
SPML: A Visual Approach for Modeling Firewall

Configurations

1Kleber Manrique Trevisani and 2Rogério Eduardo Garcia

1 Universidade do Oeste Paulista – Faculdade de Informática de Presidente Prudente,
Rua José Bongiovani, 700 – Bloco H, 19050-920, Presidente Prudente – SP, Brazil

2 Universidade Estadual Paulista – Depto de Matemática, Estatística e Computação, Rua
Roberto Simonsen, 305, 19060-900, Presidente Prudente – SP, Brazil

kleber@unoeste.br, rogerio@fct.unesp.br

Abstract. This paper describes a graphical notation for modeling security
policy, currently focused on firewalls, named SPML. Using SPML, it is
possible to specify graphically the security policy to be implemented by
firewalls and to configure firewalls at high level, since the rules can be
translated to native configuration. To present the approach proposed, we show
how to translate SPML models into firewall configuration.

1 Introduction

Visual modeling is the graphic representation of objects and systems of interest using
graphical languages, as widely known. Modeling security policies using a graphical
notation, instead a textual or a mathematical representation, make easier to analyze
and to understand security policies. By using a formalized graphical notation to
establish a security policy, it is possible to discuss better ways to improve it, to solve
problems related to it and allow using automated tools to validate it [1].

In this paper we present SPML (Security Policy Modeling Language), which the
main goal is to represent security policies into a formal graphical notation. To develop
SPML we have considered related works, such as [2] and [3]. To make SPML models
more useful, an important requirement is that they can be translated into native
configurations of products that implement security policies. This requirement allows
computing systems administrators deploying the security policy from graphical
models, without any additional effort. Considering that security policies have several
issues involved, initially we decided to focus on modeling some firewall functions –
packet filtering and network address translation (NAT) –, since it has an important
role in a security policy.

To present the notation proposed, this paper is organized as follow: the notation
proposed and its components is described in the Section 2; examples of models using
the proposed notation are presented in Section 3; the translation process (from SPML
to native rules) is described in Section 4; finally, in Section 5 are presented the
conclusions, current development and future works.

2 Kleber Manrique Trevisani and Rogério Eduardo Garcia

2 SPML Notation

The SPML notation has a set of graphical elements named components. In the current
stage we are focusing on firewall configuration, which is represented using two types
of diagrams: Translation Diagrams and Filtering Diagrams. Both types of diagrams
have interconnected components to represent configuration and features of firewalls.
For each component were defined attributes to describe its features [4]. It is important
to note that some attributes are not visible in the graphical presentation, but are
incorporated to components to allow translating SPML models into native firewalls
configuration, as described in Section 4. Some attributes were omitted in this paper to
make easier the comprehension of SPML.

The components are classified in Firewall Components, Filtering Components,
Translation Components and External Entities. Filtering components are instantiated
in Filtering Diagrams and Translation components are instantiated in Translation
Diagrams. Firewall components and External Entities are allowed in both diagrams.
In the following subsections are presented the SPML components and their attributes.

2.1 Firewall Components

The features and configuration of firewalls are represented in SPML by two
components: Firewall and Interface. The first one – Firewall – is used to represent
any hardware or software that executes function of firewall, and is depicted by a circle
with the firewall identification, as shown in Figure 1. A firewall component has the
following attributes: Hostname; Domain and Firewall Type (e.g. Linux Netfilter or
OpenBSD Packet Filter).

 P

Fig. 1. A firewall with three network interfaces.

A firewall has one, or many, network interface cards, allowing other components
to connect with. SPML does not allow any component to connect directly to a
firewall. The connection is made by another component named Interface. According
to the visual syntactic adopted, Interface is a rectangle overlapped in a firewall
component, as shown in Figure 1. The attributes of interface component are: IP;
NetMask; Name – string identifying the Interface component; Device – name of
device that represents the interface (for example, eth0); Default Policy and Antispoof.
The attribute Default Policy identifies the policy adopted for the interface: block or
pass. Interfaces marked with P, as depicted in Figure 1, use the pass policy, otherwise
the block policy is assumed by default. Block policy denotes that all packets are
blocked, unless explicitly allowed. The pass policy works contrary. A Flow (Section
2.2) connected to an interface with block policy, denotes permission, and connected to

SPML: A Visual Approach for Modeling Firewall Configurations 3

an interface with pass policy, denotes denial. The Antispoof attribute identifies if the
interface must implement protection against IP spoofing attacks – interfaces with
spoofing protection disabled has a line segment on the top, as depicted in Figure 1.
Virtual interfaces, which are used to associate more than a IP address to an physical
network interface, is drawn using dashed lines, as depicted in Figure 1.

