 3: The case study IFC.

3.2. Data Preparation and Pipeline Configuration

Prior to executing the conversion, the IFC model was refined to ensure internal consistency and 
uniform naming conventions.  Elements corresponding to beams,  columns, walls,  and slabs were 
verified to include valid standardized property sets specifying both geometry and condition. Sensors 
in  the  IFC  model  were  recorded  as  IfcSensor  elements,  while  defects  were  cataloged  in 
IfcBuildingElementProxy objects with custom property sets to store crack lengths or spalling area 
including probability distributions and related concepts, as well as damage types. For simplicity, in 
this work time dependent data is stored directly in the graph, while for  real use cases to avoid making 
the  graph  too  large  a  system integration  based  approach  using  for  example  IoT  and  database 
workflows should be considered.

The Python-based conversion pipeline (Section 2.3) was configured to:
1. Extract  Spatial  Hierarchy –  Identify  the  site,  building  (if  applicable),  and  storey 

relationships and map them to BOT classes (bot:Site, bot:Building, bot:Storey).
2. Enrich Concrete Elements – Classify beams, columns, slabs… as lfm:ConcreteElement for 

subsequent  domain-specific  queries  (e.g.,  corrosion-level  checks,  Bayesian  model 
parameters).

3. Capture Sensor Observations – Convert IfcSensor instances to sosa:Sensor and generate 
related  sosa:Observation  individuals,  each  annotated  with  the  relevant  timestamp  and 
Bayesian properties.

4. Link Damage Instances – Detect damage property sets (e.g., crack length, crack depth…) 
with and convert them to DOT-based damage classes (dot:Damage) with inclusion of Bayesian 
parameters.  The  property  lfm:hasDamageAssessment  was  used  to  associate  structural 
components with specific defect instances.

5. Maintain Link to IFC – A property lfm:hasIfcGlobalId is added to all concrete, sensor, and 
damage elements, with the property value linked to the IFC GUID.
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3.3. Conversion Results and Observations

Following the pipeline execution a graph is returned reflecting both the high-level spatial structure 
(site,  storeys,  spaces)  and detailed elements  (concrete  sections,  sensor data,  damage descriptors, 
uncertainty distributions). Initial inspection of the generated graph indicated that the semantic classes 
and properties accurately mirrored the specified ontology design.

Spatial concepts were properly instantiated as bot:Site, bot:Building, bot:Storey, and bot:Zone, with 
containment relationships (e.g., bot:hasStorey) ensuring navigability across levels.
Beams, columns, and slabs retained standard bot:Element membership while also inheriting domain-
specific traits via lfm:ConcreteElement.

Each recorded damage instance was expressed as a dot:Damage, carrying quantitative attributes 
(length,  width…)  organized  under  opm:PropertyState  as  either  standard  values  or  uncertainty 
distributions as well as receiving the required DOT properties such as damage type. This arrangement 
allowed queries linking defective areas to material states and inspection time frames.

A total of 274 IfcSensor elements produced sosa:Sensor objects, enabling creation of corresponding 
sosa:Observation instances with distinct time stamps. Observations included (temperature corrected) 
strain  or  temperature  values  tied  to  specific  concrete  elements  or  zones,  permitting  time-based 
analyses of structural response, as either values or uncertainty distributions.

4. Results and Discussion

This section interprets the outcomes described in Section 3, analyzing how the proposed pipeline and 
ontology stack  enhance  data  usage  beyond conventional  IFC-centric  workflows.  The  discussion 
situates these observations within the broader context of Linked Data adoption in the AEC industry, 
both the advantages as well as the limitations.

4.1. Example RDF output and SPARQL query

Following the pipeline execution, a graph of over 4600 RDF triples was generated from the IFC file of 
the case study bridge, available for viewing on GitHub5 and exported from Revit 2024 in the IFC 4.3 
format. Below in Listing 1 is a short excerpt from this graph illustrating how a damage element might 
be modeled in Turtle. Suppose an IfcBeam with GUID “0VwJW5Qw3E2uMg8ZhXPz5A” has a damage 
with GUID “1FsUCh_1n6AAe2OZ$QBHTi”, with crack length stored as a normal distribution with a 
mean of 17.2 mm and standard deviation of 1.2 mm.

