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Abstract
Algorithmic decision-making systems sometimes produce errors or skewed predictions toward a particular
group, leading to unfair results. Debiasing practices, applied at different stages of the development of such
systems (pre-processing, in-processing, post-processing), occasionally introduce new forms of unfairness or
exacerbate existing inequalities. We focus on post-processing techniques that modify algorithmic predictions
to achieve fairness in classification tasks, examining the unintended consequences of these interventions. To
address this challenge, we develop a set of measures that quantify the disparity in the flips applied to the solution
in the post-processing stage. The proposed measures will help practitioners: (1) assess the proportionality of
the debiasing strategy used, (2) have transparency to explain the effects of the strategy in each group, and (3)
based on those results, analyze the possibility of the use of some other approaches for bias mitigation or to
solve the problem. We introduce a methodology for applying the proposed metrics during the post-processing
stage and illustrate its practical application through an example. This example demonstrates how analyzing the
proportionality of the debiasing strategy complements traditional fairness metrics, providing a deeper perspective
to ensure fairer outcomes across all groups.
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1. Introduction

Bias, as defined by Tversky and Kahneman [1], usually signifies a systematic inclination or prejudice
that distorts judgment or decision making, causing unfair outcomes. In Artificial Intelligence (AI)
systems, bias implies the propensity of a system to consistently produce certain types of error or skewed
predictions due to flaws in the data, algorithm design, or training process, and has been recognized as
one of the risks of Algorithmic Decision Making (ADM) systems [2].

Debiasing refers to a range of strategies and interventions aimed at reducing or eliminating biases in
decision-making processes where the goal is to improve objectivity and ensure that decisions are more
aligned with normative standards of fairness and accuracy [1]. In the development of ADM systems,
these interventions have diverse terminology, are called bias mitigation techniques [3], methods for fair
machine learning (ML) [4] or fairness interventions [5], and are applied by practitioners at different
stages of the development of the ADM system to ameliorate the effect of bias and obtain fairer solutions.
These stages, part of the ML pipeline: pre-processing, in-processing, and post-processing, can be
observed in Figure 1.

However, an effort to debias a decision can sometimes itself introduce new forms of unfairness or
exacerbate existing inequalities. One reason for this is that debiasing techniques may inadvertently
privilege certain groups over others in their aim to achieve a fairer result. For example, when adjusting
for bias in predictions, post-processing methods can disproportionately impact certain demographic
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groups by relabeling the outcome of historically advantaged groups to achieve a certain fairness criterion
[6]. Furthermore, debiasing interventions may not address the root causes of biases but rather shift
them in ways that perpetuate or even amplify existing disparities [7]. A critical question emerges: How
disproportionate are the results we obtain with the methods we use to debias the outcomes of
our algorithms?

Disproportionality occurs when a debiasing method affects some demographic groups more than
others, either by changing their predictions more frequently or by imposing more harmful adjustments
(like switching favorable outcomes to unfavorable ones) on one group compared to others. We develop
a set of measures to quantify the proportionality of debiasing interventions and define a methodology
for applying the proposed metrics in the post-processing stage.

We focus specifically on examining the unintended consequences of post-processing techniques that
modify algorithmic predictions to achieve fairness in classification tasks. Here, we present the study of
binary classification and binary protected attributes. However, the proposed metrics can be extended to
multi-classification scenarios.

The measures we propose are intended to help practitioners (1) assess the proportionality of the
debias strategy used, (2) have transparency that allows them to explain the effects of the strategy in
each group, and (3) based on those results, analyze the possibility of using some other strategies for
bias mitigation.

This work is structured as follows. Section 2 reviews some works studying sources of bias in ML and
mitigation techniques along its pipeline with a focus on post-processingmethods for binary classification
tasks. We introduce what proportionality is in this context in Section 3. Section 4 introduces a set
of metrics to assess the proportionality of post-processing debiasing interventions, describing their
mathematical formulation and characteristics. Section 5 presents a methodology for applying the
proposed metrics in real-world scenarios along with a practical example of how to use it. This final
analysis demonstrates how the proposed metrics provide deeper insights into fairness, complementing
traditional fairness metrics with this proportionality analysis. Finally, the discussion, conclusions, and
future work highlights the trade-offs identified, discusses the broader implications of proportionality
metrics, and identifies opportunities for extending the contributions of this paper.