2.2 Filtering Components

Filtering components, as suggested, define the rules for packets filtering in a SPML
modeling. These components represent data flows among an External Entity (Section
2.4) and an Interface component, and they may be used only in Filtering Diagrams.
Depending on the direction, the flows can be considered Incoming flow or Outgoing
flow, described next.

 1 web_in

 web_out 1,2

(a) Incoming flow with FID = 1 (b) Outgoing flow with the Source FIDs

Fig. 2. Examples of Flows.

All flows, Incoming and Outgoing, has the following attributes: Name; Address
Family – IPv4 or IPv6; Protocol – its values can be Any, TCP, UDP or ICMP; Source
Ports; Destination Ports; Stateful – to indicate if the firewall should keep the state of
connection for that flow (flows with the attribute Stateful=no are depicted by a
doubled pointed arrow, presented in Figure 2a; Log – indicates if the firewall should
log packets that match to the flow; Policy – it can assume the values Drop or Return.
If the policy is Return, hosts that have packets blocked will be warned. Drop policy
does not warn the source of packet about blocking.

An Incoming flow is used to describe flows arriving on firewall. To be considered
an incoming Flow, it must connect an External Entity (see Section 2.4) to an Interface
component, respectively a source and a destination (arrowhead extremity connected to
an Interface). In addition to the flow attributes, Incoming Flows has the FID (Flow
ID) attribute. It is an integer number, as shown in Figure 2a, that identifies the flow
and allows assigning an Incoming Flow to one or more Outgoing Flows. A firewall
can not have more than one flow with the same FID (it must be unique). Flow
assignment is important to the translation of SPML modeling into native
configuration of firewalls, as described in Section 4.

An Outgoing flow is used to describe flows departing from firewall. To be
considered as outgoing, the flow must be connected to an Interface component and
the arrowhead must point to an External Entity. Instead of the FID, an outgoing flow
has the Source FIDs attribute to define an assignment between incoming flow and
outgoing flow. It is possible to assign more than one incoming flow to an outgoing
flow. In this case, the Source FIDs are separated by comma. In Figure 2b is shown the
outgoing flow web_out assigned with two incoming flows with FID 1 and 2. It is
important do note that the incoming and outgoing flows must have the same protocol
(protocol attribute with same value).

4 Kleber Manrique Trevisani and Rogério Eduardo Garcia

2.3 Translation Components

Translation components are divided into NAT (Network Address Translation) and
RDR (Service Redirecting) components. In Translation Diagrams components are
connected by dashed arrows, as depicted in Figure 3a.

NAT components are used to represent network address translation of N:11 and
1:12 [5] [6]. There are two NAT components: SrcNat and DestNat, both represented
by a circle (see Figure 3b). SrcNat must be connected to one or more External
Entities to describe the source of packets. It has the following attributes: Address
Family, Protocol, Source Ports, Destination Ports and NID (Nat ID) – an integer
number used not only to identify the component, but also to indicate the assignment
between SrcNat and DestNat. DestNat must be connected to an Interface component
and one or more External Entities. It component describes the network interface
where NAT is done and the destination address which translation is allowed. A
DestNat can not be represented without a SrcNat assigned, and vice-versa. DestNat
has only one the NID attribute.

(a) Translation connector (b) SrcNat and DestNat (c) SrcRdr and DestRdr

 Fig. 3. Translation Components.

