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Abstract
Avoiding bias and understanding the real-world consequences of AI-supported decision-making are critical to
address fairness and assign accountability. Existing approaches often focus either on technical aspects, such as
datasets and models, or on high-level socio-ethical considerations—rarely capturing how these elements interact
in practice. In this paper, we apply an information flow-based modeling framework to a real-world recruitment
process that integrates automated candidate matching with human decision-making. Through semi-structured
stakeholder interviews and iterative modeling, we construct a multi-level representation of the recruitment
pipeline, capturing how information is transformed, filtered, and interpreted across both algorithmic and human
components. We identify where biases may emerge, how they can propagate through the system, and what
downstream impacts they may have on candidates. This case study illustrates how information flow modeling
can support structured analysis of fairness risks, providing transparency across complex socio-technical systems.
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1. Introduction

Artificial Intelligence (AI) is rapidly finding its way into all areas of society, shaping decision-making
processes across personal, business, public, and private sectors[1, 2]. Its integration into existing
organizations brings significant challenges, particularly in addressing fairness, bias, and accountability
in socio-technical systems. These issues are especially pressing as AI systems increasingly take part
in high-stakes decisions, affecting diverse stakeholders with varying degrees of vulnerability. While
awareness of the potential dangers of automated decision-making is increasing and being recognized in
regulation, prominently in the EU AI Act, there is a lack of tools and methodologies to fully address
these challenges.

Current efforts to address these challenges can be broadly categorized into two approaches with
their own perspectives strengths and weaknesses when it comes to characterizing and addressing these
challenges. The first, technical perspective, focuses on aspects like bias detection in datasets, fairness
metrics, and model explainability [3, 4]. These methods prioritize measurable model-level statistics,
such as fairness definitions derived from confusion matrices, but often fail to account for the structural
and organizational dynamics that shape how AI systems operate in practice [5, 6]. This disconnect
risks what Selbst et al. have called the framing trap — where system-level fairness or compliance is
wrongly inferred from component-level properties [5]. This risks reducing fairness and other metrics
to disconnected mathematical constructs without a clear connection to real-world implications of
algorithmic decisions.

The second, socio-technical perspective is found in high-level guidelines, Fundamental Rights Impact
Assessments (FRIA), legal and socio-technical frameworks [7, 8]. These approaches emphasizes high-
level ethical principles, societal impacts, and stakeholder accountability [9, 10]. However, while tackling
the socio-technical side of the gap, they frequently lack tools for analyzing or appreciating the internal
mechanics of technical systems and their embedding in real-world workflows. In lack of representation
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of the technical side these approaches risk treating the technical system as a singular opaque entity
and introduce methodological black boxes. Without fine-grained tools for connecting technical and
social elements in a manner that directly connects to the socio-technical impacts the gap remain
and these methods become limited in explaining how biases emerge and propagate into stakeholder
impacts [11, 5].

The abstraction gap forming in between the socio-technical and technical spheres prevent a holistic
understanding of how technical details and stakeholder effects interact. The problem is not merely one
of methodological focus, but one of lacking bridge structures across the gap. While efforts exist on both
sides of the gap to capture something of the other side, significant challenges remain [12, 11, 6, 5].

To address this gap, we have developed the Information Flow Model (IFM) methodology, which
models socio-technical decision systems as flows of information. IFM represents information states
as sites and the transformations between them as channels, mapping how inputs are reshaped into
outputs and decisions. This provides a form of structural transparency: it makes visible how technical
operations and human judgments interact within the broader organizational process, and how biases
and responsibilities can propagate through these interactions to produce downstream impacts. In this
way, IFM models bridge the gap between technical and socio-technical approaches, as both model-level
metrics and higher-level organizational and stakeholder considerations can be connected and traced
across the same structural substrate.

Contribution. This paper presents a real-world case study applying the IFM methodology to
a recruitment process that combines AI-supported and human decision-making. We make three
contributions:

1. We demonstrate how IFM enables joint modeling of technical components (such as automated
matching systems) and surrounding social processes (such as recruiter interpretation and client
selection).

2. We show how structuring the decision process as flows of information through sites and trans-
formations supports systematic identification of where biases may be introduced, how they
propagate, and what impacts they may have on stakeholders.

3. We illustrate how the IFM bias impact analysis clarifies socio-technical structures of decision
systems, makes information dependencies explicit, and traces how roots of discrimination arise
and propagate across both algorithmic and human steps when the method is performed in a
participatory setting.

Taken together, the case highlights IFM’s potential as a pragmatic tool for system-level analysis and
design in real-world contexts.

Structure of the Paper The rest of the paper is structured as follows: Section 3 gives a brief technical
description of IFM. Section 4 gives a short methodological overview. Section 5 presents the results of
the use-case study, presenting information flow models and analysis of bias and impact. We discuss the
outcomes of the case-study and framework as well as directions for further study and development in
Section 6.

2. Background

The challenges of AI fairness and accountability are not defined by a single gap but by multiple
separations forming this abstraction gap. These include divergences of method, abstraction, and
perspective, which fragment the field into disconnected approaches that struggle to speak to one
another [11, 6].

Bridging the gap thus requires a combination of holistic, structural and situated perspectives. A
structural perspective connects decision-making, dependencies and consequences. A holistic perspective
gives an interconnected whole, not be just a collection of details, and ensures that the we are not creating
small framing traps [5, 7]. Finally, challenges and consequences are not high level principles but situated
in the context of particular stakeholders [6].