2. Background

Bias exists in many forms, leading to a unfairness in some cases. In [8, 4, 9], the authors discuss various
sources of bias in ML, providing categorizations and descriptions to inspire future solutions. A variety
of bias mitigation techniques have been developed, each targeting different stages of the ML pipeline
where bias can manifest. They are broadly categorized into three types: pre-processing, in-processing,
and post-processing approaches [4, 5, 3]. Each category represents different stages of the ML pipeline
where practitioners can apply different interventions to mitigate bias, and each has distinct operational
mechanisms and implications on the outcomes, see Figure 1.
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Figure 1: Part of the ML pipeline highlighting pre-processing, in-processing and post-processing interventions
at different stages as well as the ADM process.

We focus on the results of the post-processing methods specifically designed for classification tasks



where the goal is to predict a label (y) from a set of inputs using a pre-trained model1. The debiasing
methods in these cases are applied after the model has been trained and act by modifying the prediction
of the model to ensure fairness without altering the model itself or the training data. The main
techniques include calibration [10], thresholding [11] and transformation [12].

y

y predicted

y corrected

Figure 2: A post-processing debiasing method that works by changing the label of the instances. Consider
y the label of the instance, y predicted the predicted label and y corrected the label obtained after applying a
post-processing debias strategy. The signs, + and − represent the value of the class and the colors (light and dark
gray) indicate the membership of each instance to a particular group taking into account a protected attribute
such as gender, race, etc.

We illustrate a very simple case in Figure 2. The figure represents the outcome of 10 instances of a
classification problem (y) with two possible labels (+ and -) belonging to two groups (light gray and dark
gray). Labels represent the outcome of the classification and groups symbolize a protected attribute.
The predicted labels for the dark gray group (y predicted) have 4 out of 5 examples in the positive class
(80%) while the light gray group has 3 out of 5 examples in the positive class (60%) this will represent a
difference of 20% in statistical parity2 [13] which could be considered unfair. Consider that applying
a post-processing debiasing method obtains the y corrected labels. Although the number of positive
outcomes in the two groups has the same proportion (2 out of 5 for a 40%), we can observe that even
when the flips occur in both groups towards the negative label, they impact more the dark gray group
compared to the light gray group. Here, we aim to evaluate the unintended consequences of debiasing
techniques that result in the alteration of the outcomes with the purpose of achieving fairness.

3. What Proportionality Means

Classic group fairness metrics (e.g. statistical parity or equalized odds) summarize disparities in the final
predictions produced by a classifier. They do not, however, reveal how a post-processing intervention
arrived at those predictions, nor who gained or lost during that process. Proportionality fills this gap:
it asks whether the benefits and burdens that arise when we flip labels in the post-processing stage are
distributed in a way that is normatively justified and legally defensible.

Let a flip be any change of a predicted label induced by a post-processing rule. We distinguish:

• Balancing flips across groups. The counts and rates of flips should not be so unequal that
one group bears virtually all harmful flips or garners all beneficial ones. Our metrics (Section 4)
make this distribution explicit, extending the logic of statistical parity [13] from outcomes to
interventions.

• Harmful versus beneficial flips. Changing a positive outcome to a negative one is usually
a genuine loss for the affected individual (e.g., losing a job offer or loan). A proportional rule
therefore seeks to minimise harmful flips overall and to avoid concentrating them on historically
marginalised groups. By separately tracking harmful and beneficial flips, we expose potential

1A model can be considered a mathematical function that map input data to output predictions. For classification tasks, they
are produced by training an algorithm with predefined data and using specific parameters.

2A fairness metric which declares that the likelihood of a positive outcome should be the same irrespective of an individual’s
group membership.



levelling-down (many losses for one group, few gains elsewhere) and encourage levelling-up
strategies that improve outcomes for disadvantaged groups [14].

Numerous dimensions of moral and political philosophy elucidate the significance of proportionality.
The equality of opportunities requires that people with comparable talent or qualifications face similar
chances of desirable outcomes, regardless of protected attributes [15, 16]. A post-processing rule that
places most negative flips on one group violates this principle, whereas a rule proportionate levels the
playing field without arbitrarily closing doors to the otherwise qualified.

Desert-based accounts hold that benefits should align with effort or qualification [17]. Excessive
harmful flips against high performers signal a desert violation; a proportionate intervention corrects
bias while continuing to reward merit.

Sufficiency and prioritarian theories prioritize improving the situation of those who are worse off
[18]. Therefore, proportionality disfavors levelling down, making advantaged groups worse off without
materially helping the disadvantaged, a practice strongly criticized [19].