RDR components, used to represent service redirecting, are useful to become
available services provided by hosts with private IP, protected by firewall. Similar to
NAT components, there are SrcRdr and DestRdr components, that are represented by
a rounded rectangle (see Figure 3c). SrcRdr must be connected to one or more
External Entities, to define the packet source address, and connected to an Interface,
to define the packet destination address. SrcRdr has as attributes: Address Family,
Protocol, Source Ports, Destination Ports and Destination RID (Redirection
Identification) – an integer number used to identify the component. RID is also used
to assign a SrcRdr to a DestRdr (using the same RID to a DestRdr). This assignment
defines where packets are redirected – a SrcRdr can not be used without its DestRdr
corresponding, and vice-versa. Visually, both the Destination Ports (number 80 in
Figure 3c) and RID (number 1 in Figure 3c) are presented in the inner region of
rounded rectangle used to represent each RDRcomponent.

DestRdr must be connected to only one External Entity, used as destination to the
redirected packets. The address of the External Entity, connected to DestRdr
component, substitutes the original destination address of the packet. The DestRdr
attributes are: Port – represented by a unique integer number (number 80 in Figure
3c), that will replace original port of the packet, and RID.

1 N addresses are translated to one address.
2 1 (one) address is translated to another address.

1 80 1

SPML: A Visual Approach for Modeling Firewall Configurations 5

2.4 External Entities

External Entities define source and destination addresses in translation and filtering
diagrams. When these components are used in Translation Diagrams, they can be
connected to SrcNat, DestNat, SrcRdr and DestRdr. Used in Filtering Diagrams, they
can be connected only to Interface component. External Entities can not be connected
each other. These components are:

(a)

(b)

(c)

(d)

Fig. 4. External entities: (a) Network named Internal; (b) Host named www; (c) Hostlist of SSH

Servers; (d) Internet Representation.

− Network: represents a TCP/IP network, depicted by a square with rounded corner,
as showed in Figure 4a. The attributes of this component are: Name – to identify
uniquely a network, Network Address and Netmask.

− Host: This component describes any device capable to receive an IP address, and
involved with security policy modeled. It is represented by a square, as depicted in
Figure 4b. Its attributes are: Hostname, Domain, IP Address and Netmask.

− Hostlist: Defines a group of hosts involved in security policy modeled. It is
represented by two squares overlapped, as depicted in Figure 4c. It attributes are:
Name – identifies set of hosts uniquely (e.g. SSH Servers) and a list of hosts (e.g.
sshserver1, sshserver2, sshserver3).

− Inet: Used to represent the Internet or other network with unknown IP address.
This component is graphically represented by a cloud, as depicted in Figure 4d.
And it has only one attribute: Name (a symbolic name).

3 SPML Modeling

The SPML notation has a set of formal rules to interconnect its components described
in [4]. In this section are presented some diagrams representing a firewall
configuration to deal with web access from a University (with academic network and
administrative network) connected to Internet, considered as case of study.

According to the policy adopted by the University, academic network must be
isolated from administrative network to prevent students to have access to data and
resources forbidden to them. Additionally, all users have Internet access limited (by
content, for example), except the professors. Figure 5a shows a filtering diagram for
that configuration, considering only the outgoing rules. The diagram has a firewall
with four network interfaces: one of them connected to Internet; two connected to
academic and administrative networks; the fourth interface is connected to
demilitarized zone (DMZ). In such schema, packets from academic or administrative

Inet
SSH

Servers

www

Internal

6 Kleber Manrique Trevisani and Rogério Eduardo Garcia

network must pass through squid host (a HTTP proxy) before reach the Internet, if
allowed. Note that the WebStudent and WebAdm flows, with FID 1 and FID 4
respectively, are assigned to WebProxyIn flow. The squid host has permission to send
packets with any destination through dmz interface: the WebProxyOut and Web flows
are assigned by FID 2. Packets from professors’ hosts can pass directly to Internet,
without a proxy (following the FID 3).

WebStudent
WebProxyOut

Academic
Net

Adm Net

squid

 Profs

Web

WebAdm

WebProxyIn

4

1,4

2
1

WebProf

3

Inet

2,3

Firewall

acd

dmz

adm

ext

Academic
Net

Firewall

Adm Net

1

1

Inet

ext

(a) Filtering Diagram (b) Translations diagram using

NAT components

Fig. 5. Example of SPML Diagrams.

