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Abstract

We introduce a neuro-symbolic verification framework that challenges the conventional trade-off between
accuracy and explainability by maintaining model precision while enabling formal verification or explanation for
the majority of decisions. Rather than attempting to verify an entire neural network - often computationally
intractable — we train it to decompose its decision boundary into smaller, verifiable submodels, allowing for partial
coverage with Reduced Ordered Binary Decision Diagrams representations. This ensures rigorous verification for
the majority of cases, while acknowledging and identifying cases that remain unverifiable.

Our method allows us to formally analyze over 94% of decisions in standard benchmarks without sacrificing
accuracy. Additionally, our system is designed to identify cases where a decision cannot be formally verified,
ensuring that uncertain predictions are flagged for human intervention or additional scrutiny. This guarantees
that Al-driven decisions remain not only precise and explainable but also trustworthy. Our approach provides
a scalable and practical solution for deploying safe, accountable, and formally verifiable Al, offering a new
verification pathway where accuracy and interpretability are simultaneously achievable rather than being at
odds.
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1. Introduction

The widespread adoption of Artificial Intelligence (Al) and Machine Learning (ML) in critical applications
(such as healthcare, finance, and autonomous systems) has created a growing demand for trustworthy
and verifiable Al. However, modern machine learning models, particularly deep neural networks
and complex ensemble methods, often function as black boxes, making their decisions difficult to
interpret or formally verify. This lack of explainability and verifiability is a major concern in high-stakes
environments, where erroneous or unverifiable predictions can lead to severe consequences.

Existing explainability and verification methods typically rely on post-hoc interpretability techniques
[1, 2], inherently interpretable models such as decision trees [3, 4, 5, 6, 7, 8], or formal methods using
Boolean circuits [9, 10] and logical reasoning approaches [11, 12, 13]. While these methods offer insights
into model behavior, they fail to scale when applied to large, high-dimensional models, limiting their
practical use in real-world Al systems. Thus, a long-standing challenge in Al verification is the apparent
trade-off between accuracy and explainability, leading to the belief that highly accurate models must
remain opaque and unverifiable. We challenge this notion by demonstrating that formal verification
and explainability can be achieved without degrading performance but by accepting to only partially
covering explainable decisions. Rather than attempting to verify an entire neural network — which is
often computationally infeasible - we train it to decompose its decision boundary into smaller, verifiable
submodels, leveraging an Reduced Ordered Binary Decision Diagram (ROBDD) representation of neural
network submodules. In practice, our goal is to ensure that a vast majority of decisions can be formally
verified or explained, while cases that cannot be verified are explicitly identified.

To do so, we introduce a hierarchical verification structure, where approximation networks, trained
alongside the main model, are able to provide formal guarantees for most decisions while allowing
complex, unverifiable cases to be flagged for additional control. We use a neuro-symbolic [14] approach
with an hybrid model combining Neural Networks and ROBDD representations, enabling efficient
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logical reasoning over neural network submodules. ROBDDs are particularly attractive for verification
because they allow polynomial-time queries over Boolean functions, enabling efficient verification of
logical constraints, bias mitigation, and adversarial robustness properties. Our ROBDD representation
is based on prior work [9, 10], which considers neural networks as Boolean circuits, and extends it using
binarized neural networks [15] on submodules, thanks to decision boundary decomposition [16]. We
ensure that a majority of decisions (over 94% on some examples as we will see) can be formally verified
(i.e. are decided by a submodule represented as a ROBDD), while maintaining full model accuracy. This
new approach challenges the traditional trade-off between accuracy and explainability by offering a
new pathway for verification. Interestingly, our system is capable of identifying cases where a decision
cannot be formally verified, ensuring that uncertain predictions are flagged for human intervention
or additional scrutiny. This selective verification mechanism makes Al systems more reliable and
trustworthy, particularly in safety-critical applications.

The remainder of this paper is structured as follows. Section 2 examines the limitations of existing
formal verification methods for neural networks. Section 3 introduces our approximation-based ver-
ification framework, detailing how smaller submodels constrain the overall decision space. Section
4 presents experimental results demonstrating that our approach preserves accuracy while allowing
a significant proportion of decisions to be formally verified. Finally, we conclude by discussing the
implications of our findings and potential future research directions.