Proportionality also echoes the established equality doctrine. EU fundamental-rights law applies a
four-step proportionality test (suitability, necessity, balancing, and consistency [20]) whenever a policy
imposes differential treatment [21]. The UK Equality Act adopts a near-identical standard for justifying
indirect discrimination: the measure must be “a proportionate means of achieving a legitimate aim”
[22]. Our proposal operationalize these legal ideas: they quantify whether a debiasing strategy imposes
an excessive share of negative flips on any group and thus provide empirical evidence for (or against)
legal proportionality.

Proportionality evaluates whether fairness corrections themselves are fair. Grounding our metrics
in normative theory and equality law serves to equip practitioners with principled diagnostics that
complement traditional group-fairness statistics and guard against well-intentioned but excessive
interventions.

4. Assessing the Effects of Flips Produced by Post-Processing
Debiasing Techniques

In this section, we provide a characterization of the flips in the solution (Section 4.1) that offer a general
picture of how the debiasing algorithm affects the model’s predictions, and subsequently, we extend
the analysis with the objective of evaluating whether the debiasing algorithm impacts different groups
equitably by introducing a series of flip proportionality metrics in Section 4.2.

For each metric, we present both its mathematical definition and its interpretation. Each subsection
concludes with a summary table of the proposed metrics, clarifying their boundaries, a short description,
and edge cases.

4.1. Characterization of Flips in a Solution

In this Section we define key concepts and metrics that quantify how a debiasing algorithm modifies
the original predictions.

We first start by characterizing a classification problem: given a set of features 𝑋 ∈ ℝ𝑛×𝑑, where
𝑛 is the number of instances and 𝑑 is the number of features. The goal of the classification task is
to learn a classifier 𝑓 ∶ ℝ𝑑 → 0, 1 that predicts the binary outcome 𝑦 ∈ 0, 1𝑛 ∶ ̂𝑦 = 𝑓 (𝑋) where
𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} represents the feature vectors for 𝑛, 𝑦 = {𝑦1, 𝑦2, … , 𝑦𝑛} represents the true binary
outcomes, and ̂𝑦 = { ̂𝑦1, ̂𝑦2, … , ̂𝑦𝑛} represents the predicted outcomes.

Let 𝑦predicted = ̂𝑦 ∈ {0, 1}𝑛 be the vector of predicted labels from the classifier for the same instances
𝑛 and consider that 0 is the unfavorable outcome and 1 the favorable one. For illustrative purposes,
consider a classification problem in which possible outcomes entail either accepting or rejecting a
candidate. A favorable or positive outcome is accepting the candidate and will have the value 1 in
𝑦predicted.



𝑦predicted = {𝑦predicted,1, 𝑦predicted,2, … , 𝑦predicted,𝑛} (1)

After applying a debiasing algorithm, the predicted labels can be adjusted to form the corrected labels
𝑦corrected ∈ {0, 1}𝑛.

𝑦corrected = {𝑦corrected,1, 𝑦corrected,2, … , 𝑦corrected,𝑛} (2)

We will compare 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 with 𝑦𝑐𝑜𝑟 𝑟𝑒𝑐𝑡𝑒𝑑. This comparison isolates the effect of the debiasing algorithm
on the classifier’s predictions (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) measuring how much the debiasing method has adjusted the
predictions to correct potential biases. A flip occurs when the label changes from one label to another
(e.g., from 0 to 1 or from 1 to 0) as a result of a debias algorithm.

Definition 1 (Flip). Let 𝑦predicted and 𝑦corrected be sets of the corresponding outputs after a debiasing
process.
A flip between 𝑦predicted and 𝑦corrected is defined as:

Flip𝑖 = {
1 if 𝑦predicted,𝑖 ≠ 𝑦corrected,𝑖
0 if 𝑦predicted,𝑖 = 𝑦corrected,𝑖

(3)

Definition 2 (Number of flips). The number of flips, 𝑁flips, represents the total count of instances in which
the predicted label 𝑦predicted differs from the corrected label 𝑦corrected after applying the debiasing algorithm:

𝑁flips =
𝑛
∑
𝑖=1

Flip𝑖 (4)

Definition 3 (Flip Rate (FR)). Is defined as the proportion of instances that experienced a flip over the
total number of instances.

Flip Rate =
𝑁flips

𝑛
(5)

Where 𝑁flips is the number of flips defined in Equation 4 and 𝑛 is the total number of instances.

When this proportion constitutes a substantial percentage of the overall number of instances, demon-
strate that the post-processing algorithm has introduced significant modifications to the algorithm’s
output, indicating potential fairness issues within the applied algorithm. Practitioners in those cases
should consider the possibility of modifying or improving the algorithm applied with the aim of
minimize the post-processing interventions.