Hosts from academic and administrative network have private IP addresses.
Therefore, it is need to change the source IP address of packets from such hosts
before send them to Internet. The translation diagram, exposed in Figure 5b,
represents the NAT configuration to deal with such problem. In that example, the
translation is performed on ext interface, so packets from academic and administrative
network have their source IP addresses changed to ext interface IP address.

Firewall

www

 web 2

 web 2

Inet ext

Fig. 6. Modeling of Service Redirection.

Since www host is a Web server and has a private IP, it can not be reached from the
Internet. This problem is treated using the RDR components with RID 2, shown in
Figure 6, where the packets from the Internet, arriving through ext interface, with
destination port 80, are redirected to www host. Similar is made to Academic Net and
squid. Note that the filtering rules allowing redirection to www host were not
presented in the filtering diagram, shown in Figure 5a, but they could be modeled in
such diagram or in another filtering diagram.

80

80

SPML: A Visual Approach for Modeling Firewall Configurations 7

4 Translation to Native Rules

Only graphical modeling might not be interesting for network administrator, since it
still require writing native rules. To support the definition (by creating or modifying)
and the translation of SPML models into native configurations was developed a tool
named SOH (Security On Hands), written in Java. Such tool is organized in modules:
edition module; translation module and instantiation module. The first one, as
suggested, supports edition of SPML diagrams [7]. The second one translates SPML
diagrams into XML documents [8], and the third one translates the XML documents
to native firewall configuration [7].

The use of XML document aims to facilitate exchange SOH data structures. XML
documents are used as abstract representation of firewall configuration, what allows
the development of new translators, from SPML to native firewall configuration,
without knowledge about how SOH represents SPML diagrams internally. The XML
structure used is named FwXML, and was defined by [4] and [9]. This approach
allows writing specific translators to each firewall product, instantiating the abstract
rules from XML documents to native rules.

4.1 SPML to FwXML

The first step for translating SPML to FwXML focuses on firewall features and
external entities components. The next step focuses on translation diagrams, dealing
with NAT and RDR components. The last step focuses on the filtering rules. Figure 7
shows a filtering diagram and its respective FwXML representation.

Fig. 7. FwXML of filtering diagram.

int2ext_in

int2ext_out

<spmlmodel><spmlmodel><spmlmodel><spmlmodel>
 <rulese<rulese<rulese<ruleset>t>t>t>
<flow name<flow name<flow name<flow name=”$int2ext_out”>

<rule action<rule action<rule action<rule action=”pass” directiondirectiondirectiondirection=”out”
 interface interface interface interface=”$ext” protoprotoprotoproto=”tcp”>>>>

<parameters log<parameters log<parameters log<parameters log=”no” afafafaf=”inet”
 keepstate keepstate keepstate keepstate=”yes”/>/>/>/>

<from><from><from><from>$internal</from></from></from></from>
<to dst_port<to dst_port<to dst_port<to dst_port=”80”>>>>$inet</to></to></to></to>

</rule></rule></rule></rule>
</flow></flow></flow></flow>
<flow name<flow name<flow name<flow name=”$int2ext_in”>

<rule action<rule action<rule action<rule action=”pass” directiondirectiondirectiondirection=”in”
 interface interface interface interface=”$int” protoprotoprotoproto=”tcp”>>>>

<parameters log<parameters log<parameters log<parameters log=”no” afafafaf=”inet”
keepstatekeepstatekeepstatekeepstate=”yes”/>/>/>/>

<from><from><from><from>$internal</from></from></from></from>
<to dst_port<to dst_port<to dst_port<to dst_port=”80”>>>>$inet</to></to></to></to>

</rule></rule></rule></rule>
</flow></flow></flow></flow>

 </ruleset> </ruleset> </ruleset> </ruleset>
</spmlmodel></spmlmodel></spmlmodel></spmlmodel>

Firewall

Internal

Inet

ext

int

8 Kleber Manrique Trevisani and Rogério Eduardo Garcia

4.2 Translating FwXML to Native Configuration

As mentioned, the translation of FwXML to native configuration must be written
specifically for each firewall product: there are SOH modules that generate native
configuration to OpenBSD Packet Filter [10] and Linux Netfilter [11].

