
Towards an Integrated Framework for
Model-driven Security Engineering

Jordi Cabot1,2 and Nicola Zannone1

1 University of Toronto (Canada)
2 Open University of Catalonia (Spain)
{jcabot,zannone}@cs.toronto.edu

Abstract. Security is a major issue in developing software systems. It
is widely recognized that security aspects must be considered in all the
phases of the development process from the analysis of the organizational
context to the final implementation of the software system. However,
current approaches for designing secure systems only target particular
security aspects at specific stages of the development process. A unified
process combining these different approaches is still missing. This paper
surveys several existing techniques and discuss the need of a general
framework for integrating them into a single development process.

1 Introduction

Security incidents are a main concern for every organization. They compromise
business continuity as well as the trust that customers feel towards the orga-
nization. Organizations should adopt the necessary measures to protect their
businesses and software systems. However, the design of secure software systems
is challenging because of the complexity of modern applications and the number
of security facets to be considered.

In recent years, Model Driven Development (MDD) is gaining the attention
of both industry and research communities due to its promise to increase pro-
ductivity in developing, documenting, and maintaining IT systems. MDD em-
phasizes the use of models during the whole development process and provides
automation through model execution, model transformation, and code genera-
tion techniques. Therefore, MDD seems an appropriate parading on top of which
base a software development process focused on the design of software systems.

Typical MDD approaches (e.g., [18]) and, in general, all software processes
[23], start the development process with the modeling and analysis of system
requirements and lack of specific techniques and methods for the specification of
the organizational context where the system-to-be will operate. Unfortunately,
the analysis of security incidents has demonstrated that security is often com-
promised by exploiting vulnerabilities in the organization structure and security
policies adopted by the organization itself, and thus, the analysis of this organi-
zational context must be part of the development process.

The organizational setting has been addressed by early requirements engi-
neering approaches [3, 6, 13, 29]. These approaches provide facilities to represent



2

and understand the relationships between the software system and its organi-
zation. However, they do not support the rest of the development process and
usually employ modeling languages that are not largely adopted in industry
(e.g. specific languages for drawing goal models instead of using UML or related
languages as done by all current MDD methods).

Existing research efforts have addressed the problem of designing secure
systems by either extending traditional MDD approaches [2, 7, 14, 26] or early
requirements engineering approaches [9, 15, 17, 27]. However, existing proposals
target only specific security aspects at particular phases of the software devel-
opment process.

What is still missing is a general framework that considers security through-
out the whole software development process. We believe that such integrated
framework would facilitate the development of secure systems by providing de-
signers with guidelines to integrate security aspects in all the phases of the
development process. This is even more important in the context of MDD where
the final software system implementation is (semi)automatically generated from
high-level models. In this paper, we provide an overview of existing proposals
and discuss the challenges of creating a MDD framework for addressing the
development of secure systems.

The paper is organized as follows. We first describe the main features and
phases we envision for this framework (Section 2). Then we survey the available
proposals for each phase (Sections 3 to 6). Research challenges to achieve the
integrated framework are described in Section 7. We end up describing some
conclusions and further work.

2 An Integrated Framework for Developing Secure
Software Systems

We envision an integrated framework able to capture, model, and analyze all
security aspects of the system, where each aspect is addressed in the most ap-
propriate development phase of the process. We believe that, in order to be
successful, such framework should present at least the following characteristics:

– It shall consider security aspects in all the phases of the development process.
– It shall emphasize the modeling of the organizational context of the system-

to-be as a preliminary step before eliciting the system requirements.
– It shall follow an MDD-based approach.

To fulfill these features, we propose to follow a development process consisting
of four main phases (see Fig. 1):

1. Organizational Context concerns the understanding of the application do-
main, including security aspects, by analyzing the organizational setting
where the system operates.



3

Fig. 1. A unified software process for security development

2. System Requirements concerns the analysis of the system-to-be within its
operational environment. During this phase, the focus is on the interface
between organization procedures and the system, besides the analysis of the
system itself.

