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Abstract

We investigate individual fairness in generative probabilistic classifiers by analysing the robustness of posterior
inferences to perturbations in private features. Building on established results in robustness analysis, we
hypothesise a correlation between robustness and predictive accuracy—specifically, instances exhibiting greater
robustness are more likely to be classified accurately. We empirically assess this hypothesis using a benchmark
of fourteen datasets with fairness concerns, employing Bayesian networks as the underlying generative models.
To address the computational complexity associated with robustness analysis over multiple private features
with Bayesian networks, we reformulate the problem as a most probable explanation task in an auxiliary Markov
random field. Our experiments confirm the hypothesis about the correlation, suggesting novel directions to
mitigate the traditional trade-off between fairness and accuracy.
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1. Introduction

The widespread adoption of machine learning and knowledge-based systems for decision support and
recommendation has made the development of tools and metrics for algorithmic fairness increasingly
urgent [1]. Algorithmic fairness generally refers to the identification and mitigation of biases in model
predictions with respect to sensitive, or private, features. However, simply omitting these private
features from the model is often insufficient: it can significantly degrade predictive accuracy and fails
to guarantee fairness, as other features may remain highly correlated with the excluded ones [2].

In this paper, we focus on generative probabilistic models that produce predictions in the form of
posterior distributions over the target variable, conditioned on a complete assignment of both private
and public features. For such models, biases can be naturally characterized through the robustness
of predictions to perturbations in private features. We demonstrate how this notion of robustness
aligns with established formulations of inference under non-ignorable missingness [3]. Prior work
has further shown that robustness can be positively correlated with predictive accuracy [4]. This
connection is particularly compelling, as it suggests a mitigation strategy for the classical trade-off
between fairness and accuracy [5]: at the individual level [6], fair classifications may also be accurate,
allowing standard predictive models to be employed without modification for the robust instances.

To validate such a conjecture we consider an extensive benchmark including fourteen datasets
related to fairness. In our study, we adopt Bayesian networks as probabilistic generative models,
compute the robustness, based on a fairness deviation measure [7] for each test instance, and evaluate
the correlation with the predictive performance by using the Brier score. The empirical results we
observe are in line with those reported in the earlier literature on robustness (e.g., [8]): the most robust,
and hence, in our setup, fair, instances are also “easier” to classify. To the best of our knowledge, our
work is the first attempt to apply concepts from robust probabilistic methods to fairness analysis.
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We leverage this novel connection to offer a more interpretable perspective on fairness. Future work
will investigate how this link might be harnessed to actively control fairness during training, as well as
evaluate its effectiveness in comparison to existing methods (e.g., [9]).

The robustness measure we adopt could, in principle, require a brute-force computation over all
possible joint assignments of the private features. However, we reformulate the inference as a most
probable explanation (MPE) task within an auxiliary Markov random field derived from the original
Bayesian network. This reformulation yields computational benefits, which we both formally establish
and validate empirically.

The code used for the experiments is available for reproducibility in a dedicated Github repository.!
The repository includes references to the original datasets, preprocessing scripts, discretised versions
of the datasets, and a custom implementation of some inference algorithms.

The paper is organised as follows. In Section 2, we define the necessary background on probabilistic
graphical models. Our approach to fairness analysis is discussed in Section 3. The mapping to Markov
random fields is derived in Section 4. The benchmark we adopt is detailed in Section 5, while the
results of our experiments are in Section 6. A critical discussion on the limitations of the present
work and possible strategies to bypass them is in Section 7, while our conclusions are in Section 8.
Technical results and additional experimental analyses are gathered in the appendix.

2. Basics

Let us first review the necessary background information on probabilistic graphical models. We
remind the reader to [10] for deeper insights.

Variables, Potentials, and Tables. We denote variables by uppercase letters and their states with
lowercase letters. A subscripted variable in Q is used instead for the sample space. Thus v € Qy
is a generic state of the variable V. We focus on discrete variables only. A non-negative function
¢ : Qy — Ris called a potential over V. A potential over V that is also normalised to one is called
probability mass function (PMF) and denoted as P(V). PMF P gives the probability P(v) to V =v
for each v € Qy. A conditional probability table (CPT) for V given W is a collection of PMFs over V
indexed by the values of W and it is denoted as P(V|W). We also define potentials over joint variables.
As an example, the CPT P(V|W) is a special example of a multi-variate potential ¢(V, W).

