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Abstract

This paper introduces a visual extension for the PSyKE platform, with the goal of supporting fairness assessment
and bias detection for predictive models based on symbolic knowledge bases. The extension focuses on the analysis
of knowledge bases expressed in Prolog, the default representation adopted within PSyKE, and it is effective
also to study the knowledge distilled from opaque predictive models through symbolic knowledge-extraction
techniques. The tool generates a heatmap linking knowledge items and user-defined protected/sensitive groups
with the proportion of individuals belonging to the groups and covered by each rule. This visual representation
allows for immediate identification of fairness and bias issues.
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1. Introduction

In recent years, the pursuit of fairness in artificial intelligence (AI) and machine learning (ML) has gained
significant momentum, especially in high-stakes domains such as finance, healthcare and criminal
justice [1, 2, 3], where biased models can exacerbate social inequalities [4, 5, 6]. Since predictive tools
behaving as black boxes, e.g., deep neural networks and ensemble models, are becoming increasingly
pervasive, the demand for interpretable and accountable Al systems is growing in parallel [7, 8, 9, 10, 11].

Several complementary approaches have been proposed in the literature to improve transparency
and/or detect and mitigate bias in ML models. These include the adoption of inherently interpretable
models [12, 13] and post-hoc explanation techniques or other distillation methods that approximate
complex models with simpler, more understandable ones [14]. Fairness auditing techniques, on the
other hand, assess the outcomes of a model with respect to protected groups and can be based on group
metrics (e.g., demographic parity, equal opportunity; [15]) or performed at an individual level (e.g.,
through counterfactual analysis; [16, 17]). While many of these methods focus on numeric or graphical
summaries, symbolic representations such as logic rules offer a compact and human-readable way to
reason about decision logic. This makes them particularly interesting not only for interpretation, but
also for formal fairness inspection and compliance with legal frameworks.

One promising approach to improve transparency is symbolic knowledge extraction (SKE), which
provides interpretable surrogate models mimicking the behaviour of opaque ones [18, 19, 20, 21].
Surrogate models are usually based on human-intelligible symbolic representations of the acquired
knowledge, e.g., lists of logic rules or shallow decision trees. Symbolic knowledge bases enable human
users to audit decisions, verify compliance with ethical or legal standards and detect the presence of
potential bias and unfairness in the decision-making process [22].

To this purpose, the PSyKE Python platform [23, 24] was proposed to support SKE from arbitrarily
complex black boxes in the form of Prolog theories. PSyKE also offers an extension for Semantic
Web interoperability [25] and several tools for trustworthy AI [26] and explainable clustering [27].
Unfortunately, dedicated support for fairness assessment and bias detection and mitigation is currently
missing in the platform. More in detail, it is possible to detect evidences of unfairness by inspecting the
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Prolog theories produced by PSyKE, e.g., by checking if protected or sensitive features are present in
the preconditions of the symbolic rules. However, despite being an essential requirement for ethical
Al systems [28], in PSyKE there are no more sophisticated mechanisms to measure if individual rules
disproportionately affect some protected groups, for instance identified by sex, gender or ethnicity.

To address this limitation of PSyKE, in this work a visual extension aimed at supporting bias detection
in symbolic knowledge bases is presented. The tool basically processes a knowledge base in Prolog
format to perform a group-wise assessment of the rules’ coverage, with protected and unprotected
groups identified by the user. Each rule is analysed to determine the proportion of individuals from each
group that satisfy its conditions. The results are visualised in a heatmap where rows represent rules,
columns correspond to groups and cell values indicate the relative impact of a rule on a group. Starting
from the assumptions that if rules disproportionately affect certain groups, the knowledge base is likely
biased and that, conversely, if the impact is uniform across groups, the knowledge can be considered
fair, this visualisation allows practitioners to easily identify biased rules and unfair knowledge bases
according to the presence of a strong disparity in the groups’ coverage.

This contribution enriches the interpretability capabilities of the PSyKE framework with a fairness-
aware analysis, enabling users to better understand and mitigate hidden biases in opaque and symbolic
explanations. Accordingly, in Section 2 related works on fairness assessment and bias detection are
reported, in Section 3 the contribution of this paper is detailed, in Section 4 experiments on real-world
data sets to assess the applicability of the proposed extension are shown and in Section 5 conclusions
are drawn.