5 https://github.com/CedricDriesen92/LifeMACS_LD/blob/main/W20.ttl
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1 # Concrete element hosting a damage
2 lfm:element_b9a2457e-24dd-4abc-b91d-50767b1560bc
3     a bot:Element, lfm:ConcreteElement ;
4     lfm:hasIfcRepresentation “IfcBeam” ;
5     lfm:hasIfcGlobalId "0VwJW5Qw3E2uMg8ZhXPz5A" ;
6     # Indicate that this element has a damage instance (crack)
7     lfm:hasDamageAssessment lfm:damage_3f1dac7a-6a5b-471b-b72e-a847716a2301 .
8
9 # Damage instance
10 lfm:damage_3f1dac7a-6a5b-471b-b72e-a847716a2301
11     a dot:Damage ;
12     rdfs:label " crack_1" ;
13     lfm:hasIfcGlobalId "1FsUCh_1n6AAe2OZ$QBHTi" ;
14     # Instead of a single numeric crack length, we store a property state referencing a probability distribution
15     lfm:hasPropertyState lfm:property_state_9e5d8ba6-87cc-49f2-a719-5e35c315f711 .
16
17 # Property state holding the distribution info
18 lfm:property_state_9e5d8ba6-87cc-49f2-a719-5e35c315f711
19     a opm:PropertyState ;
20     opm:propertyName "Crack Length" ;
21     prov:generatedAtTime “2024-07-23T12:00:00Z”^^xsd:dateTime
22     # We link to a NormalDistribution instance
23     lfm:hasProbabilityDistribution lfm:normalDist_32c68ab0-2f14-4c94-9d3f-0aef47b10f06 .
24
25 # The NormalDistribution instance
26 lfm:normalDist_32c68ab0-2f14-4c94-9d3f-0aef47b10f06
27     a lfm:NormalDistribution ;
28     lfm:mean "17.2"^^xsd:float ;
29     lfm:standardDeviation "1.2"^^xsd:float .

Listing 1: An example of a damage element in Turtle following the LifeMACS ontology stack

Querying this graph is done by SPARQL query. For example, the query in Listing 2 retrieves all  
damages longer than 15 mm at p < 0.05 for normal distributions, as well as their hosts and other useful 
properties:

1 SELECT ?element ?elementGuid ?damage ?damageGuid ?meanValue ?stdValue ?lower95
2 WHERE {
3   ?element a lfm:ConcreteElement ;
4            lfm:hasIfcGlobalId ?elementGuid ;
5            lfm:hasDamageAssessment ?damage .
6   
7   ?damage a dot:Damage ;
8           lfm:hasIfcGlobalId ?damageGuid ;
9           lfm:hasPropertyState ?ps .
10   
11   ?ps a opm:PropertyState ;
12       opm:propertyName "Crack Length" ;
13       lfm:hasProbabilityDistribution ?dist .
14   
15   ?dist a lfm:NormalDistribution ;
16         lfm:mean ?meanValue ;
17         lfm:standardDeviation ?stdValue .
18
19   # Calculate 95% lower bound for damage length = mean - 1.645 * std
20   BIND(xsd:float(?meanValue) - 1.645 * xsd:float(?stdValue) AS ?lower95)
21
22   # Filter to return only those cracks whose lower 95% bound is > 15 mm
23   FILTER(?lower95 > 15)
24 }

Listing 2: A SPARQL query to retrieve damage elements passing a certain uncertainty threshold
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Another example is the SPARQL query in Listing 3, designed to retrieve all latest sensor measurements 
along with their structural element hosts. Results of a similar query including e.g. spatial coordinates, 
material properties, uncertainty values… could be fed to a structural FEM-tool.

