
Searching All Approximate Covers and Their Distance using Finite

Automata

Ondřej Guth, Bořivoj Melichar, and Miroslav Baĺık

České vysoké učeńı technické v Praze, Praha, CZ,
{gutho1,melichar,balikm}@fel.cvut.cz

Abstract. Cover is a type of a regularity of strings. A re-

stricted approximate cover w of string T is a factor of T

such that every position of T lies within some approximate

occurrence of w in T . In this paper, the problem of all re-
stricted smallest distance approximate covers of a string is

studied and a polynomial time and space algorithm for solv-

ing the problem is presented. It searches for all restricted

approximate covers of a string with given limited approxi-

mation using Hamming distance and it computes the small-

est distance for each found cover. The solution is based on

a finite automata approach, that provides a straightforward

way to design algorithms to many problems in stringology.

Therefore it is shown that the set of problems solvable using

finite automata includes the one studied in this paper.

1 Introduction

Searching regularities of strings is used in a wide area
of applications like molecular biology and computer–
assisted music analysis. One of typical regularities is
cover.

Finding exact covers is not sufficient in some appli-
cations, thus approximate covers have to be computed.
In this paper, the Hamming distance is considered.

Exact covers were introduced in [1], an algorithm
for computation of all exact covers in linear time was
presented in [4]. An algorithm using finite automata
approach to computation of all exact covers was intro-
duced in [5].

The algorithm presented in [2] searches for one re-
stricted smallest approximate cover (i.e. cover with the
smallest distance), using dynamic programming. An
algorithm using finite automata approach to compu-
tation all restricted approximate covers for Hamming,
Levenshtein, and Damerau distance was introduced in
[3].

This paper is organized as follows. In Section 2,
some notations and definitions used in this paper are
described. In Section 3, the algorithm for the problem
is presented. In Section 4, the complexities of the al-
gorithm are proven. In Section 5, experimental results
are shown.

2 Preliminaries

An alphabet is a nonempty finite set of symbols, de-
noted by A. A string over an alphabet is a finite se-
quence of symbols of the alphabet. Empty string is an
empty sequence of symbols, denoted by ε. An effective
alphabet of a string T is a set of symbols that really
occur in T . Only effective alphabet is considered in
this paper. A language is a set of strings. A set of all
strings over alphabet A is denoted by A∗. The length
of a string w is denoted by |w|, the i–th symbol of w is
denoted by w[i]. An operation concatenation is defined
in this way: x, y ∈ A∗, concatenation of x and y is xy,
may be denoted by x.y. An operation superposition is
defined in this way: x = pu, y = us, superposition of
x and y is pus. Suppose u, w, x, T ∈ A∗. w is a prefix
of T if T = wu, w is a suffix of T if T = uw, and w

is a factor (also called a substring) of T if T = uwx.
A set of all prefixes of T is denoted by Pref (T), a set
of all suffixes of T is denoted by Suff (T), and a set of
all factors of T is denoted by Fact(T).

A deterministic finite automaton (also called a de-
terministic finite state machine, denoted by DFA) is a
quintuple (Q, A, δ, q0, F), where Q is a nonempty finite
set of states, A is an input alphabet, δ is a transition
function, δ : Q×A 7→ Q, q0 ∈ Q is an initial state and
F ⊆ Q is a set of final states.

A nondeterministic finite automaton without ε–
transitions is a quintuple (Q, A, δ, q0, F), where Q is a
nonempty finite set of states, A is an input alphabet,
δ is a transition function, where δ : Q × A 7→ P(Q),
q0 ∈ Q is an initial state and F ⊆ Q is a set of final
states. It is denoted by NFA.

A state q is a successor of state p of a deterministic
finite automaton (Q, A, δ, q0, F) if q = δ(p, a) for some
a ∈ A. A state qN is a successor of a state pN of a
NFA (QN , A, δN , q0N , FN) if q ∈ δN(pN , a).