2.1. Related work and IFM

Impact assessments such as AIAs and FRIAs foreground governance, rights, and accountability, but stop
at the surface of system documentation and do not address how technical operations actually unfold
[7, 8]. Bias taxonomies and fairness metrics dissect sources of error and discriminatory correlations,
offering diagnostic precision yet failing to capture how distortions propagate through socio-technical
workflows [3, 4, 13]. Causal models do try to trace the dependencies within information, data and
outcomes, but they mostly work within the technical frame such as individual datasets rather than
the full socio-technical frame [14, 15, 16]. Process modeling traditions, including BPMN, UML and
FRAM, contribute structural descriptions of workflows and, in FRAM’s case, variability analysis across
socio-technical functions [17, 18, 19]. While these approaches do provide a structural account of
workflows and decision processes, they typically lack of holistic closure. They might model structures
piecemeal without semantics creating a continual connected whole, focusing on communicating some
functional details but not the full structure of decision making [18, 19]. These frameworks also remain
disconnected from fairness concerns and lack mechanisms for tracing how information dependencies
and biases link technical operations to stakeholder impacts.

Our proposed IFM methodology aims to address these separations not by replacing existing ap-
proaches, but by providing a structural substrate in which they can connect. At its core, IFM models
decision-making as networks of information sites and channels, where each transformation detail it’s
information dependencies and outputs. The IFM graph form a mesh which might be arbitrarily detailed
down to technical components but still span over the same socio-technical frame. Through paths can
be traced downstream to stakeholder impacts or upstream to structural causes. This structural mesh
ensures a combination of holistic closures and capture of technical properties.

While we will here present IFM in particular, the real intended strength of IFM is less as a stand-
alone tool and more as a connective framework, providing the scaffolding through which technical,
organizational, and stakeholder perspectives can meet in the middle, bridging the abstraction gap.

2.2. Situatedness and Participatory Approaches

Situatedness is essential in order to understand real consequences of unfairness such as particular
stakeholder impacts and the challenges involved to tackle these risks [5, 6]. This means we will not gain
much from modeling ’a recruitment system’ or ’a classifier’ as all such will be different, and embedded
differently as soon as you look at a real actual socio-technical system. Essential to approach the real
situated system is the inclusion of stakeholders and their contextual perspective [20, 21].

The IFM method employed in this paper and in general uses participatory methods, interviews and
workshops as the primary method to obtain a situated model capturing the dynamics and processes as
described and understood by those who interact with it, more than using system specification or other
objective descriptions.

Participatory approaches can be understood in several ways: as acknowledgment of the democratic
right to participate [20]; as recognition that no single stakeholder can adequately represent all perspec-
tives or knowledge systems [20]; and as appreciation of the impact that inclusive processes can have,
ranging from product improvements to improved community outcomes [21].

The landscape of participation is characterized by different levels and types [21], each serving distinct
purposes and offering varying degrees of stakeholder involvement. However, participation also presents
notable challenges that must be carefully navigated. Critically, participation washing - where the
participation of stakeholders are used merely to justify an otherwise obtained design or model - does
not constitute effective participation [20].

Understanding how to achieve effective participation is essential for meaningful engagement. It
is argued that for participatory design, risk mitigation, or audit processes, participants who do not
necessarily possess specialized technical skills must first develop sufficient understanding of the so-
ciotechnical system [20]. Researchers advocate for providing participants with contextual material
rather than technically dense documentation [22]. Additionally, beyond incorporating localized knowl-



edge, some scholars suggest that participants should develop an understanding of how AI systems are
embedded within broader sociotechnical contexts and how these systems interact with human users
[21].

With IFM we partly flip this perspective. The goal of the IFM modeling process is to understand
how potential AI components are embedded within the broader socio-technical system and it is not
necessarily so that anyone possess this understanding at the start of the modeling process. Instead each
stakeholder knows their own role, be it a technical role, a user or other stakeholder. The main aim of the
IFM participatory process is to let each stakeholder communicate their situated perspective and thereby
shape their part of the decision environment. An initial lack of understanding of the whole is not just
expected but informative, showing the role of potential transparency or explainability mismatches. As
modeling progresses the developed model shift towards being the object of the study, a role it can take
just to the degree is properly capture the situated perspectives of the involved stakeholders.

3. The Framework

Studying how decision-making occurs in socio-technical systems requires a clear and systematic repre-
sentation of how information flows through the decision process. The Information Flow Methodology
(IFM) offers a structured way to describe these processes, enabling the identification of potential biases
and the evaluations of how outcomes affect stakeholders. The IFM model was developed loosely inspired
by the works of Barwise [23, 24] and uses similar components.

This section provides a conceptual overview of the IFM and its core components (Section 3.1), followed
by descriptions on the two structured properties - bias and impact, in IFM (Section 3.3). A more in
depth treatment of the IFM method can be found in the IFM Methodological guide [25].

3.1. An Overview of the IFM Model

The IFM Model provides a detailed description of the decision-making process by specifying the
information available for each decision and the resulting outcome. This specification enables a thorough
analysis of the factors that might influence a decision outcome and how the resulting outcomes might,
in turn, impact other decisions.

The IFM consists of three primary components:

1. Sites: Represent the states or repositories of information within a decision process, such as inputs,
intermediate results, or outputs.