3. System Design completes the previous system specification (e.g., adding
component and deployment details) and adapts it to the characteristics of
the technology platform where the system will be implemented.

4. Implementation (automatically) generates the software system from the de-
sign models.

The last three phases of our process can be assimilated to the common soft-
ware development practices proposed in the literature (see [23] for a survey) to
drive designers in the development of software systems. Our framework comple-
ments these phases with an initial phase devoted to the analysis of the organi-
zational context in which the system will eventually operate.

Additionally, in this framework, the transition between the different phases
is expected to be as automatically as possible, that is, models of a phase p should
be (partially) generated from models in phase p − 1. Moreover, the analysis of
the organizational models influences all subsequent steps of the development
process. Not only they are used to elicit system requirements but also to drive
how the system is designed and implemented. Since the organizational models
capture the goals and intentions of the stakeholders interested in the system,
it is important to also consider those goals when making the design and imple-
mentation decisions to ensure the system is aligned with them and, this way,
improve the stakeholder’s satisfaction with the system.

Next sections present the above phases, indicating and discussing the existing
security proposals that fit in each phase.

3 Organization Context

MDD approaches focus on the system to be developed, ignoring the analysis of
the organizational context in which the system will eventually operate. Instead,
in the Requirements Engineering community is generally accepted that under-
standing the purpose, goals, and intentions of a system within its organizational
operational environment is a necessary condition for its successful design and
implementation [20]. This is even more important when the system has to meet
security requirements because security is often compromised at organizational
level, rather than at technical level [1].



4

Therefore, it is clear that as a first step of our integrated process we need to
start by analyzing the organizational environment. A number of requirements
engineering frameworks have been proposed to elicit organizational requirements
and derive system requirements from them [3, 6, 29]. These frameworks have been
adapted to model security aspects of organizations and their IT systems [9, 15,
17, 27]. In what follows we describe the security aspects that these methods
permit to model and analyze.

Van Lamswerde extends KAOS [6], a goal-oriented requirements engineering
methodology, to address security issues by introducing the notions of obstacle to
capture exceptional behaviors [28] and anti-goals to model intentional obstacles
set up by attackers to affect security goals [27]. Anti-goals are defined as the
negation of security goals such as confidentiality, availability, and privacy and
represent the goals of attackers. Anti-goals are refined to form an attack tree
on the basis of attackers capabilities as well as software vulnerabilities. Security
requirements are defined as the countermeasures to software vulnerabilities or
anti-requirements, that is, anti-goals that are realizable by some attacker.

Along the same line, Liu et al. [15] refine the i* modeling framework [29]
by analyzing attackers, dependency vulnerabilities among actors and possible
countermeasures. All actors are assumed to be potential attackers who inherit
capabilities, intentions, and social relationships from the corresponding legiti-
mate actor. Dependencies between these actors can bring vulnerabilities to the
system. In particular, dependency analysis is used to identify the vulnerable
points in the dependency network. During countermeasure analysis, designers
investigate how to protect the system from attackers and vulnerabilities. Elahi
et al. [9] extend this work by focusing on how attackers can compromise the sys-
tem by exploiting vulnerabilities that software components and organizational
procedures bring to the system, and on which countermeasures can be adopted
to protect the system. The concept of dependency analysis is also proposed in
[19] where secure dependencies are defined as a specialization of the security
constraint mechanism, which is a restriction related to security issues that can
influence the design of the system by restricting some alternative solutions.

A complementary approach is Secure Tropos [10], a requirements engineer-
ing methodology supporting system designers in the modeling and analysis of
security and privacy facets of systems and their organizational settings. Secure
Tropos adopts SI* [17] as modeling framework, which enhances i* with concepts
specific to security such as ownership, permission, and trust. The methodol-
ogy provides a requirements analysis process driving system designers from the
elicitation of authorization, availability, and privacy requirements up to their
verification. The methodology supports designers in understanding the causes
of system vulnerabilities and provides facilities to deal with them by driving
designers in revisiting requirements models by either reconstructing the organi-
zational setting of the system or adopting protection mechanisms through the
use of security patterns.