1 SELECT ?structuralElement ?elementType ?sensorId ?measurementType ?value ?unit ?timestamp
2 WHERE {
3   # Get structural elements with sensors
4   ?structuralElement a lfm:ConcreteElement ;
5                     rdf:type ?elementType ;
6                     lfm:hasSensor ?sensor .
7   
8   # Get sensor details
9   ?sensor sosa:hasId ?sensorId ;
10          sosa:observes ?measurementType ;
11          sosa:madeObservation ?observation .
12   
13   # Get the observation data
14   ?observation sosa:hasResult ?result ;
15               sosa:resultTime ?timestamp .
16   ?result sosa:hasSimpleValue ?value ;
17          sosa:hasUnit ?unit .
18
19   # Subquery to get only the latest measurement for each sensor
20   {
21     SELECT ?sensor (MAX(?time) as ?timestamp)
22     WHERE {
23       ?sensor sosa:madeObservation ?obs .
24       ?obs sosa:resultTime ?time .
25     }
26     GROUP BY ?sensor
27   }
28 }
29 ORDER BY ?structuralElement ?measurementType

Listing 3: A SPARQL query to retrieve the latest sensor measurements

Beyond these simple examples one can imagine that, for example, automatic queries of the sensor 
strain values could lead to automated warnings sent out if certain simulated uncertainty thresholds  
are crossed.

4.2. Advantages over Traditional Workflows

The experimental findings, such as the examples preceding this section, demonstrate that migrating 
from a standard IFC file to a Linked Data representation yields several tangible benefits. First, elements 
such  as  IfcBeam  or  IfcColumn  become  more  than  static  geometric  objects  once  mapped  to 
lfm:ConcreteElement and annotated with domain-specific properties (e.g., damage state, corrosion 
level, sensor readings). This enriched semantic model permits more direct and flexible queries—such 
as retrieving all structural members with high corrosion levels, having sensor readings above a defined 
strain threshold, or crack lengths exceeding a specified limit at a certain level of confidence—that 
would otherwise require substantial custom coding or a more complicated workflow.

4.2.1. Improved Interoperability and Integration

By aligning IFC concepts with recognized ontologies the resulting graph supports cross-platform data 
sharing and integration with other Linked Data resources (e.g. the LifeMACS buildingSMART Data 
Dictionary6 or other external knowledge bases could easily be implemented).

6 https://search.bsdd.buildingsmart.org/uri/bw/LM
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In the LifeMACS project, among multiple simulation tools (e.g., Bayesian calculation software, 
finite  element  packages…),  ease-of-use  is  also  increased.  Instead  of  relying  on  ad  hoc  code  or 
intermediate export/import routines, these external tools only need to reference well-defined SPARQL 
endpoints for the single source of truth graph, retrieving exactly the data required.

4.2.2. Addressing Time-Dependent and Probabilistic Aspects

Time-based analysis and probabilistic modeling pose particular challenges when using traditional IFC 
data structures, which are typically static snapshots of an asset. The proposed ontology and pipeline  
mitigate these challenges by employing properties from OWL-Time to record observation timestamps, 
and  by  introducing  custom  classes  (e.g.,  lfm:ProbabilityDistribution,  lfm:BayesianModel, 
lfm:NormalDistribution…)  to  handle  stochastic  parameters.  This  opens  a  pathway  for  explicitly 
linking real-time sensor updates or evolving crack measurements to uncertainty models, supporting 
more robust lifecycle assessments.

4.2.3. Opportunities

While the present case study focused primarily on strain and temperature sensors, the semantic layer 
is readily extensible to incorporate other data feeds, such as acoustic emission sensors or advanced 
image-based  inspection.  Each  can  be  natively  represented  in  SOSA/SSN to  ensure  standardized 
observations, procedures, and results.

When  integrated  into  a  triple  store,  the  previously  mentioned  capabilities  enable  structural 
engineers and facility managers to carry out more complex investigations (e.g., analyzing damage 
growth over time in tandem with stress variations) without leaving a single data environment. This is 
a key advantage over file-based IFC workflows, which often compel stakeholders to use domain-
specific applications that can only exchange partial datasets.