2. Channels: Represent the transformations, operations, or decisions that move information from
one site to another.

3. Networks: Represent sites and channels connected to form directed graphs, capturing entire
decision processes from initial inputs to outcomes.

Any decision process that begins with some initial information and ends with a decision can be
described using these elements. The decision process itself constitutes a network, each sub-decision a
channel, and the inputs, output decision, and any intermediate result would be sites.

Following this conceptual overview, we extend the model with a formal definition to enable more
rigorous analysis.

3.1.1. Formal Definition of the IFM Model

A Network 𝑁 =< 𝑆,𝐶, 𝑇𝑆 , 𝑇𝐶 , 𝒯 ,ℛ > where 𝑆 is a set of Sites representing sources of information, 𝐶
is a set of Channels representing directed transformations between sites. 𝑇𝑆 : 𝑆 → 𝑇 and 𝑇𝐶 : 𝐶 → 𝑇
are functions assigning types to sites and channels respectively. 𝒯 = (𝑇,≤𝑇 ) is a type system where 𝑇
is a set of type classes and ≤𝑇 is a partial ordering defining subtype relationships. ℛ is a set of inference
rules determining properties and relationships based on types.



A Site 𝑆𝑖 ∈ 𝑆 represents a source of information on which a decision can be made. While sites
are unique in 𝑁 , the information they contain can be further described by 𝑇𝑆 assigning them one or
more types. Types will be further described below and are not unique to a site. A Channel 𝐶𝑗 ∈ 𝐶
is a directed transformation between one or more input sites 𝐼𝑛(𝐶𝑗) ⊆ 𝑆 with one or more output
sites 𝑂𝑢𝑡(𝐶𝑗) ⊆ 𝑆. Like sites, channels are unique in 𝑁 but can be assigned channel types via 𝑇𝐶 or
inferred types via 𝑅.

A valid network 𝑁 forms a directed acyclic graph (DAG) where:

• A site in 𝑆 can be the output of at most one channel in 𝐶 .
• The output of a channel cannot serve as an input to an upstream channel (no cycles).
• 𝐼𝑛(𝑁) = {𝑆𝑖 ∈ 𝑆 | 𝑆𝑖 is not an output of any 𝐶𝑗 ∈ 𝐶}.
• 𝑂𝑢𝑡(𝑁) = {𝑆𝑜 ∈ 𝑆 | 𝑆𝑜 is not an input to any 𝐶𝑗 ∈ 𝐶}.
• 𝑀𝑖𝑑(𝑁) = 𝑆 ∖ (𝐼𝑛(𝑁) ∪𝑂𝑢𝑡(𝑁)) (intermediate outputs of 𝑁 ).

A network 𝑁 can be seen as an abstract channel 𝑁 : 𝐼𝑛(𝑁) → 𝑂 where 𝑂 ⊆ 𝑂𝑢𝑡(𝑁). Similarly,
any channel 𝐶 can be further defined as a network. This allows a network 𝑁 to be nested within
another larger network 𝑁 ′ where it participates as a channel. This nesting provides the possibility
of abstraction, as parts of large or complicated networks can be abstracted as channels representing
sub-networks. It also allows causal reasoning about the properties that networks have as channels.

3.2. Alternatives

Alternatives are used to represent uncertainty or options within the formal description. Alternatives
are defined as a set of possible values, possibly including the absence of a value (denoted ). Alternatives
will be denoted either by specifying the set of alternatives prefixed by a question mark "?", for instance
?{𝐴1, 𝐴2}, which denotes that 𝐴1 or 𝐴2 might apply, or by applying the ? operator to a symbol
𝐴? =?{𝐴, }, denoting that 𝐴 might not be present. While alternatives could be applied to any property
such as sites, channels or types, we will primarily handle them on a network level. A network or sub-
network containing alternatives represents multiple possible configurations, where each configuration
corresponds to one specific network without alternatives.

3.3. Bias and Impact

In the IFM model, both bias and impact are treated as structured properties of the modeled decision
process. They reflect different but connected forms of misalignment that may affect stakeholders or
violate regulatory norms and obligations.

Defintion of Bias, in this context, refers to a systematic deviation from the described function
of the decision process. Such biases might result in decreased accuracy through false positives and
false negatives and the effects might be limited or disproportionate to specific subsets of input, such as
favoring particular groups. Bias may propagate downstream through dependent channels and sites. If
its influence is halted or unused, the propagation path ends. Once bias is introduced in the information
flow it might spread downstream, towards outputs. Any downstream channel that depends on a biased
site can be treated as a potential proxy for that bias. Conversely, if biased information is not used further
or the bias is controlled, the propagation path terminates. This makes it possible to trace the scope and
effect of bias and mitigating efforts across the network, in a transparent and formally bounded way.

Definition of Impact here refers to the real-world normative consequences or risk thereof of
decisions, especially unintended harms affecting stakeholders or sub-groups. Impacts strongly relate to
bias as bias are sources of unintended decisions and information in the information flow, but harmful
impacts can be caused also by the system working as intended if the design have not taken risk-
mitigation into account. As impacts occur at the downstream ends of the DAG, understanding their
causes requires tracing their paths upstream towards contributing decisions and information. Where the
flow of bias downstream and the tracing of impact upstream intersect, the bias may a contributing cause
to the impact. Since some impacts only occur for particular subgroups, when analyzing contributing



paths we might need to follow identifiers or proxy variables connected to this sub-group through the
information flow. This determines if the proxy identifier contributes to the impact.