These frameworks, when combined, are rich enough to express most of the
security aspects that may be relevant at the organizational level. Nevertheless,



5

there does not exist yet a general methodology that proposes how to integrate
them in a single organizational specification. This is not a trivial challenge since
they use different notations and are not completely orthogonal (i.e., some present
overlapping constructs that must be merged and checked for consistency).

4 System Requirements

Once the analysis of the organizational context has been completed, we can start
focusing on the specific system requirements. Among the security approaches
targeting the system requirements phase, Haley et al. [11] propose abuse frames
to determine the impact of security requirements on functional requirements.
Abuse frames extend problem frames [13] by considering threats as crosscutting
concerns to determine adequate security requirements for the system. Functional
requirements describe how assets (i.e., objects to be protected) are used within
the system. Threats describe how attackers can exploit vulnerabilities to compro-
mise the security of assets. Security requirements are thus defined as constraints
on functional requirements or trust assumptions and are intended to reduce the
scope of vulnerabilities. Once security requirements are elicited, the framework
uses satisfaction arguments to validate security requirements.

Sindre and Opdahl [26] extend use cases to model security requirements and
call this extension misuse cases. Misuse cases describe functions that the system
should not allow. They are depicted as black ovals to distinguish them from
traditional use cases. Misuse cases can be linked to use cases to indicate that the
use case is exploited by the misuse case, and use cases to misuse cases to indicate
that the use case is a countermeasure against the misuse case. The visualization
of these links helps in organizing the requirements specification and in tracing
the security requirements to threats that motivated them. Together with misuse
cases, the authors introduce the concept of misuser, which represent the actor
that initiates misuse cases.

The CORAS project [7] proposes a framework for model-based risk assess-
ment. In particular, CORAS provides a UML profile for risk assessment and
an integrated risk management and system development framework based on
the Unified Process. The profile defines UML stereotypes and rules for special-
ized UML diagrams. Specifically, the framework makes use of five diagrams:
SWOT diagrams, asset diagrams, threat diagrams, state analysis diagrams, and
treatment diagrams. SWOT diagrams represent high-level strengths, weaknesses,
opportunities and treats and relate them to stakeholders and assets. Asset di-
agrams are specialized class diagrams where assets are grouped in themes (i.e,
human, physical, information, organizational, law and regulation, and software
assets) related using standard UML associations. Assets are also related to stake-
holders to indicate that the stakeholder owns the asset. Threat and treatment
diagrams are based on misuses cases and are used to represent the threats that
reduce the value of assets and the treatments to be adopted to prevent such
threats. State analysis diagrams are specialized statechart diagrams that specify
the (un)desired behavior of the system.



6

Ideally, a preliminary version of all system requirements models used by these
methods should be automatically derived from the analysis of the organizational
context. This makes possible to understand why the system functionality and
protection mechanisms are necessary, besides of how and what. The main prob-
lem for providing such transformation is the shift in the modeling language
employed. For specifying the organizational context, goal models (written using
the i* notation or similar) are typically used, while the system requirements
are usually depicted as a set of UML-based diagrams. Although preliminary ap-
proaches targeting this transformation have been proposed (e.g. [16, 25]), they
do not deal with security aspects (i.e., security extensions to the i* or Tropos
models are not transformed into security extensions to UML models). The only
work addressing the transformation of security organization and system models
in UML is the one in [19], but it presents only some basic high level guidelines
rather than a complete mapping.

5 System Design

In this phase, the previous models have to be refined by adding the more low-level
details (as deployment and componentization details) needed for the posterior
system implementation.