4.3. Practical Performance and Usability Considerations

The prototype implementation successfully handled the 10.0 MB bridge IFC data7 within a runtime of 
less than 0.1 s on a system with an Intel® i7-13700, with the result being returned in TTL format8. 
However, performance could degrade for significantly larger and more complex models, prompting 
the need for potential optimizations (parallel parsing, incremental conversion).

4.4. Limitations and Future Opportunities

Despite the clear advantages this methodology presents, a number of limitations remain:
1. Geometry Representation

Although  basic  spatial  constructs  (building,  storey,  zone)  have  been  aligned  with  BOT, 
detailed 3D geometry is still stored in the source IFC file. More sophisticated handling, either 
via other ontologies such as GeoSPARQL [24] or OMG/FOG [22, 23] or more thorough IFC 
connection, may be necessary for domain applications requiring advanced spatial queries.

2. Ontology Completeness
The  LifeMACS  ontology  currently  emphasizes  structural  and  damage-related  concepts 
specific to concrete structures. Adapting or expanding this framework to other domains (e.g., 
mechanical/electrical systems, occupant comfort) would require further ontology refinement 
and potentially additional alignments with industry standards.

3. Data Quality and Governance

7 https://github.com/CedricDriesen92/LifeMACS_LD/blob/main/W20.ifc
8 https://github.com/CedricDriesen92/LifeMACS_LD/blob/main/W20.ttl
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As  with  any  semantic  integration,  the  pipeline’s  efficacy  depends  on  the  accuracy  and 
consistency of input data. Missing or mislabeled attributes in IFC can lead to incomplete RDF 
graphs. Implementing systematic validation checks or “pre-flight” data cleanup routines is 
recommended to ensure semantic accuracy.

4. Scalability for Large Infrastructure Networks
While  the  present  approach  showed  feasibility  at  the  level  of  a  single  bridge,  major 
infrastructure owners may oversee hundreds of structures. Future work should investigate 
the performance and user workflow implications of simultaneously processing queries on 
multiple transformed IFC models.

5. Conclusions and Outlook

The results reaffirm that Linked Data techniques, when properly integrated with IFC workflows, can 
substantially  enhance  the  management  of  complex  infrastructure  data.  Bridging  geometry  and 
semantically rich domain ontologies allows asset managers to track and query real-time condition 
indicators, plan maintenance interventions more effectively, and align with state-of-the-art Bayesian 
modeling and simulation approaches. Although practical hurdles remain (e.g., geometry complexities, 
adoption by industry professionals),  the positive feedback from experts in the LifeMACS project 
reinforces  the potential  of  IFC-to-LBD integration for  real-world SHM and facility management 
scenarios.

Building on these findings, future research and development could focus on improving geometry 
serialization into RDF, refining domain-specific ontologies for complementary use cases (e.g., steel or 
masonry structures),  and scaling the solution for large-scale infrastructure portfolios.  Continued 
collaboration with industry stakeholders will be crucial to ensuring that these semantic advancements 
can be seamlessly integrated into day-to-day engineering and management workflows, ultimately 
creating a more efficient, interoperable, and intelligent future for AEC data management.

Acknowledgements

The research was done within the FWO SBO project  LifeMACS:  Multi-layer Bayesian life-cycle 
Methodology for the Assessment of existing Concrete Structures, supported by FWO-Flanders (FWO-
SBO project S001021N). 

Declaration on Generative AI

During  the  preparation  of  this  work,  the  author  used  Google  Gemini  in  order  to  help  with 
grammar/spelling checks, and rewording. After using this tool/service, the author(s) reviewed and 
edited the content as needed and take(s) full responsibility for the publication’s content.