4. Method

To analyze fairness-relevant risks in an AI-supported recruitment process, we applied the Information
Flow Model (IFM) methodology[25]. The approach enables structured reasoning about how information
is represented, restructured, and filtered as it moves through human and algorithmic components of
decision-making. Our goal in this case study was to construct such a model grounded in semi-structured
interviews, and use it to identify potential sources of bias and trace their downstream impacts.

The recruitment process under analysis includes both manual and automated steps: recruiters
interpret client needs, generate or refine job descriptions, use AI-based matching tools to identify
candidates, and conduct interviews before forwarding recommendations to the client. These activities
involve multiple actors and complex collection and use of information — making it a particularly good
case for IFM modeling.

The methodology was applied in five main steps, adapted to the use-case:

1. Sketching the initial model. Three semi-structured interviews were conducted with stakehold-
ers (two recruiters, one developer). During the interviews, the two interviewers independently
produced informal sketches of the information flow based on the participants’ descriptions of
how decisions were made and what information was used. This interview process is intentionally
dynamic and focus on the areas which seems most relevant to both the participants and modelers.
Interviews also capture more general views of the stakeholders perspective which help greatly to
ground further analysis.

2. Formalization and refinement. The sketches were consolidated and refined channel per
channel. Channels were reviewed to ensure valid inputs, outputs, and other formal requirements.
This stepwise refinement leads to the creation of a formal IFM model. Studying each channel
obtained from the previous step one at a time helps to some degree in reducing modeler bias on
presumed understanding of the whole flow. If the step by step refinement runs into problems
this might prompt the need for additional interviews or reflect actual inconsistencies in need of
exploration.

3. Semantic typing and actor assignment. Each site and channel was annotated with semantic
types (e.g., list, sublist, unstructured description, etc.) and assigned responsible actors (client,
recruiter, AI system). Chanels are similarly typed into filtering, ranking, and abstraction and
assigned to sub-networks with semantic labels. Depending on what information is present it
might be useful to describe it further, such as what features are actually present in a dataset. In
other types a more abstract definition can be used to capture unstructured information. This
flexibility is used to facilitate a holistic perspective which might be difficult on a fixed abstraction
level.

4. Identification of potential bias. After understanding types and channel semantics, the model
was again reviewed, channel for channel, for transformations that could introduce problems or
bias. This step also involved taking existing mitigation mechanisms into account and noting them
down. Ambiguities and inconsistencies from the previous modeling process can be marked here
as potential sources of bias. Key on this step is that there is no detection of actual bias possible
here, from a structural account alone, instead it is the envelope of potential bias which is mapped
out - which is structurally dependent.

5. Analysis and tracing of Impact paths. Finally, in Section 6 we analyze whether and how
identified biases can propagate downstream to affect candidate outcomes. This is done by
establishing if there is a path between a potential source of discrimination or bias through the
information flow all the way to a stakeholder outcome. If such a path can be described, then there
is structural risk for this impact to materialize.



For a more in depth description on IFM, it’s parts and the methodology, see the IFM Methodological
Guide [25]. The results of the first four of these steps are presented in detail together with figures in
the following section, followed by step five in the following analysis and discussion section.

5. Results

This section presents the results from the interview study and following structural analysis.
As per Steps 1 and 2 of the IF methodology three semi-structured interviews were held with use-case

stakeholders. Two with recruiters and one with an internal software developer.

A summary of the recruitment process: From these interviews, a general picture of a workflow
emerged. With the help of outsourced recruiters, the client with vacancies to fill describes the vacancy
to recruiters who create a job description and technical requirements. The recruitment company then in
a Sourcing phase employs different ways to collect lists of potentially interested and suitable candidates
based on requirements. Recruiters search platforms such as LinkedIn for candidates and advertise the
job description on various websites. The recruitment company owns a database where candidates
register themselves if they are interested in being recruited, or get registered if they apply for a position
from another website. To search the database of candidates, the recruitment firm has an AI Matching
tool that matches the characteristics of candidates with the job requirements to provide a ranked list of
candidates. This list improves the efficiency of the recruitment assignment since there can be too many
candidates in the database and searching through filters does not provide holistic comparisons.

After the Sourcing phase begins the Screening phase. The Recruiter reviews the AI list to ensure
the results are valid. Depending on the number of open positions for the role, the recruiter selects
top-ranked candidates from the AI matching results and additional candidates from other recruitment
sources to proceed to the next step. The selected candidates are contacted by the recruiter, and those
who pass this initial screening advance to a more thorough interview to assess their skills. The final list
of candidates are presented to the client who selects the final candidates to get job offers.

5.1. Construction of the Information Flow

The information flow model was created following the methodology which is summarized in Section 4.
Step 1 of the methodology is about charting out the information flow which underlies the decision
process. This sketching was performed independently by two interviewers during the interview process.
These sketches — from each interviewer and from each interview — are then compiled together info
a collection of channels. Step 2 is about refining these channels so that they conform to the formal
definitions of the IFM, thereby creating the formal model. The models created are presented as two
figures and two tables, together describing three nested levels of decision making. Figure 1 describes
the decision process of the client, and embedded in this the decision flow of the outsourced recruitment
process. Table 1 gives more detail on each channel of the recruitment process marked in the figure as
(𝑎)− (ℎ).