In this sense, Jürjens [14] proposes UMLsec, an extension of UML, for rep-
resenting security aspects of IT systems such as fair exchange, confidentiality,
secure information flaw and secure communications link. UMLsec is a UML pro-
file in which security requirements are represented in form of stereotypes, tagged
values, and constraints that can be associated with model elements of activity
diagrams, statecharts, sequence diagrams, static structure diagrams, deployment
diagrams, and subsystems. For instance, stereotype 〈〈secure link〉〉 is used to
ensure that security requirements on the communication are met by the phys-
ical layer, and stereotype 〈〈no flow − down〉〉 denotes that data object cannot
leak out any information about secret data via non-secret data. Stereotypes
are also used to indicate implementation decisions. For instance, stereotypes
〈〈Internet〉〉, 〈〈encrypted〉〉, and 〈〈LAN〉〉 are used on links in deployment dia-
grams to specify the type of communication link.

Basin et al. [2] propose SecureUML, an UML-based modeling language fo-
cusing on the modeling Role-Based Access Control (RBAC) policies and inte-
grating them into a model-driven software development process. In particular,
SecureUML is a UML profile that defines RBAC concepts using stereotypes and
tagged values that are associated with model elements of class diagrams. Similar
approaches have been proposed by Doan et al. [8], who incorporate Mandatory
Access Control (MAC) into UML, and by Ray et al. [24], who model RBAC as
a pattern using UML diagram template.

Breu et al. [4] propose an approach for the specification of user rights in the
context of an object oriented use case driven development process. An informal
description of actor permissions is specified in textual way and has the form
of an access control list. This informal description of the user rights model is



7

adapted to the actors of use case diagrams. The model is further refined into a
complete formal model by considering the system behavior.

All these design security models should be consistent with the previous re-
quirements models (e.g. the RBAC policies for the set of classes implementing
a given functionality should take into account the actors with permission to
execute that functionality as defined in the system requirements models) and,
partially, be automatically generated from them. This problem has not been
addressed so far. Another research challenge at this stage of the process is how
to change/adapt these models depending on the technical features offered by
the technological platform where the system is going to be implemented (e.g.,
benefiting from advanced security features offered by the platform to simplify
the mapping between the models and the final implementation).

6 System Implementation

Secure design models are a necessary but not a sufficient condition to achieve
a secure system implementation. Security risks can also be inadvertently intro-
duced during the programming phase. Therefore, secure implementations must
consider two different aspects:

1. Secure programming techniques to avoid security vulnerabilities caused by
programmer error, as buffer overflows and poor memory management.

2. Guidelines for (automatically) generating secure code according to the secu-
rity design decisions expressed in the system design models.

For the first aspect, there are several libraries, code samples and programming
recommendations that facilitate programmers to avoid these risks (e.g., [12])
depending on the specific technology/language used to implement the system.

On the contrary, the second issue is still an open research problem. It re-
quires to define, for each security modeling primitive, a model-to-code transfor-
mation in charge of generating the code excerpt enforcing that particular secu-
rity aspect. As an example, secrecy and integrity links in UMLSec deployment
diagrams [14] could be guaranteed by means of implementing a public key in-
frastructure scheme to encrypt the communication between the parties involved
in the communication. So far, only few methods provide some kind of code-
generation facilities. One of the few exceptions is Breu et al. [4] that propose a
model transformation procedure for generating XACML policies [21] from user
right models. Similarly, [2, 5] generate the system’s access control infrastructure
from SecureUML models. However, code-generating techniques addressing other
security aspects (and combinations of them) still need to be developed.

7 Research Challenges

Despite the potential benefits of the integrated framework proposed in this paper,
there are a number of research challenges that must be solved before making it
possible. Some of them have already been introduced in the previous sections.



8

Clearly, the success of the framework largely depends on our ability to smoothly
integrate the different security proposals. Ideally, designers following our inte-
grated process should be unaware that they are using a combination of originally
different proposals. To reach this goal we need to address both horizontal and
vertical integration of the security techniques our framework consists of:

– Horizontal integration. At each phase of the process we have several security
proposals available. Though complementary, they are not fully orthogonal
so before designers can use them, we need to merge their common aspects
and precise which alternative technique will be used to model each specific
security aspect (and in which order they should be applied). To maximize the
benefits of the framework we also need to study the additional advantages
resulting from combining the techniques.