2. Related Works

2.1. Fairness and Bias in Machine Learning

Fairness in ML algorithms and systems has been studied from multiple perspectives, including group
fairness, individual fairness, and causal fairness [15, 16, 29, 30]. Group fairness metrics assess whether
a model treats different demographic groups (e.g., defined by race or gender) equally in terms of pos-
itive/negative predictions or predictive error rates. Common examples include demographic parity,
equalised odds, and predictive parity. In contrast, individual fairness requires that similar individuals
receive similar outcomes. This latter is often formalised through similarity metrics and/or counterfactu-
als.

Bias can affect ML systems at various stages, including data collection, labelling, training, or deploy-
ment. Numerous fairness auditing tools have been developed to detect and mitigate such biases, ranging
from pre-processing approaches to balance data sets, to in-processing techniques that regularise model
training, to post-hoc methods that analyse and modify outcomes [31, 32, 33, 34].

Despite this rich landscape, due to high task complexity and data set dimensionality, fairness assess-
ments are often performed at the model level or using aggregate statistical measures. There remains a
significant gap in the literature when it comes to tools that visually illustrate the extent to which the
predictions of a symbolic model impact different demographic groups in a specific ML context.

2.2. Existing Fairness and Explainability Tools

A number of toolkits have been developed for fairness auditing in ML models. Amongst them, Ae-
quitas [35], Al Fairness 360 [36], and Fairlearn [37] are comprehensive libraries that compute group
fairness metrics and possibly support bias mitigation techniques. These frameworks, however, typically
operate on opaque models and produce only aggregated statistics without associating them to symbolic
rules.

Visual and interactive tools such as FairVis [38] and the What-If Tool [39] allow users to inspect
fairness properties through data exploration and counterfactual reasoning. Yet, they lack support for
symbolic or rule-based explanations.



Table 1
Comparison of fairness and explainability tools. Only the approach proposed in this work combines
symbolic rule inspection with fairness analysis and heatmap-based visualisation.

Symbolic | Fairness Visualisation Group-level

Tool support | auditing analysis
Aequitas [35] X v v (metrics dashboard) v (aggregated)
Al Fairness 360 [36] X v v (not rule-level) v (aggregated)
Fairlearn [37] X v v (dashboard) v (aggregated)
FairVis [38] X v v (interactive) v (intersectional)
What-If Tool [39] X v v v (counterfactuals)
RuleMatrix [40] v X v X
SIRUS [41] v X X X
Kamiran et al. [42] X v X X

‘ PSyKE ‘ v ‘ v ‘ v (heatmap) ‘ v (per rule) ‘

Some efforts in interpretable ML have focused on rule visualisation. RuleMatrix [40], for instance,
displays classifiers as rule tables to enhance evaluation and interpretability. SIRUS [41] provides stable
rule sets derived from ensemble models, but no visualisation tools are provided. Furthermore, these
tools do not address group fairness nor allow users to assess differential impacts across protected groups.

Another line of research focuses on modifying models to mitigate bias. Kamiran et al. [42] proposed
a decision-theoretic framework for discrimination-aware classification. Their approach leverages the
reject option in probabilistic classifiers and the disagreement region in ensemble methods to reduce
unfair decisions. While the method effectively decreases discrimination without altering training data
or the classification algorithm itself, it does not produce symbolic explanations or provide visual tools
for assessing group-level impacts.

The properties of all mentioned tools are summarised in Table 1. To knowledge, no existing solution
combines symbolic knowledge base analysis with visual group-level fairness inspection. The PSyKE
extension proposed in this work fills this gap by providing a heatmap-based visualisation tool where
each rule is analysed in terms of its impact on different privileged and unprivileged groups. This allows
users to identify biased or fair rules with fine granularity, and is applicable across multiple pedagogical
rule extractors.

2.3. Symbolic Knowledge Extraction and the PSyKE Framework

Knowledge extraction refers to the process of approximating an arbitrarily complex opaque predictive
model with a symbolic representation, for instance list or trees of propositional rules or logic programs,
these latter both human- and machine-interpretable [43]. A wide range of different post-hoc explain-
ability procedures fall under this approach. All these techniques allow users to better understand, trust
and potentially debug ML-based systems.