Several AI tools are used at various points of the recruitment process, most prominently creating of
job-descriptions in channel (𝑎) and automatized candidate matching in channel (𝑏). In the interviews
we explored the AI Matching system, channel (𝑏) in more depth and we therefore present it in detail in
Figure 2 and Table 2 covering channels (𝑏1)− (𝑏6). The bare formal model is contextualized in Step 3
by assigning semantic types, roles and actors to sites, channels and sub-networks. The most relevant of
this information is shown in the tables and and figures.

As highlighted by the multi-abstraction-level representations in Figures 1 and 2 the information
flow model can be made very detailed or very abstract. The relevant level of analysis depends on the
questions which are to be explored. In this case these three levels adequately describe the most relevant
for our analysis of the recruitment process and their embedded context.



Figure 1: Overview of the recruitment process information flow corresponding to Table 1. The included
dashed green box displays the client process in where the channels a-g) is embedded. The channel AI
Match is further detailed in Figure 2.

Figure 2: More detailed overview of AI Matching, corresponding to Table 2.

# Transition Actor Sub-Network Potential Bias Impact

a Client AI Profile + Rec−−−−−−−−→ 𝑅0, 𝑅1, 𝑅2 Recruiter Client process Interpretation, Normalization I1, I2 (client, rec)

b 𝑅0,Candidate DB AI Match−−−−−→ 𝐶0𝑏 AI Sourcing Opacity, see Table 2 I3 (location)

c 𝑅0, 𝑅1, 𝑋
LinkedIn, other−−−−−−−−→ 𝐶0𝑐 Recruiter Sourcing Interpretation

d 𝑅2,Candidate DB DB search−−−−−→ 𝐶0𝑑 Recruiter Sourcing Interpretation (𝑅2)

e [𝑅0, 𝑅2], 𝐶0𝑏, 𝐶0𝑐, 𝐶0𝑑
Rec. filter−−−−−→ 𝐶1 Recruiter Screening Presentation

f 𝐶1
Call−−→ [𝑅2], Impression Rec. filter−−−−−→ 𝐶2 Recruiter Screening Interpretation (𝑅2)

g 𝐶2
Interview−−−−−→ [𝑅1, 𝑅2], Soft skills Rec. filter−−−−−→ 𝐶3 Recruiter Screening Interpretation (𝑅2)

h 𝐶3
Client Selection−−−−−−−−→ 𝐶4 Client Client process Interpretation, Presentation I1 (client)

Table 1
Recruitment system transitions with actor roles, biases, and downstream impacts

5.2. Analysis of Biases and Mitigation

By considering each channel one by one, we, as Step 4 of the methodology, consider what possible
biases could take part of the type of transformation the channel represents. Some channels, particularly
within the AI Matching system are designed with mitigation of bias in mind, and these are also noted.
We collect the information on potential biases in Table 1 and Table 2. In addition, we note some of these
biases below.



# Transition Inputs Operation Bias, (Mitigation) Impact

b1 DB Extract−−−−→ 𝐸𝐶 DB Candidate CVs Feature extraction Abstraction, (Normalization)

b2 ?R0, Vacancy Extract−−−−→ 𝐸𝑅 Job Description (R0) Feature extraction Abstraction, Opacity, (Normalization)

b3 𝐸𝐶,𝐸𝑅
Semantic distance−−−−−−−−−→ 𝑆1 Extracted profiles, requirements Semantic similarity scoring Misalignment

b4 𝐸𝐶,𝐸𝑅
Rule comparison−−−−−−−−−→ 𝑆2 Structured features Rule-based matching Rigidity

b5 𝑆1, 𝑆2
Weighted sum−−−−−−−→ 𝑆3 Scored components Aggregation via weighted sum Subjective heuristics

b6 𝑆3
Multiplier−−−−−→ 𝑆4 Aggregated score + context Heuristic adjustment Opacity, Subjective heuristics I3 (location)

b7 𝑆4
Top X−−−→ 𝐶0𝑏 Final scores Thresholding / ranking Score opacity, Exclusion

Table 2
Breakdown of AI Match process (zoom-in on transition b) with potential biases and impacts

5.2.1. Abstraction and Interpretation Biases

In each channel where unstructured or semi-structured information is to be abstracted and represented
there is a potential for information loss and distortion through abstraction. This type of abstraction
occurs at several stages of the process starting with a) when the Client’s vacancy is to be re-expressed
as a job description with appropriate technical requirements. While abstraction by itself can cause
systematic biases by missing features or systematic disregard of potentially important features, this
becomes of particular concern when interpretation is involved. Since this decision process is to a large
degree one of Recruiter judgment such interpretation can not be, and should not be, entirely avoided.
However, with interpretation comes potential for bias. Biased interpretation can concern on one side
information of candidates, and on another — more systemic — level information from the client. We
are highlighting the interpretation involved by tracking the comparison to 𝑅2, the recruiters personal
understanding of the client requirements as this is the main contrast in each of the more informal
filtering steps.

5.2.2. Presentation Bias

At several steps of the process, it is likely that the way information, otherwise similar, is presented
of included in the process affects how it is received and treated. These are marked as occasions of
presentation bias in Table 1 and 2. Of particular mention is that candidates sourced from different
pathways (AI Matching, DB-search, LinkedIn, personal contact, etc.) might be given different weight.
This is in particular an issue since the sourcing paths themselves are mainly dependent on different
information and might thereby shift the recruitment process towards or against more biased grounds
of selection. Another type of presentation bias exist as the handoff between the AI Match system and
the user — the Recruiter — where the user is presented a ranked list of results. The presentation of the
ranked list hides the distance in score between the highest and lowest scored possibly creating a false
impression of difference.