Bayesian Networks (BNs). Consider a set of variables V. ABN B over V is a collection of CPTs, one
foreach V € V, say {P(V|Pay)}yeyv where Pay € V' \ {V} for each V € V. From the BN specification B,
we induce a directed graph ¢ whose nodes are in one-to-one correspondence with the variables in V'
and such that there are directed arcs from W to V for each W € Pay and V € V. Here we only consider
acyclic BNs, i.e., BNs such that ¢ does not contain directed loops. An acyclic BN B compactly defines
ajoint PMF P(V) as follows:

Pw)= [] P(vipay), ¢9)
VeV

for each v € Qy, where the values v and pay, are those consistent with v. Given a dataset of i.i.d. joint
observations of V, there are various structural learning techniques to obtain a directed acyclic graph
over the variables. Typical approaches are maximising likelihood-based scores. Once the graph is
detected, the BN CPTs can be quantified from the data by means of a count function 7, i.e.,

S
n(v,pav)+m

Y veq, Ry, pay) +s

P(vlpay) = 2)

where a Laplace smoothing with equivalent sample size s > 0 is preferred to a frequentist estimate.
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Given a node W, the Markov blanket Vi, of W is a subset of V' including the variable W, its parents
Payy, the children Chy, of W, and the parents of those children. We denote as %y the subgraph of ¢
including only the variables in V. An example is in Figure 1. A BN over Vi and based on %y can be
obtained by taking the CPTs of W and its children from B and arbitrarily setting the marginal PMFs for
the parents of W and the parents of its children. In the following we will use uniform PMFs for these
marginals and denote such a BN as Byy.

‘ Race »----" Education

Figure 1: The directed graph of a BN. The nodes outside the Markov blanket of node Income are dashed.

Markov Random Fields (MRFs). A MRF M over V is a collection of k potentials {¢i(Vi)}i~c:1,
with V; €V for each i = 1,..., k and such that for each V € V there is at least an index i for which
V € V;. Given the MRF M, we induce an undirected graph ¢); whose k nodes are in correspondence
with the joint variables {Vi}f:l and such that there is an edge between two nodes if and only if the
corresponding joint variables share at least one variable. An example is in Figure 2. A MRF defines a
joint PMF P(V) as follows:
n
Pw)x [[piwi), 3)
i=1

for each possible value v of V, where the values of v; are those consistent with v.

. Education )
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Figure 2: The undirected graph of a MRF. Labels over edges highlight the variables shared among potentials.

A BN can be intended as an MRF whose potentials are the CPTs. Because of Eq. (1), for those models,
there is no normalisation constant to compute in Eq. (3). As an example the MRF induced by the BN
in Figure 1 is based on the undirected graph in Figure 2.

Inference. A typical inference tasks in MRFs and BNs is updating. This consists in the computation
of the posterior PMF P(Vp|vEg) for a queried variable V € V, given an evidence about some other
variables Vi = vp with Vi € V \ {Vp}. Marginal MAP (MMAP) consists instead of finding the most
probable configuration of a joint queried variable Vp € V' given the evidence, i.e.,

vy = argn};gxP(levE) . 4)

If, in particular, V' = (V(, V), i.e., all the variables are either queried either observed, the task is
called most probable explanation (MPE). Moreover, notice that the maximisation in Eq. (4) is with
respect to v, the probability of the evidence P(vg) is a positive constant and the task in Eq. (4) can be
equivalently solved by replacing the conditional probability in the r.h.s. with a joint probability.



Both updating and MPE tasks can be solved exactly by variable elimination schemes. Given an
elimination order over V/, this consists in processing the potential obtained by multiplying all the
potentials, including the variable we want to eliminate. The processing consists in the marginalisation
of the variables not involved in the query, the instantiation of the observed variables and the queries
of the updating task, and the maximisation of the queried variables of the MPE. The maximum arity of
the potentials created in this way is called treewidth. Inference with this scheme is exponential with
respect to this parameter.

