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Abstract
In the context of algorithmic decision-making, fair machine learning methods often yield multiple models
that balance predictive fairness and performance in varying degrees. This diversity introduces a challenge for
stakeholders who must select a model that aligns with their specific requirements and values. To address this, we
propose an interactive framework that assists in navigating and interpreting the trade-offs across a portfolio
of models. Our approach leverages weakly supervised metric learning to learn a Mahalanobis distance that
reflects similarity in fairness and performance outcomes, effectively structuring the feature importance space of
the models according to stakeholder-relevant criteria. We then apply clustering technique (k-means) to group
models based on their transformed representations of feature importances, allowing users to explore clusters of
models with similar predictive behaviors and fairness characteristics. This facilitates informed decision-making
by helping users understand how models differ not only in their fairness-performance balance but also in the
features that drive their predictions.t
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1. Introduction

Ensuring that machine learning systems not only excel in predictive accuracy but also uphold equi-
table treatment is crucial, especially in high-stakes domains where decisions can profoundly impact
individuals’ lives. Over the past decade, algorithmic fairness has emerged as a critical consideration,
aiming to ensure models do not disadvantage protected groups (e.g. by gender or race) [1]. Numerous
quantitative fairness definitions have been proposed, such as demographic parity, equalized odds, and
predictive parity, but these criteria often cannot all be satisfied simultaneously [2]. Developers thus
face fundamental trade-offs between model fairness and performance: improving a fairness metric
usually degrades accuracy or violate another fairness notion. As a result, achieving “fair” machine
learning is inherently a multi-objective problem that requires context-dependent value judgments [2].
This challenge is intensified by the complexity of real-world data and biases, making fairness an active
and complex area of research.

Organizations seeking to implement decision-making algorithms frequently encounter significant
technical challenges. Bridging fairness research to practice remains difficult, as existing fairness mitiga-
tion algorithms, ranging from pre-processing data transformations to in-processing model constraints
and post-processing outcome adjustments [1], have not fully translated into user-friendly tools for
organizations. Therefore, there is an urgent need for human-centered frameworks to support fair
decision-making within applied contexts. Stakeholders such as domain experts, policymakers, or model
auditors need to understand the trade-offs involved in selecting one model over another. For instance,
different classifiers or hyperparameter settings can yield comparable overall accuracy yet produce signif-
icantly varied fairness outcomes [3]. One model might maximize predictive accuracy while exhibiting
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higher bias against a minority group, whereas an alternative model may sacrifice a small amount of
accuracy for a more equitable distribution of errors. Choosing among these models requires not only
technical evaluation but also alignment with broader societal and stakeholder values. However, without
dedicated support, it is challenging for decision-makers to fully understand these trade-offs, particularly
when multiple fairness metrics and model behaviors must be compared simultaneously.

In many cases, decision-makers are presented with a collection of models that embody different
fairness–performance trade-offs, rather than a single “best” solution. Systematically exploring and
comparing a large set of models is non-trivial since it can be overwhelming to evaluate dozens of
models across multiple fairness and performance metrics, particularly when each model may rely
on different features in subtle ways. Existing visualization tools, such as Fairlearn’s dashboard [4]
and IBM AI Fairness 360 [5], typically focus on individual models or isolated fairness-performance
trade-offs, limiting the stakeholders’ capacity to understand the complete landscape of available models
simultaneously.

In contrast, our framework arranges models in a two-dimensional fairness–performance space and
overlays clusters derived from their transformed feature-importance profiles. By grouping models
whose decision logic reflects similar feature attributions, we surface archetypes whose behavior aligns
with particular domain hypotheses or known causal relationships. Stakeholders can therefore choose not
only based on a cluster’s position in the fairness–performance space, but also because its characteristic
feature-importance signature resonates with organizational policies or domain expertise.

2. Related Works

In this section, we review core algorithmic approaches for enforcing fairness in machine learning,
interpretability techniques that shed light on model behavior, and interactive visualization tools that
support human-centered model comparison.

Fairness in Machine Learning.
Ensuring fairness in predictive models has been the focus of extensive research, yielding various defini-
tions and mitigation strategies [1]. Broadly, fairness interventions are categorized as pre-processing
(altering training data), in-processing (altering the optimization algorithm), or post-processing (altering
model outputs) [1]. Our work concerns in-processing techniques that directly build models capable of
achieving different fairness-performance trade-offs. One line of research adds fairness constraints or
objectives into model training. For example, Agarwal et al. (2018) [6] formulate fairness-constrained
classification as a series of cost-sensitive learning tasks, finding a model with minimal error subject to a
fairness constraint. This reductions-based approach can enforce criteria like demographic parity or
equalized odds by adjusting weights on training examples, and it has become a general blueprint imple-
mented in toolkits (e.g. Microsoft’s Fairlearn library implements this strategy [4]). Another approach is
to design custom learning algorithms that inherently balance accuracy and fairness. Barata et al. (2021)
[7] introduce a splitting criterion for decision trees that combines ROC AUC with a fairness measure
(strong demographic parity) during each split. By optimizing a trade-off of fairness and performance at
training time, it produces decision trees that are interpretable and explicitly designed to achieve specific
fairness-performance trade-offs. [7]. In practice, data scientists must often adjust a hyperparameter
(such as the fairness penalty strength or a target constraint value) to get a model that achieves an
acceptable balance. This tuning yields multiple candidate models along a continuum from highest
accuracy to highest fairness, rather than a single optimal solution.