The PSyKE framework is a comprehensive platform supporting a broad range of tools for explainable
AL Currently, it includes the implementation of several pedagogical SKE algorithms, i.e., Rule-Extraction-
as-Learning [44], Trepan [45], CART [46], Iter [47], GridEx [48], GridREx [49], HEX [50] and CReEPy
[51], all of which learn symbolic surrogates from a trained black-box model. In addition to knowledge
extraction, PSyKE provides modules for explainable clustering based on the EXACT and CREAM
algorithms [52, 53], supervised discretisation of features, hyper-parameter tuning for knowledge
extractors [54], and various metrics to assess the quality and similarity of symbolic knowledge bases
[55, 56, 57, 58].

The modular and extensible design of PSyKE facilitates a wide range of explainable AI workflows.
However, to date, the platform does not offer any tool explicitly designed to fairness inspection and
bias detection, despite being an increasingly important requirement for ethical AL



3. A Visual Extension for Unfairness and Bias Detection in PSyKE

3.1. Combining Fairness, Explainability and Symbolic Al

Recent work in the field of explainable AI has begun to explore the relationship between model
interpretability and fairness. Relying upon an interpretable model does not guarantee that it is fair. A
bias may be present in the training data and thus propagated through the final model. A bias may be
developed during the learning phase of the predictive model or may become noticeable or even more
explicit when the model behaviour is translated into a symbolic representation.

Several approaches and metrics exist in the literature to check fairness constraints in symbolic knowl-
edge bases or models. Some of these focus on studying whether certain rules disproportionately cover
specific protected or unprotected groups. However, these analyses are based on numeric assessment
that may lack an immediate understanding and interpretation. Effective visual interfaces to facilitate
the analysis of domain experts are commonly absent in fairness-specific frameworks.

This work addresses this limitation by proposing a visual inspection tool dedicated to group fairness
assessments for symbolic knowledge bases, integrated into the PSyKE framework. By mapping rule
coverage across protected and unprotected groups into a heatmap, it is possible to visually detect
disparities and potential sources of bias and unfairness, thus supporting both interpretability and ethical
analysis.

3.2. Extending PSyKE for a Fairness-Aware Analysis

Starting from version 0.8.14, PSyKE is empowered with the visual extension proposed in this work.
Currently, the visual fairness analysis is only available for knowledge bases obtained through SKE,
even though in the future it will be extended to support generic knowledge bases and possibly opaque
predictive models.

Figure 1 shows the workflow to generate with PSyKE a heatmap expressing the group-level fairness
extent of a symbolic knowledge base extracted from an opaque predictor. More in detail, after having
trained an opaque ML model on a given data set, one of the SKE algorithms included in PSyKE can be
applied to distil a symbolic knowledge base mimicking the behaviour of the underlying model. The
symbolic knowledge is composed of an ordered list of Prolog clauses.

To build the heatmap, users have to define a set of relevant groups to be analysed. Indeed, the
identification of privileged or unprivileged groups, as well as the detection of protected and sensitive
features, is not performed automatically by PSyKE’s routines. The heatmap is generated according to
the following rationale:

+ Knowledge items, corresponding to logic rules, are evaluated in order and represented as heatmap
rows, from the top to the bottom;

« User-defined groups are represented as heatmap columns, following the same order given by the
user;

+ The heatmap cell corresponding to row r and column ¢ shows the percentage of individuals of
group c affected by rule r with respect to the cardinality of group c.

Formally, for each rule k, € K composing the knowledge base C, the subgroup of instances d" € D
of data set D covered by k, (i.e., those satisfying the preconditions of k,.) is calculated. Then, for each
group d. € D, the percentage of individuals also appearing in d" is calculated and placed in the cell
hyc of heatmap H:

| d"Nd, |
Bpe = ———— - 100. (1)
| de |
Clearly, all individuals are represented in H, i.e.:
> hpe=100%  VeeH. ()

reH
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Figure 1: Abstract workflow to obtain the heatmap expressing the group-level fairness extent of a symbolic
knowledge base extracted from an opaque predictor.

The knowledge base K is expected to be fair if all heatmap cells on the same rows contain similar
values, meaning that all groups are covered evenly by the corresponding rules:

Vr € H dp, st hye >~ p, VeeH. (3)

The heatmap can be customised by users, however some automated elaborations are performed by
the visualisation routine to enhance the resulting readability. For instance, two kinds of colourbars
are supported, one for binary classification and one for the multi-class case. For this latter, values
range between 0% and 100%, with the intensity and/or the colour visually identifying the corresponding
percentage. A more sophisticated output is available for binary classification tasks, as depicted in
Figure 2. In this case a diverging colormap is adopted and associated with a colourbar having symmetric
values. Two different colours are associated with the possible outcomes, which intensity expresses
a percentage value. Rules covering no data set individuals correspond to white background in the
heatmap cells. Differentiating the colours for the possible outcomes enables a quick interpretation
of the knowledge fairness. Indeed, it is straightforward to check if negative or positive outcomes are
generally given to some groups. Additionally, it is possible to identify rules that can be pruned due to a
low data coverage across groups.