String w = a1a2 . . . a|w| is said to be accepted by a
DFA (Q, A, δ, q0, F) if there exists a sequence
δ(q0, a1) = q1, δ(q1, a2) = q2, . . . , δ(q|w|−1, a|w|) ∈ F .
String w = a1a2 . . . a|w| is said to be accepted by a
NFA (Q, A, δ, q0, F) if there exists a sequence
δ(q0, a1) = Q1, δ(q1, a2) = Q2, . . . , δ(q|w|−1, a|w|) ⊆ F

for some q1 ∈ Q1, . . . , q|w|−1 ∈ Q|w|−1. A language
accepted by a finite automaton M is denoted by L(M).

A left language of a state q of a nondeterminis-
tic finite automaton (Q, A, δ, q0, F) is a set of strings
w = a1a2 . . . a|w|, where for each w exists a sequence
δ(q0, a1) = Q1, δ(q1, a2) = Q2, . . . , δ(q|w|−1, a|w|) =
Q|w|, q ∈ Q|w| for some q1 ∈ Q1, . . . , q|w|−1 ∈ Q|w|−1.
A left language of a state q of a DFA (Q, A, δ, q0, F)
is a set of strings w = a1a2 . . . a|w|, where for each w

exists a sequence
δ(q0, a1) = q1, δ(q1, a2) = q2, . . . , δ(q|w|−1, a|w|) = q.

A maxfactor of a state q of a DFA (Q, A, δ, q0, F)
is the longest string of left language of q, denoted by
maxfactor (q). A depth of a state q of a DFA is the
length of maxfactor (q), denoted by depth(q).

A DFA MD = (Q, A, δ, q0, F) is equivalent to a
NFA MN = (QN , A, δN , q0N , FN) if L(MN) = L(MD).
Subset construction may be used:

1. Set Q = {{q0}} will be defined, state q0 = {q0N}
will be treated as unmarked.

2. If each state in Q is marked then continue with
step 4.

3. Unmarked state q will be chosen from Q and the
following operations will be executed:

(a) δ(q, a) =
⋃

δN (pN , a) for pN ∈ q and for all
a ∈ A,

(b) Q = Q ∪ δ(q, a) for all a ∈ A,

(c) state q ∈ Q will be marked,

(d) continue with step 2.

4. F = {q : q ∈ Q, pN ∩ FN 6= ∅, pN ∈ q}.

Using subset construction of MD equivalent to MN ,
every state qD ∈ Q corresponds to some subset of QN .
This subset is called a d–subset, denoted by d(qD).
Each element of the d–subset corresponds to some
state of QN . Where no confusion arises, depth of a
state corresponding to an element rj ∈ d(qD) of d–
subset d(qD) is simply denoted by rj , as numeric rep-
resentation of rj corresponds to the depth. In the algo-
rithms below, d–subset is supposed to be implemented
as a list, preserving order of its elements. An element
of the d–subset is denoted by ri, where the subscript
i means an index (order) of the element ri within the
d–subset.

A distance is the minimum number of editing op-
erations that are necessary to convert a string x into
a string y. The maximum allowed distance is denoted
by k.

The Hamming distance between strings x and y is
equal to the minimum number of editing operations
replace that are necessary to convert x into y. The
Hamming distance function is denoted by DH .

String w ∈ A∗ is an approximate prefix of a string
T ∈ A∗ with the maximum Hamming distance k if
there exists string p ∈ Pref (T) such that DH(w, p) ≤
k. String w is an approximate suffix of the string T if

there exists string s ∈ Suff (T) such that DH(w, s) ≤
k.

A nondeterministic Hamming suffix automaton M

for a string T and distance k is such nondeterministic
finite automaton without ε–transitions, that L(M) =
{w : DH(w, s) ≤ k, s ∈ Suff (T)}. Such an automaton
M = (Q, A, δ, q0, F) may be constructed in this way:

1. Create a layer of |T | + 1 states:

(a) each state q0
i corresponds to a position i in T

(plus initial state q0, thus 0 < i ≤ |T |),
(b) for each state q0

i (but the last q0
|T |) define tran-

sition δ(q0
i , T [i]) = q0

i+1,

(c) define the last state q0
|T | final (note that until

now such automaton accepts exactly T).