Interpretability and Fairness Analysis.
Common post-hoc interpretability techniques include feature importance measures and instance-
level explanations. SHAP values [8] have become a popular choice for explaining complex models
because they provide consistent and theoretically grounded attributions for each feature’s influence on
a prediction. Specifically, SHAP uses cooperative game theory to calculate the marginal contributions



of each feature by considering all possible subsets of features. In the context of fairness, SHAP and
related methods have been used to diagnose which features might be contributing to bias. For example,
Cabrera et al. (2019) [9] used subgroup analysis and feature attributions to discover that certain features
caused disproportionate errors for specific demographic subgroups. Another common approach to
feature importance is permutation importance [10], an intuitive technique where a feature’s values
are randomly shuffled to see how much model error increases. This provides a global ranking of features
by their influence on model performance.

Interactive and Human-Centered Tools for Model Selection.
The What-If Tool (WIT) from Google’s PAIR initiative [11] allows users to visualize classification
metrics, manipulate test inputs, and compare outcomes across different models in a dashboard inter-
face. Other tools like Fairlearn’s dashboard (by Microsoft) [4] and IBM AI Fairness 360 [5] provide
visualizations of fairness metrics, but these generally focus on assessing one model at a time or adjust-
ing single-model thresholds, such as classification decision boundaries. In the research community,
visualization systems such as FairSight [12] and FairVis [9] have explored ways to involve end-users
in fairness auditing. FairSight provides a comprehensive visual analytics workflow to understand,
diagnose, and mitigate biases in ranking decisions. FairVis, on the other hand, helps users discover
intersectional biases by comparing subgroup performance within a single model. However, these
existing methods often lack the capability to simultaneously visualize multiple models comprehensively,
limiting stakeholders’ ability to effectively compare diverse fairness-performance trade-offs. Our ap-
proach addresses this gap by providing stakeholders with a visualization framework that facilitates
comprehensive comparison across an entire set of candidate models and allows focused exploration of
specific model aligned with stakeholder priorities.

3. Clustering Fair Learners

Our proposed framework is designed to help stakeholders navigate and interpret fairness-performance
trade-offs within a large set of predictive models. The methodology integrates three core components:
(1) weakly supervised metric learning based on fairness-performance proximity, (2) a feature importance
transformation using this metric, and (3) clustering models based on transformed feature importance
profiles. Below we provide a detailed description of each stage.

We begin by assuming the availability of a diverse set of models produced by fairness-aware learning
methods with varying fairness-penalty settings 𝜃 (e.g., classifiers trained with fairness constraints, or
hyperparameter tuning). Each model 𝑚 is characterized by:

• A predictive performance metric perf (e.g., accuracy, AUC),
• A fairness metric fair (e.g., demographic parity or equalized odds),
• A vector of feature-importance scores x𝑚 ∈ R𝑃 (e.g., SHAP [8] or permutation importances [10]).

Since, we need a way to characterize models in terms of their inferencing behavior; feature-importance
values serve as a proxy for this, offering interpretable profiles of how each feature influences predictions
and empowering decision-makers to justify their model selection based on feature usage patterns.

3.1. Weakly Supervised Metric Learning

Clustering raw feature-importance vectors directly using a Euclidean distance metric is inadequate, as
it assumes all dimensions are equally informative and comparable in scale. In practice, some feature-
importance dimensions capture critical distinctions in model behaviour, while others contribute only
noise; treating them uniformly can obscure meaningful structure. Moreover, disparities in variable scale
can dominate distance computations, yielding groupings that reflect arbitrary scale differences rather
than stakeholder-relevant similarities in fairness–performance trade-offs. Consequently, we propose



structuring the model space through weakly supervised metric learning, making the stakeholders’
viewpoint on model similarity clearer and more explicit.

We consider the fairness-performance space as representative for the perceived nearness of models
to the decision-maker. Therefore, by learning a suitable transformation of feature-importance vectors,
we produce an embedding where proximity directly corresponds to similarity in fairness–performance
trade-offs. Consequently, models that achieve similar balances of accuracy and fairness are embedded
close together, facilitating meaningful grouping and interpretability. Conversely, models with sub-
stantially different positions in the fairness–performance space are pushed apart in the transformed
space, while those sharing a similar trade-off remain clustered. Specifically, we employ Information-
Theoretic Metric Learning (ITML) [13] to learn a Mahalanobis distance. ITML’s information-theoretic
formulation yields a positive-definite, well-conditioned metric under flexible constraints, avoiding trivial
identity-matrix solutions and slow convergence issues common to alternative methods [14].

Pairwise Constraints from Fairness-Performance Space
To guide metric learning effectively, we establish weak supervision through pairwise constraints
derived from the joint fairness-performance space. Specifically, we first calculate pairwise Euclidean
distances between all models based on their positions in the fairness-performance space. We empower
stakeholders to explicitly define thresholds that characterize which models are considered similar
or dissimilar in their specific decision context. In our implementation, similarity and dissimilarity
thresholds are explicitly set (e.g., 0.05 and 0.2, respectively) to directly reflect stakeholder preferences
regarding model similarity in terms of fairness and performance trade-offs.