<spmlmodel><spmlmodel><spmlmodel><spmlmodel>

<ruleset><ruleset><ruleset><ruleset>
<flow name<flow name<flow name<flow name=”$int2ext_out”>

<rule action<rule action<rule action<rule action=”pass” directiondirectiondirectiondirection=”out”
 interface interface interface interface=”$ext” protoprotoprotoproto=”tcp”>>>>

 <parameters log <parameters log <parameters log <parameters log=”no” afafafaf=”inet”
keepstatekeepstatekeepstatekeepstate=”yes”/>/>/>/>

 <from> <from> <from> <from>$internal</from></from></from></from>
 <to dst_port <to dst_port <to dst_port <to dst_port=”80”>>>>$inet</to></to></to></to>

</rule></rule></rule></rule>
</flow></flow></flow></flow>
<flow name<flow name<flow name<flow name=”$int2ext_in”>

<rule action<rule action<rule action<rule action=”pass” directiondirectiondirectiondirection=”in”
 interface interface interface interface=”$int” protoprotoprotoproto=”tcp”>>>>

 <parameters log <parameters log <parameters log <parameters log=”no” afafafaf=”inet”
keepstatekeepstatekeepstatekeepstate=”yes”/>/>/>/>

 <from> <from> <from> <from>$internal</from></from></from></from>
 <to dst_port <to dst_port <to dst_port <to dst_port=”80”>>>>$inet</to></to></to></to>

</rule></rule></rule></rule>
</flow></flow></flow></flow>

 </ruleset> </ruleset> </ruleset> </ruleset>
</spmlmodel></spmlmodel></spmlmodel></spmlmodel>

int2ext_out
pass out on $ext inet proto tcp
 from $extip to $inet port 80
 keep state

#int2ext_in
pass in on $int inet proto tcp
 from $internal to $inet port 80
 keep state

(a) FwXML (b) OpenBSD Packet Filter native rules

Fig. 8. Translation from FwXML to OpenBSD Packet Filter native rules.

An example of filtering rules translation to Open BSD Packet Filter is presented in
Figure 8. It is important to note that the translator must determine the source and the
destination addresses, depending on firewall product. Considering the Packet Filter,
NAT rules are performed before filtering, so filtering rules must use the network
interface address as source address, for packets that have been applied NAT. Figure
8b shows $extip (in bold) chosen as source address, instead $internal, which is the
original address before NAT application to the packet. The XML representing the
NAT rule was omitted due to page limit.

4.3 Dealing with ordering rules problems

In a firewall, a set of rules is analyzed in sequential order. SPML models previously
presented do not provide a way for ordering of filtering and NAT rules. Such order is
used by firewalls to establish which action (block or pass) must be done when they
treat packets. Usually, the firewalls adopt the following approaches:
1. The packets are compared with all rules before take any action. The last rule that

matches with the packet defines the action to be done. The filtering of OpenBSD
firewall works like this, unless for those rules qualified with reserved word quick
[10];

2. The firewall compares the packets with each rule. The first rule that matches with
the packet defines which action is taken, and the next rules are ignored. Firewall
Aker [12] uses this approach for filtering and NAT. OpenBSD uses it for NAT.

SPML: A Visual Approach for Modeling Firewall Configurations 9

For modeling filtering and NAT rules order, another graphical visualization was
developed. The solution adopted represents the firewall in a cross section view,
named Side View, which is another way to see components already modeled in
filtering and NAT diagrams. For example, in Figure 9a is presented a Side View of the
filtering diagram shown in Figure 5a, and Figure 9b presents a Side View of the
translation diagrams shown in the figures 5b and 6. By moving the components in
such views to up/down establishes the order of rules application: the translation
process starts with the component at top, and follows going down. In this view, the
Interface components are omitted, since they do not contribute for this modeling task,
and their presentation would became the view polluted.

WebStudent

WebProxyOut

Web

1,4

2,3

4

3

2

1

WebAdm

WebProf

WebProxyIn

F
ir

e
w

a
ll

Academic

Net

WebAdm

Profs

Inet

squid

squid

F
ir

e
w

a
ll

1

Academic
Net

Adm Net

Inet

 webproxy 1 squid Academic
Net

 web 2 www Inet

(a) Side View of filtering rules (b) Side view of translation rules

Fig. 9. Modeling ordering rules with Side View.