37

References

1. Eastman,  C.M.,  Teicholz,  P.M.,  Sacks,  R.,  Lee,  G.:  BIM  handbook:  a  guide  to  building 
information  modeling  for  owners,  managers,  designers,  engineers  and  contractors.  Wiley, 
Hoboken, New Jersey (2018)

2. Volk,  R.,  Stengel,  J.,  Schultmann,  F.:  Building  Information  Modeling  (BIM)  for  existing 
buildings  —  Literature  review  and  future  needs.  Autom.  Constr.  38,  109–127  (2014). 
https://doi.org/10.1016/j.autcon.2013.10.023

3. Koeleman,  J.,  Ribeirinho,  M.J.,  Rockhill,  D.,  Sjodin,  E.,  Strube,  G.:  Decoding  digital 
transformation in construction. McKinsey (2019)

4. Hernández, J.L., Lerones, P.M., Álvarez, S., Bonsma, P., van Delft, Deighton, R., Braun, J.-D.: An 
IFC-based interoperable framework for building linked-data. Presented at the LDAC (2018)

5. Pauwels,  P.,  Terkaj,  W.:  EXPRESS  to  OWL  for  construction  industry:  Towards  a 
recommendable  and  usable  ifcOWL  ontology.  Autom.  Constr.  63,  100–133  (2016). 
https://doi.org/10.1016/j.autcon.2015.12.003

6. Pauwels, P.,  Zhang, S.,  Lee, Y.-C.: Semantic web technologies in AEC industry: A literature 
overview. Autom. Constr. 73, 145–165 (2017). https://doi.org/10.1016/j.autcon.2016.10.003

7. Rasmussen,  M.H.,  Lefrançois,  M.,  Schneider,  G.F.,  Pauwels,  P.:  BOT: The building topology 
ontology  of  the  W3C  linked  building  data  group.  Semantic  Web.  12,  143–161  (2020). 
https://doi.org/10.3233/SW-200385

8. Rasmussen, M.H., Lefrancois, M., Bonduel, M., Hviid, C.A., Karlshø, J.: OPM: An ontology for  
describing properties that evolve over time. Presented at the LDAC (2018)

9. Chamari, L., Petrova, E., Pauwels, P.: A web-based approach to BMS, BIM and IoT integration:  
a case study. CLIMA 2022 Conf. (2022). https://doi.org/10.34641/clima.2022.228

10. Hamdan,  A.-H.,  Bonduel,  M.,  Scherer,  R.J.:  An ontological  model  for  the representation of 
damage to constructions.

11. Peñaloza,  R.:  Introduction  to  Probabilistic  Ontologies.  In:  Manna,  M.  and  Pieris,  A.  (eds.)  
Reasoning Web. Declarative Artificial Intelligence. pp. 1–35. Springer International Publishing, 
Cham (2020)

12. Botte, W., Vereecken, E., Caspeele, R.: Random field modelling of spatial variability in concrete  
– a review. Struct. Infrastruct. Eng. 1–14 (2023). https://doi.org/10.1080/15732479.2023.2248102

13. Artus,  M.,  Koch,  C.:  State of  the art  in damage information modeling for RC bridges – A 
literature review. Adv. Eng. Inform. 46, 101171 (2020). https://doi.org/10.1016/j.aei.2020.101171

14. Xu, S., Wang, J., Wang, X., Wu, P., Shou, W., Liu, C.: A Parameter-Driven Method for Modeling 
Bridge  Defects  through  IFC.  J.  Comput.  Civ.  Eng.  36,  04022015  (2022). 
https://doi.org/10.1061/(ASCE)CP.1943-5487.0001026

15. Riaz, Z., Parn, E.A., Edwards, D.J., Arslan, M., Shen, C., Pena-Mora, F.: BIM and sensor-based  
data management system for construction safety monitoring. J. Eng. Des. Technol. 15, 738–753 
(2017). https://doi.org/10.1108/JEDT-03-2017-0017