In the context of evaluating the impact of debiasing algorithms, we classify flips based on their effect
on the predicted outcomes. Specifically, we distinguish between flips that lead to a positive change
(from unfavorable to favorable values) and negative changes (from favorable to unfavorable values)
in the predicted labels. Elaborating on the scenario of accepting or rejecting a candidate; a transition
towards a positive outcome would mean a change in prediction from rejection to acceptance.

Definition 4 (Favorable Flips). A positive flip that occurs when the predicted label changes from unfa-
vorable outcome (0) to a favorable outcome (1), indicating an increase in the number of positive decisions.
This type of flip represents a shift towards a more favorable outcome for the instance.

Favorable Flip𝑖 = {
1 if 𝑦predicted,𝑖 = 0 and 𝑦corrected,𝑖 = 1
0 otherwise

(6)

The total number of positive flips, 𝑁favorable flips, is given by:

𝑁favorable flips =
𝑛
∑
𝑖=1

Favorable Flip𝑖 (7)



Definition 5 (Unfavorable Flips). A negative flip or a harmful flip occurs when the predicted label changes
from 1 to 0, indicating a decrease in the number of positive decisions. This type of flip represents a shift
towards a less favorable outcome for the instance.

Unfavorable Flip𝑖 = {
1 if 𝑦predicted,𝑖 = 1 and 𝑦corrected,𝑖 = 0
0 otherwise

(8)

The total number of negative flips, 𝑁unfavorable flips, is given by:

𝑁unfavorable flips =
𝑛
∑
𝑖=1

Unfavorable Flip𝑖 (9)

These classifications help in understanding the nature of the changes made by the debiasing algorithm.
Analyzing the nature of the flips can provide insight into how the debiasing process impacts overall
decision making.

Definition 6 (Directional Flip Ratio (DFR)). Compares the number of favorable flips (from 0 to 1) with
unfavorable flips (from 1 to 0).

DFR =
𝑁favorable flips

𝑁unfavorable flips
(10)

A DFR closer to 1 indicates balanced flip directions, suggesting that the debiasing algorithm is not
disproportionately flipping predictions in one direction (e.g., systematically downgrading or upgrading
individuals).

Values greater than 1 suggest more favorable than unfavorable flips, and values lower than 1 will
suggest the higher occurrence of unfavorable flips. The desired values for this metric should be close to
1 indicating balanced flips in both directions.

Taking into account unfavorable flips (those in which the outcome was changed to an unfavorable
value), we can establish metrics of the impact on individuals when achieving fairness. These flips are
considered harmful because they represent a tangible loss for the affected individuals; in the previous
example, when a prediction changes from job candidate acceptance to rejection. While such changes
may be necessary to achieve overall system fairness, they represent real negative consequences for the
individuals whose predictions are flipped, making it crucial to measure and minimize their occurrence,
especially when they disproportionately affect specific demographic groups.

Definition 7 (Harmful Flip Proportion(HFP)). This metric calculates the proportion of harmful flips
among all flips. The HFP is then defined as:

HFP =
𝑁unfavorable flips

𝑁flips
(11)

Where𝑁unfavorable flips was defined in Equation 8 and𝑁flips is the total number of flips defined in Equation
4.

A harmful flip was defined as a change in prediction from a positive to a negative outcome, which is
interpreted as a detrimental change for the individual instance. A lower HFR indicates that fewer flips
result in harmful outcomes, suggesting that the debiasing algorithm is less likely to produce negative
effects on the predictions.

The metrics introduced until now allow us to characterize the flips made by a debiasing algorithm
that transforms the output in the post-processing stage. After their calculations, practitioners will have
a general overview of the flips applied to the solution. Furthermore, these metrics can be independently
applied to each distinct group, providing practitioners with an understanding of the overall incidence
of flips in each group. A resume of the metrics proposed to describe the flips in the solution is detailed
in Table 2 of the Appendix A.



4.2. Group-Based Flip Proportionality Metrics

In this section we propose flip proportionality metrics to calculate the differences between the flips
inflicted on the groups. For group-based metrics, let us consider that instances are characterized by
their belonging to a certain binary protected feature, where 1 represents individuals with historical
advantage (privileged) and 0 represents individuals in historical disadvantage (unprivileged). The Flip
Rate for each group can be calculated separately.

Let us define 𝑆 ∈ {0, 1}𝑛 as the vector indicating the membership of the protected group for each
instance, where 𝑆𝑖 = 1 indicates a privileged individual and 𝑆𝑖 = 0 indicates an unprivileged individual.