Pairs of models whose transformed distances are below the similarity threshold (e.g., 0.05) are
labeled as similar, whereas pairs exceeding the dissimilarity threshold (e.g., 0.2) are labeled dissimilar.
Given potential imbalances between the counts of similar and dissimilar pairs, we enforce balance by
subsampling from the larger set, resulting in equal representation of both constraint types.

Metric Learning via ITML
Leveraging the established pairwise constraints, we employ ITML to learn a Mahalanobis distance
metric represented by the positive-definite matrix M. ITML optimizes a LogDet-regularized objective,
ensuring robustness even with noisy or sparse constraint data. Formally, the Mahalanobis distance
between two feature-importance vectors x𝑖 and x𝑗 under this learned metric M is computed as:

𝑑𝑀 (x𝑖,x𝑗) =

√︁(︀
x𝑖 − x𝑗

)︀T
𝑀

(︀
x𝑖 − x𝑗

)︀
,

where M is the learned positive-definite Mahalanobis matrix [15]. Intuitively, ITML learns a tailored
distance measure to align better with user-defined similarity constraints, effectively emphasizing or
de-emphasizing certain feature differences based on the provided weak supervision. Unlike standard
Euclidean distance, which treats all feature differences equally, ITML adjusts the scale and correlation
between features, ensuring models that stakeholders perceive as similar in fairness–performance trade-
offs appear closer, while models with contrasting trade-offs are pushed further apart. This targeted
adjustment facilitates more meaningful and interpretable clustering outcomes. In implementation, ITML
(metric-learn) is trained on balanced sets of similar/dissimilar pair constraints; zero-distance pairs in the
original feature-importance space are excluded, and an identity prior with max_iter=600 is employed.

3.2. Clustering in the Learned Space

Using the learned metric to transform the original feature importance vectors, we systematically
organize models into clusters that reflect coherent and interpretable fairness-performance profiles. In
our experiments, we employ k-means clustering to partition the transformed model space. Because
the ITML transformation produces a Mahalanobis space in which similarity constraints tend to form
roughly spherical groups [13], k-means is particularly well-suited to capture these cluster shapes
efficiently and interpretably. Specifically, it is used with k-means++ initialization, n_init=10 restarts,



and a fixed random_state=42; for each 𝑘 we retain the run with the lowest within-cluster sum of
squares (inertia). While alternative techniques (e.g., hierarchical clustering, DBSCAN, or Gaussian
mixture models) could be explored, k-means aligns directly with our spherical-cluster assumption.

Selecting the optimal number of clusters is essential but inherently challenging, given the complexity
and variability of real-world data distributions. Extensive comparative studies emphasize that no single
internal cluster validation index (CVI) consistently outperforms [16]. Each CVI inherently biases towards
specific cluster characteristics—some favor compact, spherical clusters, whereas others better handle
elongated or irregularly shaped clusters. As a result, relying on a single CVI often yields conflicting
recommendations for the optimal number of clusters [16].

Composite Validation for Optimal 𝑘 Selection
To address this challenge robustly, we implement a composite validation strategy leveraging multiple
internal CVIs to determine the optimal number of clusters. Specifically, for each candidate number of
clusters (𝑘 ∈ {3, . . . , 20}), we evaluate clustering solutions using the following complementary indices:

• Silhouette Score [17], which for each point measures how much closer it is to points in its own
cluster than to points in the nearest other cluster, and then averages over all points, capturing
the average cohesion versus separation.

• Calinski–Harabasz Index [18], defined as the ratio of between-cluster dispersion to within-
cluster dispersion, reflecting the global compactness and separation of the partition.

• Davies–Bouldin Index [19], which computes for each cluster the maximum ratio of the sum of
its intra-cluster scatter to the inter-cluster separation with its most similar cluster, then averages
these maxima, quantifying the average worst-case cluster similarity.

• Dunn Index [20], taking the minimum inter-cluster distance divided by the maximum intra-
cluster diameter, emphasizing the worst-case separation relative to cluster tightness.

Each metric thus highlights a unique perspective: Silhouette focuses on point-level cohesion, Calin-
ski–Harabasz on overall dispersion ratios, Davies–Bouldin on penalizing clusters that are too alike,
and Dunn on guarding against poorly separated clusters. To integrate their strengths, we standardize
(z-score) each metric across all 𝑘, invert Davies–Bouldin so higher is better, and compute

composite(𝑘) = 𝑧Sil(𝑘) + 𝑧CH(𝑘) + 𝑧DB(𝑘) + 𝑧Dunn(𝑘) (1)

𝑘* = argmax
𝑘

composite(𝑘). (2)

4. Experiments

In this section, we empirically validate our proposed interactive framework for clustering and interpret-
ing fairness–performance trade-offs across predictive models and datasets. Specifically, we investigate
how effectively our weakly supervised metric learning approach organizes models into meaningful
groups, assess the interpretability of resulting clusters, and examine the robustness of our methodology
across different datasets and fairness-aware learning methods.

4.1. Setup

Datasets
We evaluate our proposed method on UCI Machine Learning Repository datasets [21] that exemplify
fairness-sensitive decision-making tasks. First, the Adult dataset which is used to predict whether
an individual’s income exceeds $50K per year; the sensitive attributes considered are race, gender, and
age. Second, the Bank Marketing dataset is employed to predict whether a client subscribes to a
term deposit following a marketing campaign, with age treated as the sensitive attribute. Both datasets
include a mixture of numerical and categorical variables.