5.2.3. Transparency and Opacity

Recruiters lack access to the internal criteria and weighting used by the AI system, which may lead to
overconfidence or misinterpretation of rankings. As mentioned above, the absence of numerical scores
hides potential similarity between candidates. It also hides the working mechanism of the matching
from the user and prevents them to form an accurate mental model of it’s behavior. In interviews,
recruiters expressed that they primarily saw the tool as a search tool — while the developers primarily
saw it as a ranking tool. This difference ultimately reflects a different view on how it operates. Beyond
merely the results, the recruiters were also unaware that the tool discards their inputed job description
𝑅0 if there is a job description available from the client, here captured as Vacancy. Effectively this means
aspects of the recruiters own understanding 𝑅2 which influences 𝑅0 is prevented from influencing the
outputs of the AI Matching. We can see this as a opacity bias as it is a property causing an alternative
information flow (excluding 𝑅0 and 𝑅2) contrary to user expectations — thereby affecting the output.
This is marked as ?𝑅0 in Table 2 channel 𝑏2.



5.2.4. Mitigation through Normalization

Taking the opposite role of bias — reducing potential alternative information channels — there are
mitigative efforts incorporated in some channels. Just like with potential biases we cannot assume
these are effective without analyzing data, but we can note their presence and how their effects change
downstream effects, just like with bias. Most importantly we can use the presence of potential bias and
mitigation to analyze structural effects, which can inform design, assessment and addition of additional
mitigative efforts. There are three channels with explicit mitigative purpose in the modeled information
flow. Firstly we have the AI assisted creation of the job description in channel (𝑎). Here the tool
includes a bias detection tool working on the language of the job description. Further, with the aim
of reducing gender biases both candidates and job descriptions go through a normalization process
in channels (𝑏1) and (𝑏2) to remove gendered language from the comparison elements 𝐸𝐶 and 𝐸𝑅.
From the perspective of IFM, these normalization channels can be seen as targeted information loss —
to the degree they are effective. This means a gendered-language sub-feature(s) 𝑙𝑔 × (𝐷𝐵,𝐶𝑉 ) are
lost from downstream processing after the normalization to 𝐸𝐶 through (𝑏1). This does not mean all
potential proxies of gender is removed, but in order for them to remain, it must be possible to show an
information path from a feature 𝑔 to a proxy which is present in 𝐸𝐶 . We might also keep in mind that
key downstream channels, such as (𝑏3) operate particularly on language (through semantic distance
comparison between features of 𝐸𝐶 and 𝐸𝑅).

This concludes the construction of the information flow models for the use-case, and have covered
Steps 1-4 in the IFM methodology. In the next section we are going to show how this assist further
analysis of stakeholder impact.

6. Analysis and Discussion

In the previous section an information flow model spanning the use case and it’s context was presented.
Here we will explore how this structure can be used to analyze not just the properties of the decision
making itself, but also downstream effects on stakeholders, following Step 5 of the IFM methodology.

6.1. Analysis of Impacts

While Biases are properties of the decision process, Impacts must be considered in relation to the
affected stakeholders or subgroups thereof. In this analysis, we will primarily consider the candidates
and to what degree they might be unfairly treated or discriminated on protected characteristics or
otherwise. In order to do so, we begin with a list of possible discriminatory outcomes. and consider if
there are paths through the information flow model which contribute to these outcomes.

• O1: Gender-discriminatory hiring outcomes — An outcome in which one gender is systemat-
ically underrepresented in the final candidate list 𝐶4, despite equal underlying qualifications.

• O2: Exclusion of candidates with non-standard CVs or career paths — Candidates with
informal, nonlinear, or atypical backgrounds might be disfavored due to mismatches with formal
criteria.

• O3: Penalty for non-native language users — Candidates whose CVs or online profiles differ
linguistically from standard corpora are mismatched or undervalued during semantic comparison
or keyword extraction. Less recognized educational institutions or past employers might not be
recognized or valued by scoring mechanisms.

• O4: Location-based favoritism — Favoring of candidates from specific regions possibly linked
to protected status, i.e ‘redlining’ through biased scoring heuristics.

We now analyze whether the information flow model allows for such outcomes to emerge, and if so,
through which pathways. For each outcome, we identify a potential path from specific biases in the
system to discriminatory effects at 𝐶3 or 𝐶4. These traces represent feasible chains of information
distortion or exclusion that are not corrected before reaching decision points that affect candidates.



We will in this analysis take a deeper look at gender-based discriminatory impacts as an illustrative
example and then present the result of a similar approach to 𝑂2−𝑂4.

O1: Gender-discriminatory hiring outcomes

Gender-based discriminatory effects often originate in pre-existing societal or historical biases getting
reinforced by embedding into datasets, models or practices [6]. In this case, gender-based discriminatory
effects may enter through several parts of the process: the Client, the Recruiter, the Semantic Model,
or the Rule-Based Scoring. For discrimination to occur, gender (or a proxy for it) must be available
as information in the flow. In this case, such information can originate in the CV and in personal
interactions with the candidate (𝐶1, 𝐶2, 𝐶3).