3. (Probabilistic) Fairness Analysis

We are interested in evaluating the presence of biases in a training dataset & over the discrete variables
V = (Y, X, Z). The dataset refers to a classification task where the target variable is Y and the features
are distinguished between private, those in X, and public, those in Z. A test dataset 2’ over the same
variables is also assumed available. We learn from & a generative probabilistic model in the form of
ajoint PMF P(Y, X, Z). In our classification task, we want to identify the most probable value of Y
given a test instance (&, 2) of the features taken from 2/, i.e.,

y*:=argmax P(y|&, 2), (5)
yeQy

where a zero-one loss function is considered just for the sake of light notation. Besides achieving
a good predictive level on the test instances, we might be interested in bounding the sensitivity of
inferences to changes in the values of the private features and, ideally, keep these changes as small as
possible. This could be done at the predictive level, i.e., checking whether the same class as in Eq. (5) is
obtained for perturbed values of the private features &. However, a deeper analysis can be achieved by
a dissimilarity measure § for the PMFs over the target Y. We thus consider the following optimisation:

x* :=arg rggx 6[P(Y|x, 2),P(Y|Z,2)], (6)
zeQx

and call fairness robustness level (FRL) of the instance (&, 2) the corresponding maximum, i.e.,
o(&,2):=6 [P(lec*,ﬁ),P(Ylafc,ﬁ)] . @

It is a simple remark that p = 0 implies a context-specific irrelevance of the private features to the
target given a particular instance of the public features.

Let us consider, for the sake of simplicity, the case of a Boolean target Y and take as distance 6 the
Manhattan distance, i.e.,

IP(y0) — P (y0)| + P (y1) — P'(y1)I
2

§[P(Y),P'(V)]:= =|P(y0) - P'(yo)l, 8)

where yj is a short form for Y = 0 and similarly for y;. Because of Eq. (8), Eq. (6) rewrites as:

@ 1= arg max [Pyole, 2) - Pyl 2)] ©

It is a trivial exercise to notice that considering y; instead of y, in Eq. (9) would not affect *. This
implies that the FRL corresponds to the fairness deviation measure often used in the literature to rank
unfairness [11]. Rather than directly addressing the optimisation in Eq. (9), we can focus on the two
following optimisations:

x = argmax P(ylxz,2), (10)
xeQx

x = arg min P(ylx,2). an

- EEQX

This is possible because of the following result whose proof is in the appendix.



Proposition 1. The solutions of the optimisations in Egs. (9), (10) and (11) are linked by the following
relation: _ o _ R
o ::{ i ifP(yol, 2) < 5 [P(yol, 2) + P(yolz, 2)] , 12)

otherwise.

Itis important to notice that the task in Eq. (10) is substantially different from an MPE task as in Eq. (4)
because the queried variables in Eq. (10) are after the conditioning bar (see discussion in Section 2).
Thus, while in MPE we can equivalently address the task in the joint model instead of the conditional
one becase the evidence is always the same, the same cannot be done with Eq. (10), and similarly for
Eq. (11). These tasks can be regarded as a conservative inference based on the law proposed in [3]. Yet,
no standard BN algorithm can solve the task, while a brute-force approach requires a number of BN
inferences exponential with respect to | X |. In [12], the MMAP-like optimisation has been mapped to
a credal network inference, whose complexity might be still demanding [13]. Here we leverage on the
fact that we cope with complete observations to map the task to a proper MPE task in an auxiliary
MRE This is detailed in the next section.

4. Robustness of BN Classifiers as a MRF MPE

Thanks to Proposition 1, we can solve the optimisation in Eq. (9) and hence compute the FRL in Eq. (7)
by solving the optimisations in Egs. (10) and (11). In this section we show how these BN tasks can be
equivalently addressed in an auxiliary MRF M whose specification is discussed here below.

First, it is a trivial exercise to notice that, for the classification task in Eq. (5), the BN can be equival-
ently restricted to the BN over the Markov blanket of Y. In the following, we therefore assume that the
BN coincides with the Markov blanket of Y.