2. Neural Networks Accessible to Formal Verification

Our approach applies formal verification (FM) to neural networks (NNs) by expressing them as Boolean
circuits [9, 10]. However, for any formal method to be applicable, the Al model must first be expressed
in a suitable formalism, close to propositional logic for FM, and, more importantly, must remain of
manageable size. In our framework, we assume that a neural network (or one of its submodules)
is verifiable if it can be expressed as a ROBDD. This assumption is motivated by the computational
properties of ROBDDs, which allow efficient polynomial-time verification of Boolean functions within
the Knowledge Compilation Map [17]. Unlike standard neural networks, which function as opaque
black-box models, ROBDDs enable logical and constraint-based reasoning over decision functions. This
makes them a powerful tool for formal Al verification.

Once expressed as an ROBDD, a (binarized) neural network allows for precise formal verification
queries that are otherwise infeasible in conventional deep learning models, for instance bias elimina-
tion (ensuring that protected attributes such as gender or ethnicity do not affect predictions), safety
verification in autonomous systems (guaranteeing that the Al model does not enter unsafe states under
any possible input configuration) and even adversarial robustness. However, despite these advantages,
applying ROBDDs to large-scale neural networks remains highly challenging. Converting a neural
network into a ROBDD may have a time complexity of O(n! - n? - 2”2) and may result in a BDD of size
0(2”2) (for a special family of function) [6] (Table 1), making it computationally infeasible for relatively
small networks, and preventing its use in practical deep learning systems. Additionally, the process of
binarizing neural networks to fit into a Boolean circuit framework is itself a challenging task. Previous
studies [9] have highlighted that even when using binarized neural networks (BNNs) [15], the resulting
Boolean structure remains too large for direct formal verification methods. The challenge, therefore,
is not only in expressing neural networks as Boolean circuits, but also in managing the explosion of
state-space complexity that arises during this transformation.

To address this scalability issue, we introduce approximation networks, which allow us to reduce
the complexity of the ROBDD conversion while preserving the benefits of formal verification. Instead
of verifying the full neural network, our approach selectively trains smaller subnetworks, designed to
approximate specific decision boundaries while remaining tractable for ROBDD representation. These
approximation networks act as verifiable surrogates, covering a large proportion of decisions that can
be formally verified, while leaving only a limited set of complex cases unverifiable. By structuring the
decision boundary in this way, we enable partial but scalable verification, ensuring that the majority



prev_layer < layers_obdd[0]
p_vars <— prev_layer[0].vars
for each layer of layers_obdd[1:] do
res_layer < []
for each obdd of layer do
res_bdd <— obdd.compose(obdd.vars, prev_layer)
res_bdd.vars < p_vars
append(res_layer, res_bdd)
prev_layer < res_layer
return prev_layer

Layer 2

©

Figure 1: Algorithm combining a list of ROBDDs representing a neural network into a single ROBDD (left), and
an example of a binarized neural network (right).

of Al decisions remain provably correct while explicitly flagging uncertain cases for further scrutiny.
This approach provides a practical pathway for integrating formal verification into modern Al systems,
balancing computational feasibility with the need for rigorous, logic-based guarantees in machine
learning models.

2.1. Evaluating the Complexity of Neural Network Compilation

While it is possible to train a network directly in its binarized form, this often leads to optimization
challenges due to the non-differentiability of the binarization function. Therefore, in practice, BNNs
are usually trained using floating-point weights and activations, and then binarized afterward for
compilation purposes. Binarized NN have binary inputs and outputs, but floating-point weights and
biases. We use an activation layer between each fully connected layer that implements the threshold
function 2.1. This ensures that every neuron input and output is binary, either 1 or 0 (f(z) = 1 if x >
0 otherwise 0). The binarization by itself is not particularly computationally expansive (if we accept to
loose precision). The main challenge is to be able to "compile” a BNN into a ROBDD, in order to use
formal verification on it.