The Flip Rate for the privileged group (FRprivileged) and the unprivileged group (FRunprivileged) can be
formulated as:

FRprivileged =
∑𝑛

𝑖=1 Flip𝑖 ⋅ 𝕀(𝑆𝑖 = 1)
∑𝑛

𝑖=1 𝕀(𝑆𝑖 = 1)
(12a)

FRunprivileged =
∑𝑛

𝑖=1 Flip𝑖 ⋅ 𝕀(𝑆𝑖 = 0)
∑𝑛

𝑖=1 𝕀(𝑆𝑖 = 0)
(12b)

Where 𝕀(𝑆𝑖 = 1) is an indicator function equal to 1 if the instance 𝑖 belongs to the privileged group, and
0 otherwise and 𝕀(𝑆𝑖 = 0) is an indicator function equal to 1 if the instance 𝑖 belongs to the unprivileged
group, and 0 otherwise.

The same way, the metric Harmful Flip Proportion can be calculated separately for different groups.
For instance, HFPunprivileged represents the HFP for the unprivileged group, and HFPprivileged represents
the HFP for the privileged group:

HFPprivileged =
∑𝑛

𝑖=1 Unfavorable Flip𝑖 ⋅ 𝕀(𝑆𝑖 = 1)
∑𝑛

𝑖=1 Flip𝑖 ⋅ 𝕀(𝑆𝑖 = 1)
(13a)

HFPunprivileged =
∑𝑛

𝑖=1 Unfavorable Flip𝑖 ⋅ 𝕀(𝑆𝑖 = 0)
∑𝑛

𝑖=1 Flip𝑖 ⋅ 𝕀(𝑆𝑖 = 0)
(13b)

Taking the definition of flips rates and harmful flip proportions for each group, we define a set of
proportionality measures that quantify the disparity in the flips between the groups.

Definition 8 (Flip Rate Difference (FRD) & Harmful Flip Proportion Difference (HFPD)). This metric
calculates the absolute difference in the flip rates or the harmful flip rates between two groups:

FRD = |FRprivileged − FRunprivileged| (14a)

HFPD = |HFPprivileged − HFPunprivileged| (14b)

A value close to 0 for FRD or HFPD indicates a more proportional treatment between groups, so the
desirable value is zero.

These metrics capture the similarities between the flip rates and the proportion of harmful flips
between the groups. However, if the size of one group is significantly smaller, these metrics might
overemphasize disparities due to variance in smaller sample sizes. Therefore, they should be accompa-
nied by the analysis of the individual measures for both groups independently defined in Equations 12
and 13, as it will capture the proportions between the flip rates and the proportion of harmful flips of
the groups separately. This distinction allows for the identification of scenarios that can have small
differences but high values separately that suggest a high incidence of flips in the overall solution.



Definition 9 (Disparity Index (DI) & Harmful Disparity Index (HDI)). The disparity index highlights
the disparity between the flip rates or harmful flip proportions of two groups.

DI =
max(FRprivileged, FRunprivileged)
min(FRprivileged, FRunprivileged)

(15a)

HDI =
max(HFPprivileged,HFPunprivileged)
min(HFPprivileged,HFPunprivileged)

(15b)

A DI or HDI of 1 indicates perfect proportionality, while values greater than 1 indicate the extent of
disproportionality. These metrics use ratios, and if the denominator (flip rate or harmful flip proportion)
is very small, the disparity index can become disproportionately large, particularly for groups with
fewer flips. Therefore, an analysis in conjunction with the characterization of the flips is required to
better understand the overall flip context.

Definition 10 (Flip Rate Disparity (FD) & Harmful Flip Proportionality Disparity (HFD)). This metric
computes the difference in the flip rates or harmful flip proportion between different groups in relation to
the overall Flip Rate defined in Equation 5.

FD = |
FRprivileged
Flip Rate

−
FRunprivileged
Flip Rate

| (16a)

HFD = |
HFPprivileged
Flip Rate

−
HFPunprivileged

Flip Rate
| (16b)

If the overall flip rate or the harmful flip proportion is close to 0, the normalized rates might become
very large, potentially magnifying the value of the measures. This should be taken into account for
better interpretability of the measure; also these measures do not explicitly account for group sizes.
If one group (e.g., the privileged group) is much smaller, its flip rate might have a higher variance,
potentially skewing the value of the measures. Values close to 0 are the desirable values for these
measures.