Let X’ and Z' denote, respectively, the private and public parents of Y and by X" and Z" the
private and public children of Y. We define a potential ¢y (X', Z') as:

P(ylx',2")
N2l)yi=— 13
¢y, 2) PUol, ) (13)
for each ' € Q x+ and 2z’ € Q. Similarly, we define a potential for each X € X" and Z € Z" as follows:
P(x|paly, y1)
(x,pay) = ————, (14)
Px(xpax P(x|paly, yo)
P(zlpa’,, y1)
(z,pay) = ———, (15)
$z(zpaz P(zlpa’,, o)

for each x € Qx, paly € Qpyy, 2€Qz, and pal, € Qpy,, where Pa', :=Pay \ {Y} and the same notation
is also used for Z. Overall, Eq. (13) together with Eqgs. (14) and (15) define a MRF ¢(X, Z) based on
1+|X"|+|Z"| potentials. The following result, whose proof is in the appendix, holds.

Proposition 2. Consider the MRF induced by the potentials in Eq. (13) and Egs. (14) and (15). Let
(X, Z) denote the joint PMF induced by such a MRE The BN optimisation in Eq. (11) is equivalent to
a MPE task in this MRE namely:

x = arg max ¢(x, 2). (16)
- xeQx
For the task in Eq. (10) we have instead.:
T =arg min ¢(x, 2). (17)
xeQx

Solving the task in the MRF has the same worst-case complexity, exponential with respect to | X, as
trying a brute-force in the BN according to Egs. (10) and (11). Yet, generally speaking the treewidth of
the MRF can be smaller than | X |. In particular, any X” € X" that is not a parent of one of the children
of Y can be eliminated by processing ¢y alone, this potentially inducing a significant reduction of
the computational complexity required to solve the task. This claim will be empirically validated in
Section 6.



5. A Benchmark of Datasets for Fairness Analysis

The main goal of this paper is to investigate whether the FRL defined in Eq. (7) has a relation with
the predictive performance of a probabilistic classifier. For a first empirical analysis, we consider
fourteen datasets providing a suitable benchmark for fairness-aware machine learning analyses. These
datasets have been also considered in [14], where the choice of their private features is discussed and
detailed. Table 1 contains some relevant information about the datasets. Apart from Communities
& Crime, all datasets have a binary target variable Y. The target of that dataset is instead an integer
corresponding to the number of violent crimes in a selected area. A binary Y is obtained by a median-
based discretisation (sample median of 374 crimes). Continuous features are similarly processed by
quantile-based discretisation leading to quaternary variables. Rows with missing values are finally
ignored.

For the experiments, we consider a ten-fold cross validation scheme. The folds are obtained by
stratification with respect to the target values. For the sake of reproducibility, the code used to process
the original datasets as well as the corresponding discretised (and anonymised) datasets are available
in the Github repository of the paper (see Footnote 1). The results of our experiments on these data
are discussed in the next section.

Table 1

The datasets considered for the experiments. Besides the name of the dataset and the target variable, we report
the number of public and private features, the total number of records, the imbalance level A describing the
relative occurrence of the least frequent class, and the number k of folds (out of ten) on which fairness is achieved
by design (see Section 6).

Dataset Y I X| |Z] 2] Ak
Adult Income (50k) 3 9 48’842 24 0
Bank marketing Deposit Subscription 2 13 4521 d2 5
Communities & Crime Violent Crimes 1 20 1°994 .50 10
COMPAS recid. Two-year Recidivism 2 8 7214 45 1
COMPAS violent recid. Two-year Violent Recidivism 2 8 4738 a6 3
Credit card clients Default Payment 3 20 30000 .0005 10
Diabetes Re-admission 1 16 101’766 46 10
Dutch census Occupation 1 10 60420 A48 10
German credit Creditability 2 19 1°000 30 10
KDD Census-Income Income (50k) 2 21 200°000 .07 0
Law school Pass the bar exam 2 7 20’512 05 1
OULAD Final Result 3 9 31482 46 10
Student-Mathematics Final Grade 2 31 395 3310
Student-Portuguese Final Grade 2 31 649 a5 10

6. Experiments

For a deeper characterisation of the relation between the FRL in Eq. (7) and the predictive performance
of the classifier, together with the zero-one accuracy of the single prediction in Eq. (5), we also consider
the more informative Brier score, that is defined here as the square of one minus the probability
assigned by the classifier to the actual class, i.e.,

B, &, 2) = [1-P(JIZ, 2)]%. (18)

A zero Brier score indicates perfect confidence in the correct class. It is easy to notice that, with binary
classes, the prediction is correct if and only if 8(9, &, 2) < 0.25.
We adopt BNs as probabilistic classifiers and the Pyagrum? Python library to learn BNs from the

2pyagrum.readthedocs.io.
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data and compute the queries of interest. In particular, we employ a tabu local search with list size
equal to 10 and a maximum number of consequent iterative changes equal to 100.