It is pointed out here that knowledge bases producing fair heatmaps may still present biases or
unfairness. Conversely, when unfair heatmaps are generated, the knowledge is always biased.

3.3. Advantages, Limitations and Future Developments

The proposed visual extension for fairness offers several significant advantages in the context of fairness
and bias detection in symbolic knowledge bases.

Intuitive visualisation. By representing the impact of each rule across different groups in a heatmap
format, the tool introduced in this paper enables users to quickly identify disparities and potential
biases. This visual approach simplifies the complex analysis of symbolic models, making fairness
assessment more accessible.

Group-level analysis. The heatmap explicitly associates rules with the proportion of individuals
affected in each protected group, allowing fine-grained detection of differential impacts. This
facilitates the identification not only of overt biases in model behaviour, but also of subtle ones.
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Figure 2: Example of colourbar associated with a multi-class classification task (left). Values range between 0%
and 100%. Example of colourbar associated with a binary classification task (right). Values are symmetric with
respect to the bar centre, representing 0%. In this case the heatmap is also a quick tool to highlight if positive
outcomes are most likely given to a privileged group and if some rules can be pruned due to low coverage (white
background colour for the whole heatmap row).

Integration with symbolic models. Unlike many fairness tools that operate on black-box models
or raw data, this extension works directly on symbolic knowledge bases generated through a rule
extraction process, possibly within an interpretable ML workflow. This makes it highly suitable
for explainable Al applications where symbolic representations are preferred and/or needed.

User-driven flexibility. Users can specify which groups should be analysed, tailoring the fairness
assessment to the specific context and regulatory requirements of their application.

The proposed tool also has some limitations, that will be tackled in the future.

Dependency on the knowledge-extraction process. The effectiveness of the analysis is inherently
tied to the quality and completeness of the extracted symbolic knowledge. If the rules poorly
represent the underlying model or data, fairness assessments may be inaccurate or misleading.

Limitation to symbolic models. The PSyKE extension focuses on symbolic knowledge bases and
does not directly support black-box models or raw data. Therefore, its applicability is constrained
to contexts where symbolic extraction is feasible and meaningful.

Static analysis. The current implementation provides a snapshot of rule impacts but does not incor-
porate dynamic or causal analyses that could deepen understanding of bias origins or model
behaviour over time.

Scalability. For knowledge bases composed of many rules and/or in presence of numerous user-defined
groups, the heatmap visualisation may become complex to interpret or computationally expensive
to generate without further optimisation or interactive filtering.

Future efforts will be also devoted to provide a dynamic, interactive tool where users can customise the
final heatmap, for instance by filtering rules and groups or by combining multiple sensitive attributes.



4. Experiments

The PSyKE extension for fairness visual inspection has been evaluated on several case studies. Results
of experiments are reported in the following.

4.1. The Loan Data Set Case Study

The first case study involves the Loan data set." It includes 11 input variables that represent possibly
important factors influencing the decision to approve or deny a loan. The outcome is a binary variable
indicating the final loan decision. Additionally, the data set contains a unique identifier for each
loan application. It consists of 614 records in total, but only 480 are complete and free of missing
values. During the experiments reported here, records with missing data were removed, and categorical
attributes were transformed into discrete numerical features, in compliance with the majority of SKE
models implemented in PSyKE. The data set is shown in Figure 3a. Only the credit history and loan
amount input features are reported in the plot, since they appear to be the most discriminative for the
decision. Male applicants are represented by the & symbol, whereas female ones are identified with Q.
Blue and red symbols are associated with a positive outcome, whereas green and violet symbols are
used for negative outcomes. These different colours and symbols highlight that there is not an evident
bias in granting or denying loans based on the applicant gender. Conversely, the decision appears
strongly correlated with the credit history.