2. Similarly, create a layer for each “number of er-
rors” l, 1 ≤ l ≤ k (only exception: we do not need
any state ql

i for l > i).

3. For each state ql
i (but the last q|T | in each layer

and but the last layer) and for each symbol a ∈
A, a 6= T [i] (not occurring in T at position i), de-
fine transition δ(ql

i, T [i]) = ql+1
i+1.

4. Create “long” transitions from q0: δ(q0, a) = {q0
i :

a = T [i], a ≤ i ≤ |T |}∪{q1
i : a 6= T [i], 1 ≤ i ≤ |T |}.

For example of a transition diagram of a nondetermin-
istic Hamming suffix automaton see Fig. 1.

A level of a state of a nondeterministic Hamming
suffix automaton corresponds to the number of errors,
a depth of a state of this automaton is equal to the
corresponding position in T .

Definition 1 (Restricted approximate cover). Let
T and w be strings. We say, that w is a restricted ap-
proximate cover of T with Hamming distance k if w is
a factor of T and there exist strings s1, s2, . . . , sr (all
some substrings of T) such that:

1. DH(w, si) ≤ k for all i where 1 ≤ i ≤ r,

2. T can be constructed by superpositions and con-
catenations of copies of the strings s1, s2, . . . , sr.

Note 1. An approximate cover is more general regu-
larity than restricted approximate cover, because (un-
restricted) approximate cover of T needs not be a fac-
tor of T . In this paper, only restricted approximate
cover is considered.

Definition 2 (Restricted smallest distance ap-
proximate cover). Let T and w be strings. We say,
that w is a restricted smallest distance approximate
cover of T with distance k if w is a restricted approx-
imate cover of T with the distance k and there exists
no l < k such that w is a restricted approximate cover
of T with the distance l.

Problem 1 (All restricted smallest distance approximate
covers of a string). Given string T over alphabet A,
Hamming distance function DH and distance k, find
all restricted approximate covers of T and their small-
est distances. A set of all restricted smallest distance
approximate covers of string T under Hamming dis-
tance k is denoted by coversH k (T).

As any approximate cover of a string T under Ham-
ming distance is an approximate prefix and an approx-
imate suffix of T (proven in [3]), an automaton accept-
ing only such strings can be used.

Definition 3 (Approximate cover candidate au-
tomaton). An approximate cover candidate automa-
ton (Q, A, δ, q0, F) for string T ∈ A∗, Hamming dis-
tance function DH and the maximum distance k ac-
cepts set W = {w1, w2, . . . , wl} of factors of T , where
for each wi ∈ W holds:

1. there exists p ∈ Pref (T) such that DH(p, wi) ≤ k,
and

2. there exists s ∈ Suff (T) such that DH(s, wi) ≤ k.

In [3], a construction of an automaton accepting
intersection of approximate prefixes and approximate
suffixes is used for construction of a deterministic ap-
proximate cover candidate automaton. Although this
is a straightforward idea, specialized method (more
effective) is presented for Hamming distance in the
following section.

3 Problem solution

The principle of the solution is following: first, we per-
form a subset construction of a deterministic cover
candidate automaton from a nondeterministic Ham-
ming suffix automaton for string T and k, as every
d(q) represents a set of positions of w = maxfactor (q)
within T . If we treat with d(q) as with a sorted list
(ordered by depths of its elements), each pair of sub-
sequent elements represents positions of subsequent
occurrences of w within T . When for such positions
i, j, i < j holds j − i > |w|, we know that w cannot
be a cover of T . The distance of w is the minimum l

such that it is possible to remove all elements r ∈ d(q)
having level (r) > l and the previous condition holds.

In fact, it is not necessary to save complete de-
terministic automaton. Unlike in [3], we do not make
construction of the deterministic cover candidate au-
tomaton and subsequent computation of covering. A
depth–first search algorithm is used to perform subset
construction and computation of covering and of the
distance of each cover: in Algorithm 2, for each state
and symbol, a successor q is generated, it is deter-
mined whether it represents a cover and the distance is

computed. When q represents an approximate prefix,
its successors are recursively generated and processed.
Note that the set of final states of the deterministic
approximate cover candidate automaton is not needed
(it would contain all states having d–subsets contain-
ing element corresponding to some final state of the
nondeterministic Hamming suffix automaton).