Definition 11 (Relative Flip Disparity (RFD) & Relative Harmful Flip Disparity (RHFD)). These metrics
provide a normalized measure of the disparity between the flip rates or the harmful flip proportions between
groups.

RFD = 𝐹𝑅𝐷
FRunprivileged + FRprivileged

(17a)

RHFD = 𝐻𝐹𝑃𝐷
HFPunprivileged + HFPprivileged

(17b)

Where the values of FRD and HFPD are defined in equations 14a and 14b respectively.

These metrics are beneficial for understanding the relative difference in flip rates (or harmful flip
rates) in a way that is proportionate and comparable across different scenarios. A value closer to 0
indicates that the flip rates or harmful flip proportions between the groups are proportionally similar,
implying that the debiasing process similarly affects both groups. Higher values of these measures
indicate a greater disparity between the groups, suggesting that one group is experiencing flips at a
significantly different rate than the other.

These metrics normalize disparities based on the sum of group-specific rates. If the overall rates are
small or one group dominates, normalized metrics might amplify the disparities. For clarity, we give a
summary of the proposed metrics in Table 3 of the Appendix A.



5. Applying the Proposed Metrics: Methodology and Example

In this Section, we discuss how to apply the measures we defined, while analyzing the results of a
post-processing dibiasing method that works by flipping the output of the solution. Figure 3 illustrates
a step-by-step debiasing strategy to achieve fairness in the predictions while evaluating proportionality.
The process begins by computing the predicted labels 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑. The fairness of these predictions is
evaluated by comparing the true (𝑦) and predicted labels. If fairness criteria are not met, a debiasing
post-processing step is applied, producing corrected labels (𝑦𝑐𝑜𝑟 𝑟𝑒𝑐𝑡𝑒𝑑). Then these corrected labels are
again evaluated for fairness. Furthermore, the method assesses whether the correction of the predicted
values is proportional, ensuring that the changes applied do not disproportionately affect specific groups.
The analysis ends when both fairness and proportionality are achieved; otherwise, practitioners should
evaluate whether to change the debiasing strategy or the solution. It is important to note that any
group fairness metric can be used appropriately to evaluate classification outcomes.

Input data Predict Results Post-Processing 
Debias

y y predicted y corrected

Compute 
Fairness 

y & y predicted

Compute 
Fairness 

y & y corrected

fair?

fair?

Evaluate flip 
proportionality proportional?
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solution 
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no

no

no

yes

yes

yes

Figure 3: Methodology

We demonstrate the application of the proposed methodology through a specific example. The results
and algorithms in this section are not intended as contributions to this paper, but rather they serve to
demonstrate the application of the proposed proportionality metrics.

First, we solved a toy problem using a DecisionTreeClassifier implemented in the Scikit-learn library
[23]; the accuracy of the classification is 0.725. Then, we calculated two fairness metrics for the solution:
Statistical Parity (SP) [13] and Equalized Odds (EO) [24] using the AI Fairness 360 (AIF360) toolkit [25].
The results of these metrics were −0.31 and 0.28 respectively which indicate the disparity between the
privileged and unprivileged groups. After that, we applied the EqOddsPostprocessing algorithm based on
[24]. The results of SP and EO after the post-processing step are −0.071 and 0.025, respectively, which
are accepted values in the fair interval [−0.1, 0.1].

The first interpretation is that the post-processing method has solved the fairness problem. Never-
theless, when a closer look is taken to the flips occurring in the debias process, the appropriateness of
the results may be revised. To achieve this, we have implemented the proposed metrics in Python3, as
output we offer a proportionality report with the results of the measures as is illustrated in Table 1 and
a visualization of the main metrics as observed in Figure 4.

We used the predicted and corrected results of our toy problem and show the results of the metrics
applied to the example in Table 1. The table lists the metric name (values in bold in the column Metric),
their value (Result) and a Short Analysis of the calculation. This short analysis is also produced by the
code implemented based on the computation of the metric. The table also informs about the dataset,
groups, and flipped totals.

When we analyze the values in Table 1, we observe that while the flip rate value for the overall
dataset is 13% the harmful flip proportion constitutes 78% of the flipped instances, raising concerns
about the fairness of the process generating the flips. Analyzing the flips in each group reveals that
most of them occur in Group 0, and all flips in this group are harmful. In contrast, Group 1 experiences
fewer flips, all of which are beneficial. The directional flip rate highlights the disparity between the
groups in terms of the nature of their flips.
3The sources for this article are available via GitHub

https://github.com/juliettm/group-flip-proportionality


Table 1: Result of the metrics characterizing the flips and the flip proportionality metrics of the toy
problem used as an example.