Fairness-Aware Methods
We evaluate our clustering framework using two representative fairness-aware learning methods, each
parameterized by a hyperparameter that controls the fairness-performance trade-off.

The FairTree Classifier (FTC) [7] is a decision-tree algorithm that optimizes splits based on a
compound criterion (SCAFF ) combining predictive performance (ROC AUC) and fairness with respect
to strong demographic parity (SDP). FTC introduces an orthogonality parameter Θ ∈ [0, 1], defined as:

SCAFF = (1−Θ) · ROC-AUC +Θ · SDP,

where Θ = 0 corresponds to maximizing pure predictive accuracy and Θ = 1 enforces maximal fairness
by prioritizing sensitive-attribute parity. SDP is computed by, for each sensitive attribute (for example
race, gender, age) and for each of its categories, measuring a one-versus-rest disparity score and then
taking the worst-case (minimum) parity across all attributes and groups.

The Fair Logistic Regression (FLR) method [6] formulates fair classification as a constrained
optimization problem, solvable via Lagrangian duality. The method integrates fairness constraints
through Lagrange multipliers 𝜆, which are regularized by an ℓ1-norm bound 𝐵 ∈ [0,∞):

‖𝜆‖1 ≤ 𝐵.

The parameter 𝐵 controls the fairness–performance trade-off: 𝐵 = 0 enforces the strictest fairness
(often at the expense of accuracy), while larger values of 𝐵 progressively relax the constraints. In our
experiments, we sweep 𝐵 over an exponential grid {0.01, 0.1, 1, 10, 100} to generate a continuum of
models analogous to the linear Θ sweep in FTC. In both datasets, we treat a single protected attribute
(marital status for Bank Marketing, gender for Adult), so all fairness constraints apply to that variable.

Metrics and Evaluation
As described in Section 3, each candidate model is characterized by user-specified predictive performance
metrics (e.g. accuracy, ROC AUC, etc.), fairness metrics (e.g. strong demographic parity, equalized odds,
etc.), and feature-importance measures (e.g. SHAP values, permutation importances, or alternative
attribution methods). Cluster validity is assessed through the composite score in Equation 1, and the
optimal number of clusters is selected according to Equation 2.

4.2. Results

We illustrate key results from our methodology using the Adult dataset with the Fair Tree Classifier
(FTC) as a representative example. In our main analysis, we employ the multi-attribute variant of FTC,
which enforces simultaneous fairness across all protected dimensions by computing strong demographic
parity (SDP) for each sensitive attribute (race, gender, age) and then taking the worst-case SDP value
as the model’s fairness score. Detailed results for additional setups are provided in Appendix A: FTC
run in single-attribute mode on Age, Gender, and Race in the Adult dataset, and FTC run in both
multi-attribute and single-attribute (Age) modes in the Bank Marketing dataset.

Transformation Diagnostics
After learning the Mahalanobis metric 𝑀 = 𝐿⊤𝐿, we first inspect 𝑀 itself to ensure it departs from
the identity and exhibits meaningful off-diagonal structure. Next, we verify that the transformation
preserves local neighborhoods while reshaping global distances by plotting a “distance change” heatmap:

Δ𝑑𝑖𝑗 = 𝑑before𝑖𝑗 − 𝑑after𝑖𝑗 ,

with models ordered by increasing fairness penalty 𝜃. Deep blue cells, which appear primarily off the
main diagonal, show that ITML contracts originally distant pairs, whereas near-white diagonal entries
indicate minimal movement for already-close pairs. This confirms that our embedding reshapes global
relationships to reflect fairness–performance proximity while keeping local neighborhoods intact (see
Appendix A.1.1).



To visually isolate the specific impact of our learned Mahalanobis metric (independent of how 𝑘 was
chosen), we now fix 𝑘 = 5 in both the raw and transformed feature-importance spaces. Figure 1 shows
side-by-side maps using the same 𝑘, directly comparing cluster overlap before and after metric learning.
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Figure 1: Side-by-side comparison of 𝑘 = 5 cluster assignments in fairness–performance space using
(left) raw feature importances versus (right) Mahalanobis-transformed importances. The learned metric
reduces cluster overlap, making group boundaries much clearer.

Clustering and Model Grouping
We determine the optimal number of clusters (𝑘) using our composite validation approach. For the
Adult dataset (FTC), composite validation scores identify an optimal 𝑘 = 5 (Table 1).

Table 1
Composite validation metrics for varying 𝑘 on FTC–Adult dataset (Top 5 by composite score)

𝑘 Silhouette (↑) Calinski–Harabasz (↑) Davies–Bouldin (↓) Dunn (↑) Composite Score (↑)

5 0.80750 4344.64 0.31823 0.17496 1.57026
3 0.81735 3001.11 0.24495 0.04214 0.70524
4 0.76866 5502.35 0.34604 0.02173 0.28692
19 0.59900 12639.69 0.44825 0.04806 0.23102
20 0.59943 13133.71 0.49047 0.05723 0.21167

As shown in Table 1, our composite validation score peaks at 𝑘 = 5 with a value of 1.57026, indicating
that partitioning the FTC–Adult model space into five groups yields the best overall balance of cohesion
and separation under our four criteria. Although the Silhouette (0.81735) and Davies–Bouldin (0.24495)
indices both favour 𝑘 = 3, and the Calinski–Harabasz index reaches its maximum at 𝑘 = 20 (13 133.71),
the Dunn index attains its highest value at 𝑘 = 5 (0.17496). By averaging the z-scored metrics, the
composite score for 𝑘 = 5 substantially exceeds the next best configuration (𝑘 = 3, 0.70524), validating
a robust and stable choice of 𝑘 that balances compactness and separation across diverse criteria.