Distance l of each cover w = maxfactor (q) may
vary between 0 and k. Moreover, it cannot be less than
level of the first or the last element of d(q), because
each cover must be an approximate prefix and suffix.
Of course, it cannot be more than the maximum level
of elements of d(q). The Algorithm 1 removes all the
elements having the maximum level but the first and
the last element of d(q), and tries whether w covers T

without those removed positions.

Algorithm 1 Smallest distance of a cover of T .

Input: d–subset d(q) representing a cover w of T .
Output: The smallest distance l of w.

1: lmin ← max{level(r1), level(r|d(q)|)}
2: lmax ← maxr∈d(q){level (r)}
3: l ← lmax

4: repeat

5: for all r ∈ d(q) \ {r1, r|d(q)|} : level(r) = l do

6: remove r from d(q)
7: end for

8: l ← l − 1
9: until l ≥ lmin and for all i = 2, 3, . . . , |d(q)| : ri−ri−1 ≤

depth(q)
10: l ← l + 1.

Example 1. Let us have a string T = aabccccb over
alphabet A = {a, b, c} and let us compute a set of all
restricted smallest distance approximate covers of T

under Hamming distance k = 2 using Algorithm 3.

Because of the distance 2, we are interested in cov-
ers of length at least 3 or having distance less than 2.
We construct a nondeterministic Hamming suffix au-
tomaton MS (see Fig. 1), then an approximate cover
candidate automaton M is analysed (see Fig. 2).

Looking at the d–subset {3, 4′′, 8′′}, it represents
an approximate prefix and suffix aab of length 3, but
for its positions holds 8− 4 � 3, thus the factor aab is
not an approximate cover of T with Hamming distance
2. Looking at the other d–subset {3′′, 5′′, 6′, 7′, 8}, it
represents factor ccb, that covers T with Hamming dis-
tance 2. It is checked whether it covers T with distance
1 (Alg. 1). As the first element of the d–subset has level
equal to 2, lmin is equal to 2. The resulting set of the
covers is coversaabccccbH (2) = {(ccb, 2), (aabccccb, 0)}.

0 123
′
4
′
5
′
6
′
7
′
8
′

1
′
2
′
34

′
5
′
6
′
7
′
8

1
′
2
′
3
′
45678

′

23
′
4
′′
5
′′
6
′′
7
′′
8
′′

2
′
34

′′
5
′′
6
′′
7
′′
8
′

2
′′
3
′
45

′
6
′
7
′
8
′′

2
′′
3
′
4
′′
5
′
6
′
7
′
8

2
′′
3
′′
4
′
5678

′

34
′′
8
′′

3
′′
45

′′
6
′′
7
′′

3
′′
5
′′
6
′
7
′
8

45
′′

4
′′
56

′′
7
′′

56
′′

5
′′
67

′′

67
′′

6
′′
7

7 8
a

b

c

a
b

c

b

c

b

c

b

c

c

c

c

c

c

c b

Fig. 2. Transition diagram of complete deterministic approximate cover candidate automaton for string T = aabccccb

and the maximum Hamming distance 2

Algorithm 2 Process state of a deterministic approx-
imate cover candidate automaton M = (Q, A, δ, q0, F)
constructed for string T and the maximum distance
k from a nondeterministic Hamming suffix automaton
MS = (QS , A, δS , q0S , FS).

Input: State qi having depth i and the d–subset d(qi).
Output: The temporary set of restricted smallest distance
approximate covers c.