Using the IFM, we can see that there are several possible pathways from these potential sources
towards the end result. Each of these paths form a potential scenario for impact (where the bias changes
the outcome). Below we consider them in turn:

• Client bias. If the Client holds gender preferences, these may influence requirements 𝑅0 or
the Recruiter’s understanding 𝑅2. While 𝑅0 is subject to mitigation through a bias-detector at
(𝑎), the Client’s final decision (ℎ) remains outside of control. Thus, even with a neutral process
(𝑎–𝑔), discrimination may still arise in the last step.

• Recruiter bias. If the recruiter is biased in their assessment of vacancy requirements, this will
manifest as a biased 𝑅2. This might for instance be caused by a recruiter trying to meet assumed
biased requirements of the Client, real or not. A biased 𝑅2 affects all downstream steps (𝑒), (𝑓),
(𝑔), since each evaluation of the candidate is conditioned on 𝑅2.

• Semantic model bias. Societal or historical gender associations may be embedded or enhanced by
semantic distance models. Here, however, in extraction for use in the AI Matching both candidate
information and vacancy-requirements (𝐶𝑉 → 𝐸𝐶 , 𝑅0 → 𝐸𝑅) undergo a normalization of
gendered terms and language. Conditional on the effectiveness of this mitigation, the path from
semantic bias to outcomes is closed.

• Rule-based scoring bias. Even after a language based normalization, proxies such as gaps in
employment history could encode gender differences (e.g., due to parental leave). In this case
however, interviews revealed that the AI matching does not evaluate or capture dates or durations
of employment history. This means information on employment gaps is not present. We therefore
treat this path as closed.

Conclusion: Conditional on the mitigation, since there are no unmitigated paths, we see no reason
to believe the AI Matching is discriminatory on gender. There are, however, several direct routes to
gender-based discrimination through the Recruiter and, externally, the Client — and these paths are
entirely unaffected by the three mitigative efforts.

O2: Exclusion of candidates with non-standard CVs or career paths

Nonlinear or atypical career paths could in principle disadvantage candidates if the matching system
penalizes gaps or deviations from standard trajectories. However, in this case the AI matching does
not evaluate time or continuity of employment. Instead, non-standard paths simply provide more
opportunities for positive matches across skills and experiences. Thus, no structural path from career
irregularities to discriminatory impact is identified within the AI matching. As before, possible bias
remains through the Recruiter’s interpretation (𝑅2) or the Client’s evaluation (ℎ).

O3: Penalty for non-native language users

Candidates using non-standard linguistic forms or with CVs from less recognized institutions might be
disadvantaged if the semantic model fails to normalize input or if employers or educational institutions
are weighted against each other. Here, however, the extraction 𝐶𝑉 → 𝐸𝐶 do not capture employer or



institution names, merely job-titles. No active path of discrimination can therefore be found within the
AI matching itself. Bias could still enter through the Recruiter’s interpretation (𝑅2) or at the Client’s
final decision stage.

O4: Location-based favoritism

Location information plays a special role in the rule-based scoring, where distance to the employer
directly modifies the weighted score. This favors candidates from metropolitan or industrial regions
over those from less populated areas. While not discriminatory on protected features in itself, the
structural effect of distance based scoring can intersect with socio-economic or demographic patterns,
leading to geographically correlated disadvantage e.g redlining-like effects. Unlike 𝑂2 and 𝑂3, this path
remains open within the AI matching and may contribute to location-based discriminatory impacts. Of
special note is that this location based scoring is by design, even though potential structural interaction
with demographic patterns are not.

6.2. Summary of Impact Paths

Three fundamental impact pathways are detected within the IFM, which are not affected by mitigating
efforts. Overlapping paths relating to several outcomes have been combined.

I1: 𝐶3 : Presentation
Biased Client (h)−−−−−−−−−−→ 𝐶4 𝑂1, 𝑂2, 𝑂3

I2: Vacancy
Biased Recruiter (a)−−−−−−−−−−−→ [Biased R2] 𝐶1, [𝑅2]

(𝑔)−−→ 𝐶2, [𝑅2]
(ℎ)−−→ 𝐶3

Client−−−→ 𝐶4 𝑂1, 𝑂2, 𝑂3

I3: EC, Weighted score
Location Multiplier−−−−−−−−−−−→ 𝐶0

(𝑒)−(ℎ)−−−−−→ 𝐶4 𝑂4

These downstream impacts I1-I3 are noted in Table 1 and 2 for each channel.
The above argument around outcomes 𝐼1− 𝐼3 and 𝑂1−𝑂4 does not mean that there are no other

harmful or discriminatory outcomes.

6.3. Reflections on the Analysis

The analysis highlights, in line with [5, 6] that fairness in deployed systems is not solely a matter of
local model-properties but an emergent property of how information is transformed, abstracted, and
acted upon across organizational layers and ultimately how it actually affects stakeholders. The case
illustrates that mitigation embedded within the AI system may successfully remove some paths of
discrimination, while parallel pathways might reintroduce or maintain harmful patterns.

With regards to the AI system the analysis revealed only one - unmitigated - direct path from the
AI Matching to discriminatory outcome: the location based scoring modifier. This heuristic strongly
favors candidates living close to employers, which can correlate with socio-economic or demographic
segregation. Our recommendation from the study was therefore to re-examine this rule by either
removing it, tailoring it to vacancy type and location, or testing its effects through simulations on
synthetic or real data. This would help avoid unjustified forms of localization bias.