Additionally, in this view is possible to select the approach for analyzing rules. A
triangle, at top left position, indicates such approach. When the triangle is pointing to
down, it signalizes that firewall must analyze all rules before any action about the
packet (approach 1). Otherwise, the triangle indicates the firewall must apply the first
matched rule (approach 2). If the triangle was pointed to up in Figure 9a, the
professors’ host would not have direct access to Internet, because the matched flow
would be WebStudent (FID = 1), considering that professor’s hosts are members of
academic network too.

5 Conclusions and Further Works

We proposed a graphical notation for modeling security policies, named SPML,
focusing on firewall configuration. The visualization of SPML diagrams allows
understanding the actions performed by firewalls, what aiding decision making about
maintenance of security policy (for adding, removing or changing of rules). SPML
provides a friendlier, comparing to text based commands or proprietary management

80

AdmNet

3128

10 Kleber Manrique Trevisani and Rogério Eduardo Garcia

systems. Also, it is possible to define a firewall policy in an independent way, without
take into account technical details of specific products.

Modeling SPML aided by automated tools, such as SOH, allow deploying the
firewall configuration without any additional effort, since the tool can translate – by
using the FwXML mapping – and send to it. The current version of SOH supports
translation to OpenBSD Packet Filter and Linux Netfilter firewalls. A pilot study was
conducted by [9] to evaluate not only the use of visual approach proposed in SPML,
but also to show the independency between SPML models and firewall products,
validating the FwXML translation. In such study, the same SPML model was
translated to these two firewalls products and penetrations tests showed that the
behavior modeled in SPML was the same observed in both firewall products.

The initial evaluation has shown advantages on firewall configurations, what has
motivated further investigations on extending SPML to deal with other security
policies issues, as initially intended. One might, for example, extend the SPML to
deal with VPN, proxies, IDS, access control, bandwidth control, load balance with
NAT, so on. For that, new diagrams must be defined using or extending the already
defined components, or creating new components. Nowadays, the most works in
progress is related to enhance SOH tool by adding new functionalities, as new
modules to translate FwXML into native configurations. Additionally, automated
tools can be developed to validate firewall configurations according to security
policies specified in SPML models [1].

References

[1] Adel El-Atawy et al.: An Automated Framework for Validating Firewall Policy
Enforcement, POLICY '07: Proceedings of the Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks, 151-160, 2007.

[2] Bartal, Y. et Al. Firmato: A novel firewall management toolkit. In: ACM Transactions on
Computer Systems. v. 22, n. 4, p.381-420, November 2004.

[3] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra. Fireman: a toolkit for
firewall modeling and analysis. IEEE Symposium on Security and Privacy (2006).

[4] Khouri, K. T. and Trevisani, K. M. Definition of a subset of SPML language to modeling
firewalls (in Portuguese). Technical Report, FIPP/UNOESTE (2005).

[5] Egevang, K. and Francis, P.: Network Address Translation (NAT) - Internet Request for
Comments 1631 (1994).

[6] Tsirtsis, G. and Srisuresh, P.: Network Address Translation - Protocol Translation (NAT-
PT) - Internet Request for Comment 2766 (2000).

[7] Soares, R. P. and Trevisani, K. M.: Integration of translating and transmission modules of
SOH and extension of it functionalities (in Portuguese). Technical Report, FIPP/UNOESTE,
(2006).

[8] Nagai, D. M. and Trevisani, K. M.: Development of a SOH module to translate SPML
diagrams to XML documents. (In Portuguese) Technical Report, FIPP/UNOESTE (2006).

[9] Gamba, F. M. and Trevisani, K. M.: Validation of FwXML to firewalls products OpenBSD
Packet Filter and Linux Netfilter. (In Portuguese) Technical Report, FIPP/UNOESTE
(2007).

[10] Artymiak, J.: Building Firewalls with OpenBSD and PF. 2.ed. Poland, Sowa (2003).
[11] Russell, R.: The NetFilter Project, <http://www.netfilter.org>. Accessed in Aug. 2008.
[12] Aker Security Solutions: Firewall AKER Manual, São Paulo/SP (2003).