We further observe that each individual index exhibits known biases, as Calinski–Harabasz tends to
increase monotonically with 𝑘 [22], the Silhouette score suffers from shape bias [17], Davies–Bouldin
presumes equal cluster sizes and densities (reducing reliability on imbalanced or non-spherical clusters)
[19], and the Dunn index is highly sensitive to outliers [23]. By integrating all four measures into a
single composite score, we leverage their complementary strengths while mitigating these individual
drawbacks, resulting in a more reliable clustering choice.



Clustered Fairness–Performance Map
Using the optimal 𝑘 determined by our composite score, we visualize the final clustering in the
Mahalanobis-transformed feature-importance space. Figure 2 shows the models arranged in the fair-
ness–performance plane, coloured by cluster membership. In this transformed space, models form
clear, banded groups along the Pareto frontier: intra-cluster distances are contracted for models shar-
ing nearly identical fairness–performance balances, while inter-cluster distances are expanded for
those with divergent trade-offs. This configuration yields well-separated archetypes whose feature-
importance signatures directly align with stakeholder-relevant criteria, greatly simplifying the selection
of representative models.
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Figure 2: Cluster assignments in the Mahalanobis-transformed feature-importance space (optimal
𝑘 = 5), plotted in the fairness–performance plane. Distinct clusters highlight clear trade-off archetypes.

It is worth mentioning that this clustering approach aims to create groups of models with similar
fairness–performance trade-off characteristics. By clustering in the space of feature importances (rather
than directly on fairness or accuracy metrics), we capture how different models achieve their results. For
example, some models may achieve high performance by heavily weighting certain predictive features,
while others may sacrifice using those features to satisfy fairness constraints. The ITML step ensured
that the clustering is not overly sensitive to scale differences and that relevant variations in feature
importance (which might correlate with fairness behavior) are taken into account.

Cluster Homogeneity and Trade-off Profiles
Table 2 summarizes, for each of the five clusters in the FTC–Adult model space:

• Size (𝑛points): number of models in the cluster,
• Total variance: sum of the individual feature importance variances computed as the sum of

variances across all feature dimensions, i.e.,
∑︀𝑃

𝑗=1Var(𝑋𝑗), where 𝑋𝑗 represents the importance
values of the 𝑗𝑡ℎ feature for models within the cluster. This metric indicates the overall spread
and homogeneity of feature attribution patterns within each cluster,



• Mean fairness and mean performance: average fairness and performance of the models in the
respective cluster(±SD).

Lower total variance implies more homogeneous feature-importance profiles within a cluster, while the
fairness/performance averages locate each group along the accuracy–fairness frontier.

Table 2
Cluster metrics with total variance, Performance (mean ROC AUC±SD), and Fairness (mean SDP±SD).

Cluster 𝑛points Total Variance Performance (±SD) Fairness (±SD)

0 59 0.000016 0.5489± 0.0820 0.9621± 0.0815
1 36 0.000027 0.7649± 0.0356 0.7979± 0.0645
2 36 0.000086 0.8891± 0.0030 0.4614± 0.0214
3 15 0.000308 0.8938± 0.0010 0.3376± 0.0198
4 54 0.000112 0.8964± 0.0011 0.1953± 0.0500

Table 2 reveals a pronounced stratification of model behaviours along the fairness–performance
frontier. The first two clusters exhibit very low internal variance and represent stable strategies: Cluster
0 achieves near-perfect fairness with minimal predictive power, while Cluster 1 balances high fairness
with moderate accuracy. Clusters 2 through 4 trace a smooth progression toward greater accuracy at the
expense of fairness, with Cluster 3 standing out for its notably higher feature-importance heterogeneity,
indicating that comparable trade-offs can be reached via diverse feature-use patterns, whereas Cluster 4
consistently attains the highest accuracy and lowest fairness with relatively uniform profiles. Together,
these summaries offer stakeholders both clear trade-off points and insight into the consistency of
underlying model behaviors.

Cluster-Level Feature Attribution
Figure 3 presents side-by-side boxplots of the same set of nine features—ordered by their overall mean
SHAP importance across all clusters (relationship, marital-status, capital-gain, occupation, education-
num, hours-per-week, capital-loss, workclass), so that relative differences in feature use are directly
comparable.

The boxplots reveal a smooth progression in feature reliance along the fairness–accuracy continuum.
In cluster 0, models under the strictest fairness constraints exhibit near-zero SHAP values across all
nine predictors, effectively reducing their behavior to a nearly constant-output strategy that avoids any
meaningful feature influence. This phenomenon aligns with theoretical results showing that perfect
fairness criteria can force classifiers into trivial, constant predictions to eliminate disparity [24]. In other
words, these models guarantee perfect fairness by making nearly identical predictions for everyone,
but in doing so they lose almost all ability to distinguish between different outcomes.