Three different techniques were used to objectively evaluated the fairness extent of the ML models
trained upon these data. First, the disparate impact index was calculated [59]. Second, an ML model
was trained and symbolic knowledge was distilled and analysed for fairness inspection. Finally, the
PSyKE heatmap was generated.

It is recalled here that the disparate impact metric evaluates the level of equal or unequal treatment
between two groups by comparing the proportion of individuals from each group who receive favourable
outcomes. The disparate impact index thus provides a quantitative assessment of the differential
treatment experienced by different demographic groups. The index may be calculated on the raw data
set to check the fairness extent of the data used in the ML workflow, on the opaque predictions provided
by the trained ML model and on the symbolic knowledge extracted from the black box. The disparate
impact calculated on the raw data set? was equal to 0.990, corresponding to a fair treatment between
males and females.

As for the ML workflow, the whole data set was split into training and test set with a 75%:25% ratio.
The former was used to train a random forest classifier composed of 25 base trees with maximum depth
equal to 4. The corresponding accuracy score measured on the test set was of 0.83. The disparate
impact measured for the black-box predictions was equal to 0.996, meaning equal treatment for male
and female applicants, aligned with the fairness extent of the underlying data set.

The CART extractor [46] was employed to extract symbolic knowledge from the random forest.
A maximum depth of 2 was set for the extractor. Predictions drawn on the basis of the extracted
knowledge exhibited a fidelity of 0.99 with respect to the random forest predictions and an accuracy
of 0.82 with respect to the data set output feature. The corresponding disparate impact was of 0.984,
close to that observed for the black box and the data. The decision boundaries identified with CART
are shown in Figure 3b and the equivalent symbolic knowledge is reported in Listing 1. CART outputs
basically confirm the evidence according to which the credit history feature plays a major role for the
final decision, whereas the gender attribute is not considered.

Despite clarifying the absence of gender inspection in taking the loan decision, the Prolog rules
obtained through CART give no information about the impact of individual rules on the male and
female groups, for instance due to other input features related with gender but not identified as sensitive

'https://www.kaggle.com/datasets/burak3ergun/loan-data-set
?All fairness and performance numeric assessment were carried out on the test set. Results may thus slightly differ depending
on the performed splitting into training and test sets
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Listing 1: Rules extracted with CART for the Loan data set.

loan(LoanAmount, Gender, Married,
CreditHistory > 0.5.

loan(LoanAmount, Gender, Married,
LoanAmount <= 547.5.

loan(LoanAmount, Gender, Married,

., CreditHistory, PropertyArea, YES)
., CreditHistory, PropertyArea, NO)

., CreditHistory, PropertyArea, YES).
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Figure 3: Loan data set instances projected according to the credit history and loan amount input features.
Male applicants are represented by the & symbol, whereas female applicants are identified with Q. Blue and red
symbols are associated with a positive outcome, whereas green and violet are used for negative outcomes. The
different colours and symbols clearly show how there is not an evident bias in granting or denying loans based
on the applicant gender. Conversely, the decision appears strongly correlated with the credit history. CART
decision boundaries basically confirm this evidence. Instances are randomly scattered around discrete values of

Credit history

(b) CART decision boundaries.

the x-axis in order to limit the visual hindrances of superposition.
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Figure 4: Heatmap generated with PSyKE for the Loan data set.

or protected. On the other hand, this information is clearly captured in the heatmap shown in Figure 4,
where each rule is estimated to evenly affect both groups of individuals.
From the heatmap it is possible to notice that:

1. There are 3 rules and 2 groups of interest, according with the knowledge base extracted with
CART and the data set under analysis;

2. The first rule, based on the credit history, is the one with largest coverage and affects in the same
manner both males and females;

3. Analogously, also the second rule appears fair, with a similar impact on both groups;

4. The last rule has a negligible impact on female applicants as well as on male ones, since it covers
a very limited subregion of the data set domain;

5. Female and male applicants exhibit a similar probability of being granted or denied a loan.

In conclusion, the data set appears to be fair as well as the random forest trained upon it and, in
turn, the symbolic knowledge extracted with CART. This evidence may be obtained via plots, disparate
impact assessments or the heatmap generated by PSyKE, without differences in the final results of the
fairness analysis.