However, the analysis points to risks of an explainability mismatch. If the AI tool only provides a
list of candidates, recruiters may treat it as authoritative without questioning its heuristics. Interviews
with recruiters show several misunderstandings on how the tool actually operates. A more transparent
strategy would be to provide recruiters with the tool’s sub-scores alongside the answers. This would
allow them to, if desired, critically evaluate AI results, spot errors, and align their understanding of the
automated outputs with their own professional judgment. It would also reduce opacity in accountability
pathways by making explicit how particular features contribute to candidate evaluation.

While the analysis found most pathways of discrimination in the AI Matching blocked by mitigation,
it was also showed that these mitigative mechanisms within the AI system, such as normalization steps,



remain largely ineffective to address potential social sources of bias. This includes the bias check on 𝑅0
which was explicitly designed to capture social biases, but is largely sidestepped by recruiters’ intuitive
understanding of requirements (𝑅2).
𝑅2 can still carry and reproduce biased assumptions, regardless of the AI Matching or mitigation. To

counteract this, socio-technical mitigative measures are necessary. Guidelines on gender equality in the
selection process, supported by follow-up monitoring or logging, could strengthen accountability and
embed mitigation within organizational practice. Structuring recruiter reasoning and tracking decision
patterns over time may further support fairness monitoring and, ultimately, more equitable outcomes.

While this was outside the scope of this paper and not explored in the above analysis, the IFM model
can also be used to show that not all decision steps carry equal weight for the final outcome. From
the information available at each step we can strongly suspect that the channel (e) Recruiter selection
and the channel (h) Client selection will carry stronger weight than the other steps, just because these
channels are less structured with a larger variation and with many alternatives - detected and not
detected. These steps will therefore combine high decision weight and low accountability. It might be
hard to address the behavior of the client, but it is possible to put additional structure or follow-up
mechanisms around channel (e).

6.4. Validation and Limitations

The case study also provided validation of the IFM framework. When presented back to use case-holders,
the model was perceived as accurate and illuminating, clarifying their own processes better than existing
documentation. Stakeholders reported that they intend to use the material for internal education and
for highlighting socio-technical origins of bias. In post-study reflections, the model was also seen
as a useful pedagogic tool, capable of raising awareness and structuring internal discussions about
fairness and accountability. In our validation interviews, it has also surfaced that stakeholders felt the
participatory method itself was both helpful and educational in that it created reflection and overview,
even before seeing the final model. These reactions confirm that IFM can support not only technical
redesign but also organizational learning and governance.

At the same time, the limitations of the study must be acknowledged. Most notably, candidates were
not interviewed, meaning that the analysis of impacts is necessarily more speculative than the modeling
of decision structure, bias, and mitigation. The IFM model also remains interpretive, depending on the
fidelity of stakeholder accounts and the perspective of the modeler. Feedback from external stakeholders
highlighted the importance of explicitly attending to intersectional discrimination and modeler bias,
suggesting that additional methodological scaffolding is needed to ensure robustness and inclusivity in
future applications.

6.5. Situatedness and Participation

A recurring critique of AI ethics is the tendency to produce abstract taxonomies of fairness problems
without sufficient connection to practice [9, 11]. Fairness metrics, bias taxonomies, and governance
templates argue for high-level principles in the abstract but fail to specify how such issues manifest in
concrete socio-technical contexts [5, 6, 12]. One of IFM’s central strengths is that it situates fairness
concerns within the concrete structure of decision-making. By modeling how information flows between
technical components and human actors, the framework makes clear that not all general problems are
equally contextually relevant: some are structurally blocked, others tied to specific decision points and
actors. This contextualization both narrows the problem space and connects, or dissolves, abstract
concerns to concrete impacts and mitigation strategies.

The participatory process of building the IFM model is key to this situatedness. Each stakeholder
brings a partial and localized perspective — developers know technical functions, recruiters know their
practices, external representatives know broader risks — and these fragments are connected through
the modeling process into a coherent structural account. Thus, the resulting model embodies both the
situated perspectives of stakeholders and the structural relationships between decision steps. This dual



role allows the model to function as a shared artifact for reflection, bridging the gap between abstract
fairness discourse and concrete socio-technical practice. Taken together, the case study shows how
IFM bridges the abstraction gap through its structural representation of decision-making, its holistic
coverage of technical and social components, and its grounding in situated stakeholder perspectives.

7. Conclusion

This case study demonstrates how information flow modeling can be used to identify, trace, and
contextualize fairness risks in socio-technical decision processes. Applied to a real-world recruitment
setting, the framework made visible how biases may emerge and propagate across both automated and
human decision steps. By explicitly modeling information structure and transformation, it enabled
a unified analysis of technical mechanisms and organizational practices—offering a practical tool for
increased socio-technical transparency and contextually grounded fairness assessment.

Beyond the case itself, IFM complements traditional algorithmic performance and fairness tools by
providing the contextual layer often missing in real-world applications. Its structural, holistic, and
situated approach helps connect abstract fairness concerns to concrete system behaviors and stakeholder
impacts.

Looking ahead, IFM lends itself to further development in several directions. Scenario modeling
with alternatives could support exploration of what-if configurations and their consequences. In
addition, formal representation of bias and mitigation as structural substitutions would enable systematic
comparison of system designs and mitigation strategies. Together, these extensions would strengthen
IFM’s role in comparative audits and compliance evaluations, and link fairness analysis more directly to
risk- and safety-oriented assessments under frameworks such as the EU AI Act.
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