The next cluster shows modest yet consistent emphasis on educational and economic indicators,
notably education-num and capital-gain, reflecting cautious use of those features under moderate
fairness constraints. As models begin to trade off more accuracy for fairness, socio-demographic
attributes such as relationship and marital-status assume greater median importance and display wider
dispersion, with occupation and education-num contributions also broadening, a sign of more varied
feature-use patterns emerging in these mid-range accuracy clusters. At the accuracy extreme, models
amplify the influence of relationship, marital-status, and capital-gain, and uniquely integrate gender
and age, two sensitive attributes, into their predictive processes. This reliance on these attributes, while
boosting predictive performance, raises critical questions about disparate treatment and underscores
the necessity analysis. Together, these evolving feature-importance signatures illuminate how different
fairness–performance trade-offs leave distinct imprints on model behavior, guiding stakeholders toward
archetypal classifiers that best align with their ethical and operational priorities.
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Figure 3: Per-cluster boxplots of the top eight average SHAP feature importances. Each subfigure
shows one cluster, with identical vertical scales to facilitate cross-cluster comparison.



4.3. Fairness–Performance Trade-off Implications for Stakeholders

Below we characterize five model archetypes, each corresponding to a distinct segment of the fair-
ness–performance spectrum and differing in the coherence of their feature-importance profiles (see
Table 2, Figure 2, and Figure 3). By focusing on these archetypal groups, stakeholders such as regulatory
bodies, ethics review boards, or model-selection committees can identify model sets that align with
their specific fairness–performance requirements, without needing to evaluate each individual model.

Maximal Fairness, Minimal Predictive Power Archetype (Cluster 0).
Cluster 0 achieves maximal SDP (≈ 0.9621± 0.0815) by uniformly ignoring input features, yielding
trivial classifiers (ROC AUC ≈ 0.5489±0.0820) that exhibit near-zero SHAP values across all predictors.
Such models satisfy stringent fairness criteria but provide almost no discriminatory capability.
Stakeholder takeaway: Use these models only under strict regulatory or moral imperatives that prioritize
parity over predictive nuance, recognizing their limited practical utility. Practically, they might be
akin to always predicting the majority class or random guessing with a fixed probability for positive
outcome.

Fairness-Centric with Moderate Predictive Utility Archetype (Cluster 1).
Cluster 1 occupies a critical intermediate position, achieving moderate accuracy (mean of 0.7649 ±
0.0356) combined with significantly higher fairness (mean of 0.7979 ± 0.0645). With notably low internal
variance (0.000027), the models within this cluster show consistent, stable behavior. They emphasize
economic indicators, especially capital-gain, education-num, capital-loss, and hours-per-week, presenting
reliable predictors while consistently maintaining a strong fairness profile.
Stakeholder takeaway: This cluster provides an ideal choice for stakeholders who require substantial
fairness without excessively compromising predictive accuracy. Models in this archetype suit scenarios
like equitable hiring processes, credit assessments, or other applications demanding both transparency
and reasonable predictive performance.

Balanced Accuracy–Fairness Archetype (Clusters 2 and 3).
Clusters 2 and 3 maintain near-peak ROC AUCs (≈ 0.8891 ± 0.0030 and ≈ 0.8938 ± 0.0010) while
improving SDP to moderate levels (≈ 0.4614± 0.0214 and ≈ 0.3376± 0.0198). Their higher variances
(0.000086 and 0.000308) reflect more diverse feature-use patterns: socio-demographic attributes (marital-
status, relationship) dominate, while occupation and education-num exhibit broader distributions. These
archetypes strike a balanced compromise between fairness gains and strong predictive power.
Stakeholder takeaway: Ideal when slight accuracy reductions are tolerable in exchange for meaningful
fairness improvements, though socio-demographic biases should be monitored further.

Max-Accuracy Archetype (Cluster 4).
Cluster 4 delivers the highest predictive performance (≈ 0.8964± 0.0011) at the expense of the lowest
SDP (≈ 0.1953± 0.0500). Models within this group exhibit moderate internal heterogeneity, reflected
by a total feature-importance variance of 0.000112. They predominantly utilize features like relationship,
marital-status, capital-gain, and education-num.
Stakeholder takeaway: Stakeholders considering this cluster should recognize the significant accuracy
benefits but must remain cautious regarding fairness implications, employing additional measures to
manage and mitigate potential biases.

In summary, our clustering framework transforms a large, hard-to-manage set of fairness-aware
models into five actionable archetypes. Decision makers can now directly map their requirements,
whether maximal accuracy, moderate fairness, or strict parity, onto one of these clusters, dramatically
streamlining the model-selection process in high-stakes settings.



5. Conclusions and Outlook

In this paper, we have presented an end-to-end framework for visual model selection that com-
bines weakly supervised metric learning with feature-importance clustering to illuminate the fair-
ness–performance landscape of candidate classifiers. By learning a Mahalanobis embedding aligned
with stakeholder-relevant trade-offs and applying a composite validation strategy to identify the op-
timal number of clusters, our method distills large Rashomon sets into a small number of archetypal
model groups. Each archetype is characterized by its average accuracy and fairness scores, as well as
a distinctive feature-importance signature, enabling decision makers to rapidly pinpoint models that
best match their operational and ethical priorities. Empirical results on the Adult and Bank Marketing
datasets demonstrate that our approach both clarifies how fairness constraints reshape feature reliance
and substantially reduces the cognitive burden of model selection.