During the training phase, the activation layers function as sigmoid activations, facilitating faster
training. The compilation method follows these steps: first, each layer is processed sequentially,
considering one neuron at a time, based on the algorithm of [5]. Each neuron is then converted into
an ROBDD, expressed in terms of the outputs of the previous layer or the input features for the first
layer. Then, by replacing the previous layer’s outputs with the corresponding BDD, a single BDD is
generated, representing the neural network’s output in terms of the input features (see Algorithm 2.1).

This algorithm can be illustrated using the example of a binarized neural network in Figure 1: we
sequentially express the outputs (h1, ha, hs, hy) of the first layer with inputs (i1, i2, ¢3), and the output
(01) of the second layer with the outputs (h1, ha, h3, hy) of the first layer. At the end of the algorithm, a
single BDD will be constructed, representing the output in terms of the inputs.

Table 1

Compilation time for compiling a neural network into an ROBDD. Top: The NN is a fully connected layers of
size (Input Size, 10) and (10, 1), and Input Size is varying. Bottom: The NN is a fully connected layers of size (15,
Hidden Layer Size) and (Hidden Layer Size, 1), and Hidden Layer Size is varying.

Input Size 5 10 15 20 25

Average Time (s) | 0.018 | 0.18 | 3.54 | 102.5 | 2693
Number of Runs | 1000 | 500 | 250 100 10

Hid. Layer Size 5 10 15 20 25
Average Time (s) | 0.80 | 3.39 | 18.40 | 115.3 | 956.8
Number of Runs | 500 | 250 100 50 10
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Figure 2: Model with a neural network and multiple approximation networks

Unfortunately, Table 1 illustrates our measured growth in computational cost required to rewrite
a binarized neural network based on its size (also reported in [6]). In conclusion, while several prior
approaches have attempted to address this problem, compiling a neural network into an ROBDD suitable
for practical formal verification remains a major computational challenge (our network has only one
hidden layer!).

3. Coverage of a Neural Network Model by Approximation Networks

We propose a novel structured verification approach that overcomes the limitations discussed earlier by
integrating a logical layer that connects multiple neural networks, with controlled sizes. Our approach
replaces a single large neural network with a Global Model that integrates multiple approximation
networks (see Figure 2). Each approximation network is trained to capture a verifiable subset of
decisions, while we expect the main neural network to remain responsible for handling more complex
cases. The final prediction, denoted as ¥/,r¢q, is computed as ypreq = max(x1, 2, ..., Tn, Tnn), Where
x; represents the output of an approximation network and x,, is the output of the main neural network.
This architecture ensures that if any approximator is confident in its decision, the final model prediction
is immediately verifiable. If no approximator provides a decision, the main neural network takes over,
handling more intricate cases that may not be directly verifiable.

The intuition behind our idea is to build on Decision Boundary Decomposition. We take advantage
of the fact that many real-world decision boundaries are locally simple but globally complex: while
the global decision boundary may be highly complex, many local subregions are governed by simple,
well-separated decision rules. This phenomenon aligns with the Pareto principle, where (typically)
80% of the decision complexity arises from only 20% of cases. Our aim is to exploit this structure by
assigning verifiable approximation networks to low-complexity regions, while more intricate cases are
handled by the main neural network. This design follows a Pareto-like pattern, where the majority of
decisions fall into simpler, verifiable subregions, significantly improving formal verification feasibility.

Note that, in the current work, we focus on explaining positive decisions (cases where the model
responds "yes" or "1"), using the max function to capture verifiable subsets. While our framework is



currently designed for positive predictions, generalizing it to both "yes" and "no" decisions (0/1 outputs)
is a natural extension and remains an ongoing area of research.

3.1. Guarantees on Explainability and Bias through Decision Composition

Since the final decision inherits the properties of at least one approximator when it takes precedence, we
can ensure global model properties by controlling the behavior of its subcomponents. If all approximators
are designed/proved to be fully explainable or bias-free, any decision one approximator covers will also
be explainable at the global level: let’s suppose that approximator x; satisfies a given formal property ¢
(e.g., fairness, monotonicity, adversarial robustness), then for any input X where z;(X) = 1, we can
guarantee that the Global Model also satisfies ¢ on that input, since

ypred(X) = max(xl(X)vl‘Q(X)’ .. al‘n(X)vxnn(X)) > l‘l(X)

For example, consider the case of fairness and explainability, where we construct multiple approxima-
tion networks that adhere to a specific constraint: “The decision must not be influenced by the individual’s
gender” Our decomposition of the decision-making process across multiple approximation networks
(each one enforcing this fairness constraint) ensures that any decision made by one of these modules
inherently satisfies the condition at the global level. If these approximation networks are trained to
cover all positive cases, the fairness property extends to the entire model, guaranteeing that all decisions
made by at least one approximator remain unbiased.