4.2. The Adult Data Set Case Study

The second case study presented in this work is based on the Adult data set.® It includes 14 numeric
and categoric input variables to be used to predict whether the income of an adult person is above or
below an annual threshold of $50 000. The outcome is thus a binary variable. Data set instances affected
by missing data were removed, and categorical attributes were converted into discrete ones, as for the
previous case study. The data set is shown in Figure 5a. Displayed features are the individual education
expressed as a number and the individual sex. The plot follows the same logic of the previous case study,
with different colours and symbols to discern between male/female individuals and positive/negative
outcomes. It is possible to notice that the decision is mainly based on the education values, however
the behaviour for male and female individuals appear not the same, with a higher propensity to give
positive outcomes to male adults.

*https://archive.ics.uci.edu/dataset/2/adult
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Figure 5: Subset of the Adult data set instances (50%) projected according to the education (numeric) and sex
input features. Symbols and colours follows the same logic as in Figure 3. CART decision boundaries clearly
appear unfair, since they are based on the sex attribute.

As before, three methods were employed to evaluate fairness. The disparate impact calculated on the
raw data was equal to 0.358, highlighting a severe fairness issue related to a diverse treatment between
male and female individuals.

A K-nearest neighbours classifier parametrised with K=150 was trained on the data set (training:test
set ratio = 75%:25%). The corresponding accuracy score measured on the test set was of 0.83, whereas
the disparate impact observed for the black-box predictions was very low and equal to 0.066. This value
implies that the unequal treatment present in the training data was magnified in the ML model.

Symbolic knowledge was extracted with the CART algorithm parametrised with a maximum depth of
4. The resulting predictions shown a fidelity of 0.91 with respect to the ML predictions and an accuracy
of 0.79 with respect to the original data. The corresponding disparate impact was of 0.000. Indeed,
according to the knowledge extracted with CART, it is not possible for female individuals to obtain a
positive prediction (see the decision boundaries identified with CART in Figure 5b and the equivalent
symbolic knowledge included in Listing 2). CART outputs magnify the bias contained in the data and
learnt with the opaque model, according to which male individuals are favoured over female ones.

The unfair scenario emerging from the aforementioned considerations can be easily detected through



Listing 2: Rules extracted with CART for the Adult data set.

income(Age, ‘Education-num‘, ..., Race, Sex, ‘Capital-gain‘, ’<=50K’) :-
‘Education-num‘ =< 12.5.

income(Age, ‘Education-num‘, ..., Race, Sex, ‘Capital-gain‘, ’>50K’) :-
Sex = ’'M’.

income(Age, ‘Education-num‘, ..., Race, Sex, ‘Capital-gain‘, ’<=50K’).
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Figure 6: Heatmap generated with PSyKE for the Adult data set.

the heatmap generated with PSyKE and shown in Figure 6, where two rules out of three only affect
single demographic groups. From the heatmap it is possible to notice that:

1. There are 3 rules and 2 groups of interest, as expected,;

2. The first rule, based on the individual education, has a high coverage and affect in the same
manner both the male and female population;

3. Conversely, the second rule only affects male individuals, by assigning a positive outcome;

4. Analogously, the third rule only affects female individuals, but by assigning a negative prediction;

5. From the analysis of the second column, it is clear that for females it is not possible to obtain a
positive outcome, regardless of the values of other input features.

In conclusion, the data set of this case study is strongly biased, exhibiting an evident unequal treatment
between female and male groups, and this evidence may be highlighted via traditional methods as well
as thanks to the heatmap generated by PSyKE.

5. Conclusions

In this work, a visual extension of the PSyKE platform designed to support the fairness-aware inspection
of symbolic knowledge bases is introduced. Through the analysis of the impact of individual symbolic
rules at a group level and the visualisation of their coverage through a heatmap, the proposed approach
enables users to detect potential biases and disparities across protected demographic groups. This
enhancement contributes to bridging the gap between interpretability and fairness in post-hoc explain-
able Al models, particularly in settings where symbolic rule representations are used to approximate
complex predictive models.



The presented tool allows practitioners to go beyond global fairness metrics, towards the inspection
of how each extracted rule affects different subpopulations. This capability is essential for ethical
auditing, regulatory compliance and the development of responsible Al systems.

Future work will focus on extending this framework to support additional fairness criteria and, more
concretely, the integration of bias mitigation techniques in the SKE workflow, in order to obtain not
only an explainable model out of an opaque one, but also a fair predictor from a biased one. Further
investigations may involve the exploitation of PSyKE to obtain counterfactuals that can be used for
fairness assessments and the study of causality to empower the PSyKE framework.
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