– Vertical integration. Security information defined in earlier phases in the
process must be carried on to the later phases. This must be done auto-
matically, that is, to avoid redundancies, designers should only define each
security aspect once. Therefore, we need to develop a set of model-to-model
transformations that transition security concerns between models at different
stages of the process. This automatic transition has the additional benefits
of minimizing the possibility of errors and ensuring the consistency.

Regarding the vertical integration, the two most challenging transitions are
the elicitation of system requirements (functional and non-functional) from the
organizational context and the adaptation of design models to the technical
features offered by the implementation platform.

For the first one, we have that popular requirements engineering methods as
i*/Tropos and their security extensions use the notion of agent and all related
mentalistic notions to capture and model system requirements. In particular, goal
models defining the organizational context are extended with new actor(s) repre-
senting the system and its relations with the stakeholders. Some organizational
goals are then delegated to the system and become the system requirements.
However, these requirements are still expressed in terms of goals, beliefs and
tasks within the goal model. They must be translated into a set of UML model
elements (as (mis)use cases) that can be understood and reused by the security
techniques employed in the later phases of the process. A complete translation
(including security aspects) between both kinds of languages does not exist.

With respect to the design models adaptation, we must take into account that
some platforms offer or predefine some security capabilities that may help/impair
the implementation of the security aspects defined in the models. Adapting the
expressivity of the models to these features would facilitate bridging the gap
between the system design and its implementation. Several profiles representing
the characteristics of each common platform (as the already existing J2EE profile
[22], though it does not include security aspects) must be defined to annotate the
models with the appropriate mapping information in order to ease this transition.

All these integration challenges require solving a number of more specific
open problems that we can only partially mention due to lack of space:



9

1. Definition of a common modeling framework (e.g., basing all notations on
MOF-compliant metamodels) to facilitate the mapping between different
languages;

2. Traceability techniques to link the model elements at different abstraction
levels so that it becomes possible to justify which part of a lower-level model
covers the security aspect modeled in a higher-level one;

3. Incremental model synchronization techniques that incrementally propagate
changes in one model to related models in later (or previous) phases of the
development process without a complete recomputation;

4. Consistency analysis techniques that ensure that new security aspects do not
contradict existing ones.

8 Conclusions and Future Work

We have argued the necessity of an integrated security engineering MDD process
to help designers in the development of secure systems. Such a process should
contextualize several security techniques (from goal-modeling techniques for the
analysis of the organizational context to detailed design techniques for detecting
security vulnerabilities in the components calls in the deployed system) in a
unified framework.

As a first step towards this integrated process, we have sketched how the
existing security proposals (aimed at specific security aspects and/or particular
phases of the development process) can be placed within such framework and
the research challenges that must be faced when trying to combine them.

As future work we would like to refine, complete and validate the process and
advance in the integration of the different security proposals currently available
by facing the research challenges explained before.

Acknowledgments: Work supported by the Spanish Ministry of Education and
Science (project TIN2005-06053), the grant 2007 BP-A 00128 (Catalan Govern-
ment) and by the Hyperion project founded by Canada’s NSERC.

References

1. R. Anderson. Why cryptosystems fail. CACM, 37(11):32–40, 1994.
2. D. Basin, J. Doser, and T. Lodderstedt. Model Driven Security: from UML Models

to Access Control Infrastructures. TOSEM, 15(1):39–91, 2006.
3. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS:

An Agent-Oriented Software Development Methodology. JAAMAS, 8(3):203–236,
2004.

4. R. Breu, G. Popp, and M. Alam. Model based development of access policies.
STTT, 9:457–470, 2007.

5. M. Clavel, V. da Silva, C. Braga, and M. Egea. Model-Driven Security in Practice:
An Industrial Experience. In Proc. of ECMDA-FA’08, LNCS 5095, pages 326–337.
Springer-Verlag, 2008.