3.2. Training Strategies for the Global Model

To effectively integrate approximation networks into the global model, different training strategies
may be proposed. One approach is sequential training, where approximation networks are trained
first to handle simpler decisions before training the main neural network to focus on more complex
cases. This method encourages approximation networks to learn the most verifiable decisions, im-
proving explainability. Alternatively, simultaneous training allows all components to be trained
together, ensuring consistency between models, though it may limit the effectiveness of approximation
networks in capturing simple cases independently. Another option is independent training with
post-integration, where each component is trained separately and later combined through the logical
layer. This last method is only used in Section 4 as it is not relevant for the current experiment (each
component is independently trained with classical methods that do not need to be studied here).

Gradient Propagation through the Max Layer For each of these methods, we also consider two
different gradient propagation strategies through the max layer: ALL and MAX. The ALL method
distributes the gradient to all inputs, while the MAX method propagates the gradient only to the
maximum value. These methods may impact the performance of the global model, particularly in terms
of coverage and accuracy.

Loss Function To optimize the training process, we employed a range of ad hoc loss functions in a
preliminary study. The loss function that yielded the best results is a weighted binary cross-entropy
function (see eq. 1), where p is a penalty applied to class 1. When the expected label is 0 but the predicted
label is 1, the loss is p times larger than in the opposite case. The idea is to penalized submodules that
wrongly predict class 1 (because the decision will be irrevocable): it is better for submodules to have a
false negative, that can be recovered by the large NN.

L=—(p-(1-y) log(l—z)+y-log(x)) (1)

Using this loss function provided better results compared to standard binary cross-entropy, particu-
larly in terms of recall for class 0 and precision for class 1. However, this approach led to a reduction
in precision for class 0 and a decrease in recall for class 1. Increasing the penalty p results in higher



confidence in class 1 predictions but at the expense of reduced coverage (for example, setting p = 25
often results in a model predicting only class 0). A suitable value must be chosen to balance precision
and coverage (see below).

3.3. Tuning hyper-parameters on the Diabetes Dataset

We based our experimental study on all the available benchmarks on [18] for fairness that fitted our
prerequisites. To adjust and test different scenarios for backpropagation mechanisms, loss functions
and training methods of the different NNs within the global model, we first conducted a preliminary
study on a simple and well-known simple tabular example: the "Diabetes" dataset [18, 19] (8 features
and 2 classes). We used a model composed of 3 approximators and 1 neural network, trained with 100
runs of 500 epochs. The results of this preliminary study are presented in Table 2. The second step
(section 4) is a more comprehensive study on additional datasets, using only the best method from this
preliminary step, which will be presented in the next section.

The evaluation metrics used in our study include several key measures to assess the performance of
the global model and its components. Model Coverage refers to the accuracy of the global model when
predicting positive cases (class "1"). Approximator Coverage measures the accuracy considering only
the predictions made by the approximator network. Relative Coverage represents the proportion of
positive predictions made by the global model that are also predicted by the approximator, computed
as the ratio of approximator coverage to model coverage (%). Neural Network Coverage
reflects the accuracy of the large neural network, though a lower value does not necessarily indicate poor
performance, as the network is designed to handle only complex cases. Additionally, Approximator
Misclassifying Zeros quantifies the percentage of false positives for class 1, capturing errors where the
approximator incorrectly predicts a positive outcome. Finally, Global Model Accuracy accounts for
the overall accuracy of the model across both classes, providing a global measure of system performance.

Table 2

Comparison of class 1 metrics for the two gradient propagation methods through the max layer. For
this experiment, a model composed of 3 approximators and 1 larger neural network was used (Diabetes
dataset, 100 runs, 500 epochs, p=2).