16. Beetz,  J.,  Borrmann,  A.:  Benefits  and  Limitations  of  Linked  Data  Approaches  for  Road 
Modeling and Data Exchange.  In:  Smith,  I.F.C.  and Domer,  B.  (eds.)  Advanced Computing 
Strategies for Engineering. pp. 245–261. Springer International Publishing, Cham (2018)

17. Pauwels, P., McGlinn, K. eds: Buildings and Semantics: Data Models and Web Technologies for 
the Built Environment. CRC Press, London (2022)

18. Vandecruys, E., Van De Velde, M., Reynders, E., Lombaert, G., Verstrynge, E.: Experimental 
study on acoustic emission sensing and vibration monitoring of corroding reinforced concrete 
beams. Eng. Struct. 293, 116553 (2023). https://doi.org/10.1016/j.engstruct.2023.116553

19. Helderweirt,  S.,  Van  Den  Hende,  K.,  Botte,  W.,  Verstrynge,  E.,  Caspeele,  R.:  Quantifying 
Uncertainties in the Performance Prediction of Existing Concrete Structures using an Extended 
Direct Stiffness Method Approach. Presented at the ICASP14 (2023)

20. Caspeele, R., Van Den Hende, K.: Validation of the harmonized partial factor method for design 
and assessment  of  concrete  structures  as  proposed for  fib  model  code  2020.  In:  Structural 
Concrete. pp. 4368–4376 (2023)



38

21. Janowicz, K., Haller, A., Cox, S.J.D., Le Phuoc, D., Lefrançois, M.: SOSA: A lightweight ontology 
for  sensors,  observations,  samples,  and  actuators.  J.  Web  Semant.  56,  1–10  (2019). 
https://doi.org/10.1016/j.websem.2018.06.003

22. Bonduel,  M.,  Wagner,  A.,  Pauwels,  P.,  Vergauwen,  M.,  Klein,  R.:  Including  widespread 
geometry  formats  in  semantic  graphs  using  RDF literals.  Presented  at  the  2019  European 
Conference on Computing in Construction July 10 (2019)

23. Wagner,  A.,  Bonduel,  M.,  Pauwels,  P.,  Uwe,  R.:  Relating  geometry  descriptions  to  its 
derivatives  on  the  web.  Presented  at  the  2019  European  Conference  on  Computing  in 
Construction July 10 (2019)

24. Battle, R., Kolas, D.: GeoSPARQL: Enabling a Geospatial Semantic Web.
25. Bonduel, M., Oraskari, J., Pauwels, P., Vergauwen, M., Klein, R.: The IFC to Linked Building 

Data Converter - Current Status.
26. Wagner, A., Bonduel, M., Werbrouck, J.,  McGlinn, K.: Geometry and geospatial data on the 

web. In: Buildings and Semantics. CRC Press (2022)
27. Schneider, G.F.: Towards Aligning Domain Ontologies with the Building Topology Ontology. 

(2017). https://doi.org/10.13140/RG.2.2.21802.52169


	1. Introduction
	2. Methodology
	2.1. Overall Architecture
	2.2. Ontology Stack and Custom Extensions
	2.3. IFC-to-TTL Conversion Pipeline
	2.3.1. Initialization of Namespaces and Graph Context
	2.3.2. Spatial Structure Extraction
	2.3.3. Building-Element Conversion
	2.3.4. Sensor Integration
	2.3.5. Damage Modeling
	2.3.6. Output Generation
	2.3.7. Conclusion


	3. Experimental Setup and Evaluation
	3.1. Case Study: Reinforced Concrete Bridge
	3.2. Data Preparation and Pipeline Configuration
	3.3. Conversion Results and Observations

	4. Results and Discussion
	4.1. Example RDF output and SPARQL query
	4.2. Advantages over Traditional Workflows
	4.2.1. Improved Interoperability and Integration
	4.2.2. Addressing Time-Dependent and Probabilistic Aspects
	4.2.3. Opportunities

	4.3. Practical Performance and Usability Considerations
	4.4. Limitations and Future Opportunities

	5. Conclusions and Outlook
	Acknowledgements
	Declaration on Generative AI
	References