10

6. A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed Requirements
Acquisition. Sci. of Comp. Prog., 20:3–50, 1993.

7. F. den Braber, T. Dimitrakos, B. A. Gran, M. S. Lund, K. Stølen, and J. Ø.
Aagedal. The CORAS methodology: model-based risk assessment using UML and
UP. In UML and the unified process, pages 332–357. Idea Group Publishing, 2003.

8. T. Doan, S. Demurjian, T. C. Ting, and A. Ketterl. MAC and UML for secure
software design. In Proc. of FMSE’04, pages 75–85. ACM Press, 2004.

9. G. Elahi and E. Yu. A Goal Oriented Approach for Modeling and Analyzing
Security Trade-Offs. In Proc. of ER’07, LNCS 4801, pages 375–390. Springer-
Verlag, 2007.

10. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modeling Security Re-
quirements Through Ownership, Permission and Delegation. In Proc. of RE’05,
pages 167–176. IEEE Press, 2005.

11. C. Haley, R. Laney, J. Moffett, and B. Nuseibeh. Security requirements engineering:
A framework for representation and analysis. TSE, 34(1):133–153, 2008.

12. M. Hoiward and D. LeBlanc. Writing Secure Code. Microsoft Press, 2003.
13. M. Jackson. Problem Frames: Analysing and structuring software development

problems. Addison Wesley, 2001.
14. J. Jürjens. Secure Systems Development with UML. Springer-Verlag, 2004.
15. L. Liu, E. S. K. Yu, and J. Mylopoulos. Security and Privacy Requirements Anal-

ysis within a Social Setting. In Proc. of RE’03, pages 151–161. IEEE Press, 2003.
16. A. Martnez, O. Pastor, and H. Estrada. Closing the Gap between Organizational

Modeling and Information System Modeling. In Proc. of WER’03, pages 93–108,
2003.

17. F. Massacci, J. Mylopoulos, and N. Zannone. An Ontology for Secure Socio-
Technical Systems. In Handbook of Ontologies for Business Interaction. The IDEA
Group, 2007.

18. S. J. Mellor and M. J. Balcer. Executable UML: A Foundation for Model-driven
Architecture. Addison Wesley, 2002.

19. H. Mouratidis, J. Jürjens, and J. Fox. Towards a Comprehensive Framework for
Secure Systems Development. In Proc. of CAiSE’06, LNCS 4001, pages 48–62.
Springer-Verlag, 2006.

20. B. Nuseibeh and S. Easterbrook. Requirements engineering: a roadmap. In Proc.
of ICSE’00 - Future of Software Eng. Track, pages 35–46. ACM Press, 2000.

21. OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0. OA-
SIS Standard, 2005.

22. Object Management Group. UML Superstructure Specification, 2004.
23. R. Ramsin and R. F. Paige. Process-centered review of object oriented software

development methodologies. ACM Comput. Surv., 40(1):1–89, 2008.
24. I. Ray, N. Li, R. France, and D.-K. Kim. Using UML to visualize role-based access

control constraints. In Proc. of SACMAT’04, pages 115–124. ACM Press, 2004.
25. V. Santander and J. Castro. Deriving Use Cases from Organizational Modeling.

In Proc. of RE’02, pages 32–42. IEEE Computer Society, 2002.
26. G. Sindre and A. L. Opdahl. Eliciting security requirements with misuse cases.

REJ, 10(1):34–44, 2005.
27. A. van Lamsweerde. Elaborating security requirements by construction of inten-

tional anti-models. In Proc. of ICSE’04, pages 148–157. IEEE Press, 2004.
28. A. van Lamsweerde and E. Letier. Handling Obstacles in Goal-Oriented Require-

ments Engineering. TSE, 26(10):978–1005, 2000.
29. E. S. K. Yu. Modelling strategic relationships for process reengineering. PhD thesis,

University of Toronto, 1995.