. Sequential | Simultaneous
Training Method ALL T MAX T ALL T MAX
Model Coverage 0.81 | 0.66 | 0.81 0.70
Approximator Coverage 0.72 | 0.66 | 0.73 0.24
Relative Coverage 0.89 | 1.00 | 0.89 0.34
Neural Network Coverage 0.63 | 0.00 | 0.34 0.50
Approximator Misclassifying Zeros | 0.27 | 0.26 | 0.34 0.56
Global Model Accuracy 0.73 | 0.70 | 0.73 | 0.71

The results of this preliminary study are presented in Table 2. We observe that the ALL method
performs best. However, it is quite surprising to see that the Simultaneous method also provides strong
results. The main difference is seen in the incorrect classification of zeros by the approximator. This
metric is particularly important because if an approximator incorrectly classifies a 0 as a 1, the large
neural network will not be able to correct this decision, regardless of its size.

The Table 3 shows the results of the same experiment, but with different penalties applied to class
1. We can see that the best results are obtained with a penalty of 2, which provides a good balance
between precision and recall for both classes.

4. Experimentation on Additional Datasets

We selected datasets containing tabular data and providing binary classification problems and we
binarized their features that may be originally boolean, floating-point, or categorical. We included the
datasets Compas ([20]), Diabetes ([19]), Titanic ([21]), and Adult ([22]), taken on [23]. Each dataset has



Table 3
Comparison of results obtained with different penalties applied to class 1 (Diabetes dataset, 100 runs, 500 epochs,
sequential training with N approximator).

Precision Recall
Penalty N | Fi-score Class 0 | Class1 | Class0 | Class 1
p=1 (BCE) 1 0.69 0.73 0.69 0.67 0.73
p=2 1 0.70 0.69 0.73 0.74 0.68
p=5 1 0.73 0.70 0.79 0.82 0.65
p=10 1 0.62 0.65 0.57 0.88 0.46
p=25 1 0.34 0.51 0.01 1.00 0.01
p=1(BCE) | 3 0.69 0.75 0.68 0.59 0.80
p=2 3 0.72 0.77 0.71 0.65 0.81
p=5 3 0.72 0.69 0.79 0.82 0.64
p=10 3 0.66 0.67 0.65 0.86 0.53
p=25 3 0.34 0.50 0.01 1.00 0.02

different feature dimensions and levels of binarization. They covers the main benchmarks available
on the Fairness dataset [18]. The Compas dataset: 13 features, which expand to 18 binarized features,
F1-score of 0.66 with a neural network. The Diabetes dataset: 8 features, increasing to 29 binarized
features, F1-score of 0.76. The Titanic dataset: 7 features, which are transformed into 16 binarized
features, yF1-score of 0.85. The Adult dataset: 14 features, expanded to 113 binarized features, F1-score
of 0.81. An extensive search on Kaggle and other ML repositories was conducted to identify the most
promising solutions and were selected for comparison (Table 4). This Table demonstrates that our
approach yields very good results. Our method achieves F1-scores close to those of the other two
methods, but, as we will see, it has the advantage of being able to provide explanations for and formally
verify a large portion of positive predictions (75% in the worst-case dataset studied (Compas) and 94%
in the best case (Adult). The worst case results (Compas) may be disappointing (75% of the positive
predictions can be explained) but this is already a huge improvement compared to the 0% of overall
neural network used as state of the art.

Precision Recall Precision Recall
Dataset | F1 —=5——Cc7 1o [ & Flo—o T ¢ [coci
Compas 0.65 | 0.64 | 0.68 | 0.71 | 0.61 .. | 0.66 | 0.65 | 0.68 | 0.71 | 0.62
Diabetes | 0.73 | 0.73 | 0.74 | 0.76 | 0.71 .. | 075|075 | 0.77 | 0.77 | 0.74
Titanic 0.80 | 0.77 | 0.84 | 0.85 | 0.75 .. | 0.80 | 0.78 | 0.82 | 0.84 | 0.76
Adult 0.80 | 0.82 | 0.79 | 0.78 | 0.83 .. | 0.82 | 0.83 | 0.81 | 0.81 | 0.83
Precision Recall