1: c← ∅
2: for all a ∈ A do

3: create new state q, define depth(q) = depth(qi) + 1
4: for all rs in d(qi) (in order as stored in d(qi)) do

5: append all ri ∈ δS(rs, a) to d(q) in ascending or-
der by depth(ri)

6: end for

7: if for the first r1 ∈ d(q) holds r1 ≤ depth(qi) then

8: if exists r ∈ d(q) where level(r) = 0 within MS

then

9: define w = maxfactor(q) = maxfactor (qi).a
10: if r|d(q)| ∈ FS then

11: if for all i = 2, 3, . . . , |d(q)| : depth(ri) −
depth(ri−1) ≤ depth(q) then

12: define l the smallest distance of w (Alg. 1)
13: if |w| > k or l < |w| then

14: c← c ∪ (w, l)
15: end if

16: end if

17: end if

18: process state q (this algorithm), c′ is result
19: c← c ∪ c′

20: end if

21: end if

22: end for

0 1 2 3 4 5 6 7 8
a a b c c c c b

a b c c c c b

1
′

2
′

3
′

4
′

5
′

6
′

7
′

8
′a b c c c c b

b, c b, c a, c a, b a, b a, b a, b a, c

b, c a, c a, b a, b a, b a, b a, c

2
′′

3
′′

4
′′

5
′′

6
′′

7
′′

8
′′b c c c c b

b, c a, c a, b a, b a, b a, b a, c

Fig. 1. Transition diagram of nondeterministic Hamming
suffix automaton for string aabccccb and the distance 2

Algorithm 3 Computation of a set of all restricted
smallest distance approximate covers for string T and
the Hamming distance k.

Input: String T = a1a2 . . . an, the Hamming distance k.
Output: Set of all restricted smallest distance ap-
proximate covers covers

H k (T) of string T using the
Hamming distance function DH and the distance
k.

1: coversH k (T)← {(T, 0)}.
2: Construct nondeterministic Hamming suffix automa-

ton MS = (QS, A, δS, q0S , FS) for T and k.
3: Create state q0 of the deterministic approximate cover

candidate automaton M(T) = (Q, A, δ, q0, F).
4: Define maxfactor (q0) = ε.
5: Process state q0 using Algorithm 2.
6: coversH k (T) is the resulting set from the previous step.

4 Complexities

Lemma 1. The nondeterministic Hamming suffix au-
tomaton MS = (Q, A, δ, q0, F) for string T and the

distance k contains (|T |+1) · (k+1)− k2+k
2 states and

|A| · (|T | · (k + 1)− 1 + k−k2

2)+ |T | − k + 1 transitions.

Proof. The automaton consists of layers of states q(i)

for each level i. The layer of states q0 contains |T | +
1 states. Each layer of states q(i) contains one state
less in comparison with layer of states q(i−1), thus it
contains |T | − i + 1 and layer of states q(k) contains
|T | − k + 1 states.

The automaton contains |A| transitions from each
state, with some exceptions. There are k+1 final states
having no successor. In the layer of states q(k), each
state has only one successor. From the initial state,
there are |T | transitions defined to the states q(0) hav-
ing level(q(0)) = 0 and |T | · (|A| − 1) transitions to the
states q(1) having level (q(1)) = 1. Thus in MS there are
|Q| · |A|+ |T | · |A|−(k+1)·|A|−(|T |−k+1)·(|A|−1) =
|A| · (|Q| − 2) + |T | − k + 1 transitions.

Note 2. As restricted approximate covers of string T

are exact factors of T , it is meaningful to consider
effective alphabet A only, thus |A| ≤ |T | always holds.

It is also meaningless to consider large k, because every
factor of T having length less or equal to k is always
approximate cover of T . Thus k ≤ |T | always holds.

Usually, k ≪ |T | and |A| ≪ |T | (e.g. in DNA anal-
ysis, A = {a, c, g, t}). Therefore k and |A| may be con-
sidered as small constants independent of |T |.

Lemma 2. The deterministic approximate cover can-
didate automaton M for string T and the Hamming

distance contains at most |T |2+|T |
2 + 1 states.

Proof. Each d–subset d(q) of M contains at least one r

such that level (r) = 0, thus maxfactor (q) ∈ Fact(T).
The number of possible factors of length depth(q) is
at most |T | − depth(q) + 1, thus the maximum num-
ber of states of M having equal depth is also |T | −
depth(q) + 1. The automaton M also contains an ini-
tial state. Therefore, the number of states of M is at

most (|T |−1+1)+(|T |−|T |+1)
2 · |T |+ 1.