Metric Result Short Analysis
Dataset information

Total samples 1320
Group 0 samples 799
Group 1 samples 521

Overall Metrics

Total flips 174
FR 0.13
Harmful Flips 136
HFP 0.78 Regular calculation

Flips by Groups

Group 0 Flips 136
Group 0 FR 0.17
Group 0 Harmful flips 136
Group 0 HFP 1.0 Only harmful flips
Group 1 Flips 38
Group 1 FR 0.073
Group 1 Harmful flips 0.0
Group 1 HFP 0.0 No harmful flips

Directional flip ratio

DFR 0.28 Regular calculation
Group 0 DFR 0.0 Only harmful flips
Group 1 DFR ∞ Only beneficial flips

Flip Proportionality Metrics

FRD 0.097
DI 2.33 Regular calculation
FD 0.74 Regular calculation
NFD 0.40 Regular calculation

Harmful Flip Proportionality Metrics

HFRD 1.0
HDI ∞ One value is zero
HFD ∞ One value is zero
NHFD 1.0 Regular calculation

Collective analysis of flip proportionality metrics demonstrates a systematic disparity in flip rates
between the groups. This issue is exacerbated when examining harmful flip proportionality metrics,
which expose significant fairness disparities between the groups, highlighted by the concentration of
all harmful flips within Group 0.

We have commented on the desirable values for each proportionality metric, but have not proposed
thresholds inwhich the results of themetrics can be considered acceptable, moderate, or disproportionate.
We consider that these thresholds will also depend on the context of the problem analyzed since factors
such as the size of the dataset may influence the metrics values.

In our implementation of the proposed metrics, we provide an example of threshold values that can
be configured. We consider that a difference lower than 0.1 from each proportionality metric result with



Figure 4: Visual analysis of Flips and Group-Based Flip Proportionality Metrics

respect to their ideal value can be considered acceptable, a difference in a range of [0.1, 0.3] indicate
manageable disparities requiring review, and beyond that difference, we consider the values to show
imbalance that may indicate problems with the proportionality of the debiasing strategy applied. We
applied these ranges for all the metrics except by the FRD & HFPD (Equation 14) in which we consider
a difference of 0.05 for acceptable values and between 0.05 and 0.15 for moderate values.

We encourage practitioners to consider the adaptation of these values to their particular problem.
The proposed thresholds are empirical and are not mathematically derived or rigorously proved; instead,
they are based on practical considerations to guide the interpretation of results.

For an easier interpretation of the results, we have implemented a simple visualization of the main
metrics. The visual analysis can be seen in Figure 4. The figure presents a visual analysis of flips and
flip proportionality measures. The upper graph displays the Flip Rate and the Harmful Flip Proportion
as percentages. The middle graph presents the same metrics per group. The lower graph focuses on flip
proportionality metrics. Each metric is color-coded according to the thresholds explained previously
as Acceptable (green), Moderate (yellow), and Disproportionate (red). We also limit the ∞ values to a
maximum for better visualization.

The analysis of Figure 4 reinforces the results already analyzed from Table 1. As an inference of
this toy problem, in real-world scenarios, practitioners should analyze the suitability of the debiasing



strategy, as well as the possibility of applying other methods to solve the problem; otherwise, it is
necessary to provide a justification for the disproportionate adverse treatment experienced by a specific
group. This example is instrumental in illustrating the unintended consequences of debiasing strategies,
particularly in terms of the harm experienced by a particular group that is masked within the fairness
metrics results.

6. Discussion and Limitations

Our analysis of proportionality metrics underscores crucial trade-offs inherent in algorithmic debiasing,
highlighting the complexity of ensuring equitable impacts across demographic groups. Although
disproportional flipping might sometimes be unavoidable due to underlying data distributions or
historical biases, practitioners should transparently document and ethically justify such occurrences.
Furthermore, alternative debiasing strategies, such as pre-processing or in-processing methods, should
be actively explored to achieve fairness without disproportionate impacts.

We recognize that evaluating proportionality solely through prediction flips does not fully capture
the nuanced interplay between fairness interventions, predictive accuracy, and ground truth labels.
Some flips initiated to improve fairness may incidentally align predictions with actual outcomes,
thus improving accuracy; conversely, others may inadvertently degrade predictive quality. Therefore,
integrating proportionality metrics alongside traditional accuracy indicators and fairness measures is
essential. This evaluation allows practitioners to better differentiate between beneficial corrections and
fairness-driven errors, facilitating more informed and ethically sound decision-making.