Dataset F1-Score

Co C1 Co C1

Compas 0.65 0.66 | 0.66 | 0.65 | 0.66
Diabetes 0.72 0.77 | 0.71 | 0.65 | 0.81
Titanic 0.77 0.79 | 0.77 | 0.75 | 0.79
Adult 0.78 0.87 | 0.73 | 0.66 | 0.90

Table 4
Perfomances of state of the art Neural Network (100 runs) Upper Left; Random Forests (100 estimators) Upper
Right; and our method (100 runs, 500 epochs, 3 approximators, sequential training, p=2) Lower.

One limitation of our current work is that, for simplicity, both the neural network and the approxi-
mators are trained with binarized datasets, which decrease the performances of the large NN (we are
working on this point). Our final observation concerns how the different neural networks are trained.
The Table 5 shows that sequential and separate trainings are the best methods for covering most of
the cases with approximation networks. Between these two methods, sequential training appears to
yield slightly fewer misclassifications and a better coverage than separate training. As for simultaneous
training, it generally results in significantly more "0" misclassifications and lower coverage. Additionally,



Table 5
Comparison of multiple training processes for a model containing 1 or 3 approximators and a neural network,
evaluating performance on class 1. (p=1.2, average of 100 runs, 500 epochs per run)

Dataset | Model 1 Approx. + NN 3 Approx. + NN
Training Method Seq. | Simult. | Sep. | Seq. | Simult. | Sep.
Adult Model Coverage 0.88 0.83 0.92 | 0.91 0.84 0.97
Adult Approx. Coverage 0.83 0.29 0.84 | 0.88 0.41 0.96
Adult Relative Coverage 0.94 0.34 0.91 | 0.97 0.49 0.99
Adult Approx. Misclassified Zeros | 0.26 0.58 0.26 | 0.28 0.44 0.32
Adult Model Precision 0.77 0.80 0.78 | 0.77 0.80 0.75
Compas | Model Coverage 0.62 0.58 0.65 | 0.70 0.60 0.70
Compas | Approx. Coverage 0.47 0.34 0.47 | 0.61 0.40 0.61
Compas | Relative Coverage 0.75 0.57 0.72 | 0.87 0.64 0.87
Compas | Approx. Misclassified Zeros | 0.28 0.46 0.28 | 0.36 0.45 0.33
Compas | Model Precision 0.66 0.66 0.66 | 0.63 0.66 0.65
Titanic Model Coverage 0.75 0.75 0.78 | 0.78 0.79 0.82
Titanic Approx. Coverage 0.60 0.56 0.61 | 0.74 0.68 0.76
Titanic Relative Coverage 0.80 0.75 0.78 | 0.95 0.86 0.93
Titanic Approx. Misclassified Zeros | 0.15 0.13 0.16 | 0.23 0.22 0.26
Titanic Model Precision 0.78 0.79 0.77 | 0.76 0.77 0.74
Diabetes | Model Coverage 0.79 0.77 0.82 | 0.81 0.84 0.91
Diabetes | Approx. Coverage 0.69 0.66 0.68 | 0.79 0.79 0.89
Diabetes | Relative Coverage 0.87 0.86 0.83 | 0.97 0.93 0.98
Diabetes | Approx. Misclassified Zeros | 0.32 0.22 0.31 | 0.26 0.30 0.38
Diabetes | Model Precision 0.71 0.74 0.71 | 0.70 0.73 0.67

using the sequential or separate training methods allows for easy extension at a later date by adding
new approximation networks. Another advantage is the ability to change the loss function for each
part of the global model, unlike the simultaneous method, which does not easily support this flexibility.

5. Discussion

The increasing deployment of neural networks in critical domains highlights the importance of formal
verification. As these models are often used in safety-critical or ethically sensitive settings, providing
guarantees about their behavior is essential. Formal methods, such as compilation into decision
diagrams, offer a promising path for analyzing and reasoning about the internal logic of neural models
in a principled and rigorous manner. One of the main advantages of ROBDDs lies in their ability to
efficiently count models, which can be leveraged to assess fairness criteria—such as balancing positive
outcomes across protected groups—through exact counting.