However, our composite score approach for determining the optimal number of clusters also has
inherent limitations that require further study. Although integrating multiple cluster validation indices
reduces reliance on a single metric, the selection of indices and their equal weighting could introduce
unintended biases. Further research is needed to systematically explore alternative weighting schemes,
evaluate additional or different clustering metrics, and assess the sensitivity of the composite approach
across a broader array of datasets and problem contexts.

Looking forward, our framework stands to benefit from real-world deployment and structured
user studies with domain experts, auditors, and policymakers on operational datasets, such as credit
scoring, hiring, or criminal risk assessment, to validate its usability and effectiveness beyond benchmark
settings. Simultaneously, expanding the library of fairness-aware learners to encompass adversarial
debiasing approaches, counterfactual fairness models, and post-processing strategies like equalized-
odds adjustments will shed light on how diverse mitigation techniques manifest in the clustered
embedding and feature-importance signatures. By pursuing these directions, we aim to bridge the
gap between fairness research and real-world decision support, empowering stakeholders to make
principled, transparent choices when deploying algorithmic systems in high-stakes contexts.
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A. Additional Experimental Results

In this appendix, we provide comprehensive additional results supporting the analyses presented in the
main text. Specifically, we illustrate further details and visualizations for the Fair Tree Classifier (FTC)
and Fair Logistic Regression (FLR), demonstrating their behavior on the Adult and Bank Marketing
datasets under various fairness attribute considerations.

A.1. Fair Tree Classifier (FTC)

A.1.1. Adult Dataset: Distance Change Heatmap

Figure 4 shows the pairwise distance change heatmap, highlighting how metric learning via ITML
contracts distances among models with similar fairness–performance trade-offs.

Figure 4: Heatmap of pairwise distance change Δ𝑑𝑖𝑗 = 𝑑before𝑖𝑗 − 𝑑after𝑖𝑗 for FTC on the Adult dataset, sorted by
increasing 𝜃. Deep blues show where ITML strongly contracts distances among similar models.



A.1.2. Single-attribute FTC (Adult Dataset)

To illustrate how enforcing fairness on a single sensitive attribute reshapes the model clusters, we
re-ran FTC separately on Age, Gender, and Race, each time fixing 𝑘 via the composite score. Figure 5
shows the resulting maps in fairness-performance space for the three runs.
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(b) Gender only
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(c) Race only

Figure 5: Single-attribute FTC on Adult dataset: clustered model distributions when only (a) Age, (b)
Gender, or (c) Race is treated as the protected attribute. Each uses its own optimal 𝑘 from composite
validation.



Table 3
Composite validation metrics for single-attribute FTC on Adult (top-5 by composite).

(a) Gender only
𝑘 Sil (↑) CH (↑) DB (↓) Comp (↑)

4 0.7114 1037.4 0.4147 1.3308
18 0.5596 3390.4 0.4570 0.7769
3 0.7255 747.4 0.3748 0.7725

16 0.5748 2999.3 0.4618 0.43256
17 0.5589 3064.95 0.4628 0.2624

(b) Age only
𝑘 Sil (↑) CH (↑) DB (↓) Comp (↑)

4 0.7191 943.47 0.4223 1.0312
20 0.6265 4419.40 0.4170 0.8724
7 0.6191 1013.0 0.6015 0.7482

18 0.6607 899.2 0.5317 0.6394
14 0.4887 1119.4 0.7272 0.0374

(c) Race only
𝑘 Sil (↑) CH (↑) DB (↓) Comp (↑)

6 0.5776 882.8 0.5808 0.6134
7 0.6226 839.0 0.5405 0.5509
5 0.6477 755.8 0.4509 0.4969
8 0.6174 790.0 0.5144 0.4877

18 0.4489 933.1 0.6894 0.0448

Key insights.

• Age-only fairness yields 𝑘* = 4, producing four well-spaced archetypes that smoothly trade off
fairness and performance, similar to the multi-attribute case but with slightly tighter groupings,
reflecting the more limited disparity introduced by age.

• Gender-only fairness also selects 𝑘* = 4, but the fairness span is wider, from near-perfect
parity down to substantially reduced fairness, indicating sharper trade-offs when constraining on
gender alone.

• Race-only fairness requires 𝑘* = 6, revealing a more intricate landscape: six distinct clusters
capture nuanced shifts in accuracy-parity balances across racial groups, suggesting stakeholders
need finer granularity when race is the protected attribute.



A.1.3. Bank-Marketing Dataset

To demonstrate FTC’s behavior on the Bank-Marketing dataset, we show both the multi-attribute
run (worst-case SDP) and the age-only run side by side. Each subfigure uses its own optimal 𝑘 from
composite validation.
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(a) Multi-attribute FTC (optimal 𝑘 = 6).
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(b) Age-only FTC (optimal 𝑘 = 7).

Figure 6: FTC clustering on the Bank-Marketing dataset under (a) multi-attribute fairness and (b) age-only
fairness.

Table 4
FTC–Bank Marketing composite scores (top-5 by composite).