Lemma 3. During the construction of the determin-
istic cover candidate automaton M for string T , Al-
gorithms 2, 3 need to hold at most |T | + 2 states at a
time.

Proof. Algorithm 2 works as a depth–first search al-
gorithm. For each state and symbol it generates at
most one state – possible successor. Thus it holds at
most |T | + 1 states of M (|T | states having d–subsets
representing exact prefixes of T plus initial state) and
a state generated for a final state, having empty d–
subset.

Lemma 4. During the construction of the determin-
istic cover candidate automaton M for string T , Algo-

rithms 2, 3 need to hold at most |T |2+|T |
2 + 1 elements

of d–subsets at a time.

Proof. Alg. 2 needs at most |T |+2 states in a memory
at a time (Lemma 3). The deterministic cover candi-
date automaton M = (Q, A, δ, q0, F) is constructed
by subset construction from a nondeterministic Ham-
ming suffix automaton MS = (QS , A, δS , q0S , FS). In
MS , each state but q0S has at most one successor
for each symbol, q0S has |T | successors for each sym-
bol. For each state pS and its successor qS in MS

holds: depth(qS) > depth(pS). The longest possible
d–subset d(p) contains r|T | having depth(r|T |) = |T |,
and r1 having depth(r1) = 1. As |δS(r1, a)| ≤ 1 and
δS(r|T |, a) = ∅ for every a ∈ A, for state p and its
successor q in M holds: |d(q)| ≤ |d(p)| for p 6= q0 and
|d(q)| ≤ |T | for p = q0.

Theorem 1. Space complexity of Alg. 3 is O(|T |2).

Proof. It clearly holds that for construction of the
nondeterministic Hamming suffix automaton MS =

(QS , A, δS , q0S , FS), there is no need for any additional
data structures. For the purpose of the construction of
the deterministic cover candidate automaton M , only
the set of states and transitions from q0S need to be
preserved, because the rest may be computed later in
O(1) time and space using knowledge of a depth and
a level of a state, k, and T . Thus the space complexity
of this construction is O((k + |A|) · |T |).

During the computation of the smallest distance
(Algorithm 1), only O(1) additional data is needed.
During the processing of states of M (Algorithm 2),
the needed space is limited by the number of elements
of all d–subsets (Lemma 4) preserved in a memory and
by the number of all approximate covers (the result,
limited by the number of all factors of T – at most
O(|T |2)).

Lemma 5. Using Algorithms 2, and 3 for construc-
tion of a deterministic cover candidate automaton M =
(Q, A, δ, q0, F) from a nondeterministic Hamming suf-
fix automaton MS = (QS , A, δS , q0S , FS), all d–subsets
are sorted in ascending order by depths within MS.

Proof. Having p, q ∈ Q\{q0} such that q is a successor
of p, suppose that d(p) is sorted in order by depths
within MS. It holds that for any pS , qS ∈ QS such
that qS is a successor of pS , depth(qS) > depth(pS).
Therefore d(q) constructed from already sorted d(p) is
also sorted.

For p = q0, it is supposed that δS(q0S , a) is con-
structed as sorted in order by depths within MS.

Lemma 6. Time complexity of Algorithm 1 is O(k ·
|T |) for each state.

Proof. Algorithm 1 may remove some elements of a
d–subset in each iteration, thus the iteration may take
O(|T |) time. The number of iterations may be at most
k.

Lemma 7. Time complexity of Algorithm 2 (from the
initial state) is O((k + |A|) · |T |3).

Proof. Algorithm 2 constructs for all states q and all
a ∈ A the d–subsets of all possible successors of q.
The number of states is O(|T |2) (Lemma 2) and the
number of elements of each d–subset is O(|T |). For
each state, the computation of covering is performed
(it takes O(|T |)), and for each cover (their number is
O(T 2)), the computation of the smallest distance is
performed (it takes O(k · |T |) for each cover – Lemma
6).

Theorem 2. Time complexity of Alg. 3 is O((k+|A|)·
|T |3).