Despite their utility, proportionality metrics exhibit certain limitations. Specifically, the metrics may
be overly sensitive in scenarios with low overall flip rates or imbalanced group sizes. In such cases, even
minor disparities could appear exaggerated, potentially misrepresenting the true fairness landscape.
The application of proportionality metrics should always be contextualized within specific normative
frameworks relevant to the domain in question. For example, in healthcare, proportionality might
entail accepting a certain level of disparity to prioritize the most urgent cases, while in employment or
education, a more egalitarian proportionality might be ethically justified to correct historical inequities.

7. Conclusions and Future Work

This study explores the dynamics of bias mitigation within algorithmic decision-making systems, par-
ticularly emphasizing the unintended consequences arising from post-processing fairness interventions.
We introduce a novel set of metrics explicitly designed to evaluate the proportionality of prediction
flips resulting from these interventions. These metrics serve as safeguards, promoting responsible
and ethically justified deployments of algorithmic systems. Furthermore, we propose an actionable
methodology that integrates these proportionality metrics into existing machine learning workflows,
enhancing transparency and accountability in algorithmic decisions.

Future research directions include expanding and strengthening empirical evaluations. Specifically,
we plan comprehensive experiments involving diverse real-world datasets, multiple classificationmodels,
and various post-processing fairness interventions to rigorously validate and generalize our metrics.
Furthermore, exploring alternative normalization techniques (such as weighting proportionality metrics
by group sizes or employing statistical validation methods) would further enhance the reliability of
the metric. Extending our proportionality framework to multiclass classification settings and multiple
protected attributes will also be crucial. Lastly, integrating these metrics into widely adopted fairness
toolkits, such as AIF360 or Fairlearn, would significantly streamline fairness assessments, enabling
practitioners to evaluate fairness, proportionality, and predictive accuracy within a unified analytical
framework.

Additionally, we intend to extend our proportionality analysis by incorporating neighborhood-based
individual metrics, enabling a detailed assessment of unintended consequences at the instance level and
improving transparency and accountability in post-processing bias correction strategies.
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Table 2
Summary of the proposed metrics describing flips in the solution (can be used to describe different groups
separately). Each line delineates the boundaries of the metric, includes a reference to their respective equations,
and provides a short description along with any edge cases associated with them.

Metric Boundaries Equation Short Description & Edge Cases

FR [0, 1] 5 Measures the proportion of instances where predictions
change after debiasing. Is 0 when there is no flip in the
post-processing stage. Values close to 1 suggest more
flips.

DFR [0, ∞) 10 Ratio of beneficial to harmful flips. Indicates the balance
between favorable and unfavorable flips. Values close to
1 are desirable. Returns ∞ when there are no harmful
flips. Returns 0 when there are no beneficial flips and 1
in the absence of flips.

HFP [0, 1] 11 Proportion of flips leading to unfavorable outcomes. Val-
ues close to 1 indicate a higher incidence of harmful flips.
Is 0 when there are no harmful flips. Take 1 if all the flips
present are harmful.

Table 3
Summary of the proposed metrics to quantify the proportionality of the flips between groups. Each line delineates
the boundaries of the metric, includes a reference to their respective equations, and provides a short description
along with any edge cases associated with them.

Metric Boundaries Equation Short Description & Edge Cases

FRD & HFPD [0, 1] 14a & 14b Absolute differences in flips rates or harmful flips pro-
portions between the groups. Take 0 value when FR or
HFP are equal in both groups. Values close to 0 indicates
greater proportionality.

DI & HDI [1, ∞) 15a & 15b Ratio of flip rates between groups (DI). Ratio of harmful
flip proportions between groups (HDI). Returns ∞ when
the minimum value of the flip rate or the harmful flip
proportion is 0. Returns 1 when both values are equal or
0.

FD & HFD [0, ∞) 16a & 16b Quantify the disparities in the flip rates or the harmful
flip proportion between the groups, normalized by the
overall flip rate. It has the potential to become signif-
icantly large when the overall flip rate or harmful flip
proportion approaches 0. Returns 1 when both values
are 0 and ∞ when one of them is 0.

RFD & RHFD [0, 1] 17a & 17b Relative disparity in flip rates between groups (RFD). Rel-
ative disparity in harmful flips between groups (NHFD).
It is a normalized measure of disparity, making it easier
to compare in different scenarios. Returns 1 when one
rate is 0 and the other is not, and returns 0 when there
are no flips in any of the groups.
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