Multi-attribute Age only
𝑘 Sil ↑ CH ↑ DB ↓ Comp ↑ 𝑘 Sil ↑ CH ↑ DB ↓ Comp ↑

6 0.6655 2242.9 0.4091 0.9113 7 0.6649 1401.93 0.3981 0.6112
16 0.6103 4881.6 0.4830 0.6663 18 0.5233 1834.11 0.4084 0.4988
8 0.6555 2468.9 0.4471 0.4826 15 0.5270 1339.24 0.4121 0.4861

13 0.6257 4036.2 0.4571 0.4575 16 0.5240 1492.73 0.4678 0.4752
12 0.6348 3838.7 0.4583 0.3512 20 0.5150 2029.74 0.4410 0.4207

Key insights.

• Different cluster granularity: Under multi-attribute fairness, FTC yields 𝑘* = 6 archetypes,
whereas enforcing only age produces 𝑘* = 7. Enforcing a single attribute allows finer distinctions
along the fairness–performance continuum, revealing subtler trade-off patterns that merge when
multiple attributes are considered jointly.

• Cluster overlap in age-only run: In Figure 6b, clusters 0 and 1 partially overlap at the high-
fairness/high-performance end, and analogous overlaps occur between clusters 3–4 and 4–5.
These overlaps suggest that some models exhibit very similar fairness–performance profiles
despite belonging to different clusters. This is an inherent artifact of spherical k-means in a
complex, high-dimensional feature-importance space [25], and it highlights potential benefits of
exploring alternative clustering methods (e.g. Gaussian mixture models, density-based clustering)
or refining metric-learning constraints to further sharpen cluster separations.

• Smooth trade-off progression: Despite overlaps, both settings reveal a coherent ordering of
clusters along the Pareto frontier, from maximal fairness (low accuracy) to maximal accuracy
(low fairness). Stakeholders can still identify representative archetypal groups, recognizing that
some clusters may share boundary models with highly similar behaviors.



A.2. Fair Logistic Regression (FLR)

A.2.1. Adult Dataset

To evaluate how FLR navigates the fairness–performance trade-off on Adult by using gender as sensitive
attribute, we clustered models using SHAP feature importances under the optimal 𝑘 determined by
composite validation.
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Figure 7: Fair Logistic Regression on the Adult dataset: clustered model distributions in fairness-performance
space for optimal 𝑘 = 6.

Table 5
Composite validation metrics for FLR–Adult (top-5 by composite).

𝑘 Sil (↑) CH (↑) DB (↓) Comp (↑)

6 0.9443 1.78e+09 0.0001 1.1255
9 0.9648 2.69e+08 0.0507 0.7330
3 0.9979 1.998e+05 0.0217 0.5327
4 0.9890 1.18e+06 0.0766 0.4781

12 0.9811 6.90e+06 0.0586 0.3263

Key insights (FLR on Adult, 𝑘 = 6).

• Exceptional separation quality: The silhouette score of 0.9443 indicates very tight, well-
separated clusters in the fairness–performance space, suggesting clear trade-off regimes.

• Trade-off extremes:
– Cluster 0: Highest SDP (≈ 0.40) but lowest ROC AUC (≈ 0.68), representing ultra-fair yet

poorly discriminative models.
– Cluster 5: Highest ROC AUC (≈ 0.80) but lowest SDP (≈ 0.10), reflecting maximum

accuracy at the expense of fairness.
• Mid-range consistency: Intermediate clusters show very low internal variance, indicating that

moderate fairness–accuracy balances are achieved via consistent feature-importance patterns
under FLR.



A.2.2. Bank Marketing Dataset

We also applied FLR on Bank Marketing, clustering models under age-only fairness.
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Figure 8: Fair Logistic Regression on the Bank Marketing dataset: clustered model distributions in fairness-
performance space for optimal 𝑘 = 3.

Table 6
Composite validation metrics for FLR–Bank Marketing (top-5 by composite).

𝑘 Sil (↑) CH (↑) DB (↓) Comp (↑)

3 0.8525 2874.8 0.2869 1.2115
4 0.7908 3220.7 0.3165 0.9068
9 0.7063 6853.9 0.3312 0.4086

12 0.6747 10240.0 0.3793 0.3362
13 0.6714 11821.2 0.4066 0.2774

Key insights (FLR on Bank Marketing, 𝑘 = 3).

• Coarse archetype classification: Only three clusters suffice to capture the FLR trade-off
landscape under age-only fairness, suggesting more binary regimes in this simpler setting.

• Clear but less extreme separation: With a silhouette of 0.8525, clusters are still well-defined
but exhibit slightly more overlap than on Adult, reflecting a narrower fairness span.

• Archetype definitions:
– Cluster 0: High fairness (≈ 0.12) with lower accuracy (≈ 0.72), suited for strict parity

requirements.
– Cluster 1: Balanced middle ground (ROC AUC ≈ 0.78, SDP ≈ 0.07), ideal for moderate

trade-offs.
– Cluster 2: High accuracy (≈ 0.85) with reduced fairness (≈ 0.02), for performance-driven

applications.
• Evenly spaced trade-off gaps: The three clusters align with roughly equal intervals along both

axes, making it easy for stakeholders to pick a clear “low,” “medium,” or “high” fairness/accuracy
setting.
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