Proof. It clearly holds that construction of the nonde-
terministic Hamming suffix automaton takes O((k +
|A|) · |T |). Construction of the deterministic cover can-
didate automaton takes O((k+ |A|) · |T |3) (Lemma 7).

5 Experimental results

The algorithm was implemented in C++ using STL,
the program was compiled using the GNU C++ com-
piler with O3 optimizations level. The dataset used to
test the algorithm is the nucleotide sequence of Sac-
charomyces cerevisiae chromosome IV1. The string T

consists of the first |T | characters of the chromosome.
The first set of tests was run on a AMD Athlon

64 3200+ (2200 MHz) system, with 2.5 GB of RAM,
under Fedora Linux operating system (see Figs. 3, 4).

Athlon64, for k=11 and k=31

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

Text length

T
im

e
[s

ec
]

Fig. 3. Time consumption with respect to the text size
(solid line for k = 11, dotted one for k = 31)

Athlon64, for |T|=1162 and |T|=1550

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

Maximum distance

T
im

e
[s

ec
]

Fig. 4. Time consumption with respect to the distance
(solid line for |T | = 1162, dotted one for |T | = 1550)

The second set of tests was run on a AMD Athlon
(1400 MHz) system, with 1.2 GB of RAM, under Gen-
too Linux operating system (see Figs. 5, 6).

Note 3. In comparison with experimental results pre-
sented in [2], the algorithm presented in this paper
runs a bit faster for the same data, even on a slightly
slower computer (1.3 seconds in [2] for text length 100

1 The Saccharomyces cerevisiae chromosome IV dataset
could be downloaded from http://www.genome.jp/.

Athlon, for k=101 and k=201

100 200 300 400 500 600 700
0

20

40

60

80

Text length

T
im

e
[s

ec
]

Fig. 5. Time consumption with respect to the text size
(solid line for k = 101, dotted one for k = 201)

Athlon, for |T|=114 and |T|=153

0 20 40 60 80 100 120 140 160
0.0

0.5

1.0

1.5

2.0

2.5

Maximum distance

T
im

e
[s

ec
]

Fig. 6. Time consumption with respect to the maximum
distance (solid line for |T | = 114, dotted one for |T | = 153)

vs. maximum 1.0 second for text length 114 – see Fig.
6).

6 Conclusion and future work

In this paper, we have shown that an algorithm de-
sign based on a determinisation of a suffix automa-
ton is appropriate for all restricted smallest distance
approximate covers of a string problem for Hamming
distance. The presented algorithm is straightforward,
easy to understand and to implement and its theoreti-
cal and experimental time requirements are compara-
ble to the existing approach ([2]).

The algorithm may be extended to work with other
distance functions, possibly using the idea presented
in [3]. Theoretical and experimental analysis similar
to one presented here may be accomplished. The algo-
rithm may be also extended to use parallelism.

Acknowledgements

This research was partially supported by the Ministry
of Education, Youth, and Sport of the Czech Repub-
lic under research program MSM 6840770014, by the

Czech Science Foundation as project No. 201/06/1039,
and by the Czech Technical University in Prague as
project No. CTU0803113.

References

1. Apostolico, A., Farach, M., and Iliopoulos, C. S.

Optimal superprimitivity testing for strings. Inf. Pro-

cess. Lett. 39, 1 (1991), 17–20.
2. Christodoulakis, M., Iliopoulos, C. S., Park, K.,

and Sim, J. S. Implementing approximate regulari-
ties. Mathematical and Computer Modelling 42 (Octo-
ber 2005), 855–866.

3. Guth, O. Searching approximate covers of strings us-
ing finite automata. In Proceedings of POSTER (2008),
Faculty of Electrical Engineering, Czech Technical Uni-
versity in Prague.

4. Smyth, W. F. Approximate periodicity in strings. Util-

itas Mathematica 51 (1997), 125–135.
5. Voráček, M., and Melichar, B. Searchig for regu-

larities in generalized strings using finite automata. In
Proceedings of the International Conference on Numer-

ical Analysis and Applied Mathematics (2005), WILEY
– VCH Verlag, pp. 809–812.