Our approach, however, is not limited to neural networks. In principle, other interpretable approx-
imators could be used, such as decision trees or small random forests. These models are inherently
explainable and can sometimes yield more compact logical representations. Nonetheless, random forests
are more difficult to integrate into end-to-end differentiable pipelines and typically lack the flexibility
needed for tasks such as knowledge distillation or joint optimization with other components.

By contrast, using a neural network as the approximation module offers significantly more modeling
freedom. Neural networks can be trained jointly with other subsystems, fine-tuned for specific down-
stream tasks, and serve as targets for distillation from larger, more accurate models. This enables a
hybrid strategy in which a complex model is first trained for accuracy and then distilled into a smaller,
verifiable architecture.

Thus, retaining a neural representation—even if it is eventually binarized for compilation and not
trivially amenable to formal analysis—provides greater flexibility in the learning pipeline. It supports a
wider range of optimization strategies while still enabling formal guarantees through the compilation
step.



An additional benefit of our approach is that it enables the integration of symbolic prior knowledge
through knowledge compilation [17]. Logical rules or domain-specific constraints can be encoded
directly into ROBDDs and composed with the compiled neural network. This makes it possible to
combine learned behavior with formally verified knowledge, yielding a hybrid system that is both
data-driven and constraint-aware. Such integration can be particularly valuable in domains where
certain properties must hold by design (e.g., legal compliance, physical laws), and supports reasoning
tasks such as consistency checking, abduction, or symbolic inference over the compiled knowledge
base.

One final point of discussion concerns a limitation of our current work: we only target positive
decisions. To overcome this, we are investigating the use of the ROBDD from the current approximator
as a routing mechanism. Specifically, the 1/0 output would indicate whether to delegate the input to a
specialized approximator—for handling multiple classes—or to the main neural network. In this setting,
the router functions as a selector, determining whether a given instance is sufficiently simple to be
handled by an auxiliary component, or requires the full capacity of the original model. Our preliminary
results suggest that this routing strategy could achieve similar levels of coverage while extending the
approach beyond binary classification.

6. Conclusion

The goal of our proposed method is to enable formal verification of simple cases decided by neural
networks, which can be processed by reasonably sized subnetworks. We demonstrate that it is possible
to integrate a small neural network within a larger neural network model in such a way that if any of
the small networks decide "Yes" for a given decision, the global model will also decide "Yes". We show
that even on non-trivial examples, very small neural networks (NNs) can capture a high proportion of
decisions for which formal verification or explanation can be performed efficiently.

While our results demonstrate that up to 94% of decisions can be formally verified, there remain
important limitations. The subset of unverifiable decisions (ranging from 6% to 25% depending on
the dataset) may correspond to more complex or edge-case scenarios, potentially requiring additional
scrutiny. Furthermore, our approach relies on a binarization step that can lead to feature explosion,
especially in datasets with continuous variables. Future work will explore hybrid approaches combining
our method with adversarial training techniques to improve coverage in high-complexity cases.

A key advantage of our method is its ability to identify unverifiable decisions—cases where the
approximation networks fail to provide a provable answer—allowing these instances to be flagged for
further scrutiny. In other words, our approach ensures that the system "knows when it doesn’t know",
a crucial property for safe and trustworthy Al deployment.

Looking forward, a natural extension of this work is to explore knowledge distillation as a means to
apply our approach to existing neural networks (instead of training the approximator at the same time).
By systematically transferring knowledge from the larger model to smaller, verifiable networks, we
could refine the decision boundary decomposition even further, maximizing the proportion of formally
verifiable decisions. Additionally, extending this framework to handle both "yes" and "no" decisions,
and integrating it with adversarial robustness techniques, could further enhance its applicability in
real-world Al deployment. We also want to study the exact nature of the cases that remain unverifiable.
Are they edge cases, adversarial examples, or ambiguous samples?

By bridging the gap between machine learning and formal verification, this work paves the way for
scalable, explainable, and provably reliable Al systems. This contributes to the broader goal of building
trustworthy and accountable artificial intelligence.
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