We focus on individual fairness by evaluating complete feature instances. In this context (see Sec-
tion 4), features that lie outside the Markov blanket of the target variable are irrelevant for prediction.
When private features are entirely irrelevant to the target, the classifier achieves fairness by design,
without any trade-off against the accuracy, and the FRL is trivially zero on all test instances. In our
cross-validation scheme, with a same dataset, we might obtain different BN topologies for the different
folds. The last column of Table 1 reports the number of folds for which the BN is fair by design.

We compute the Brier score of each test instance. The low number of private features (| X| < 3)
allows to obtain the corresponding FRL by a brute-force approach on the BN according to Eq. (6). Yet,
for a comparison, we obtain the same results by also solving the MPE task in the auxiliary MRF as
discussed in Section 4. In the latter case, we use a custom implementation of the variable elimination
algorithm, that also allows to solve the minimisation task in Eq. (17). To solve also the latter task, we
replace each potential with its opposite.

FRL

Brier Score Accuracy

Figure 3: Results of the experiments with the Adult dataset.

A first example of our empirical analysis is provided by Figure 3, where the results for the Adult
dataset are summarised. The scatter plot displays the Brier score versus the FRL value for each test
instance. Instances satisfying §(7, &, £) < 0.25—positioned in the left region of the plot—correspond to
cases that are accurately classified (approximately 84% of the total sample). For these points, because
of Eq. (9), the FRL cannot exceed the value of P(y|&,2) =1 —+/(7, &, 2). This explain why all these
points are located under a parabolic curve. Similar considerations can be done for the incorrectly



classified instances corresponding to f(j, &, £) > 0.25. This also explains the smaller FRL ranges we
observe for less extreme values of the Brier score, as they can be observed in the boxplots obtained by
equal-frequency binning with respect to the Brier score and depicted on the upper part of the figure.

The most notable aspect of Figure 3 is the set of histograms on the right. These depict predictive
accuracy across ten equally sized subgroups of instances, defined by the quantiles of the FRL distribu-
tion. The results reveal a clear decline in prediction accuracy as FRL increase. This trend is consistent
with the conjectured relationship between accuracy and robustness/fairness introduced in Section 1.

Figure 4(a) presents the same accuracy histograms alongside the corresponding Brier score levels.
Predictive performance deteriorates with increasing FRL values, as indicated by both the decline in
accuracy and the rise in Brier losses (dashed lines). A similar pattern emerges in Figure 4(b), where
the KDD Census-Income dataset is considered.
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Figure 4: FRL versus accuracy and Brier score histograms for datasets where at least one private feature remains
predictive of the target in each fold.

As shown in Table 1, Adult and KDD Census-Income are the only datasets of our benchmark not
achieving fairness by design on any fold (i.e., such that k = 0), this meaning that no BN learned from
these datasets makes all the private features irrelevant to the target.



Let us now consider the datasets for which fairness by design is achieved only on some folds, but
not on all of them (i.e., 0 < k < 10). On these folds we have FRL= 0 by construction. For an effective
visualisation of the relation between FRL and the predictive accuracy (or Brier score) we use the same
kind of histograms as in Figure 4, with an additional bar/line of fixed width on the left side, depicting
the predictive performance on the instances with FRL= 0. The results are in Figure 5. Also for these
models we observe a clear degradation of the predictive performance for increasing FRL levels.

T T I I
1 [ Accuracy (FRL>0) | | [ Accuracy (FRL>0)
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0.5 ] a
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0.25 S I R *
o Bl 0 |
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075 T T 1 |
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[ Accuracy (FRL = 0)

---------- Brier Score

[ Accuracy (FRL > 0)
[ Accuracy (FRL=0)

---------- Brier Score
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0.5

0.5

0.25
0.25

0.25 0.5
FRL FRL

(c) COMPAS recid. (d) cCOMPAS violent recid.

0.25

Figure 5: FRL versus accuracy and Brier score histograms for datasets where at least one private feature remains
predictive of the target in at least a fold.

On the remaining eight datasets, fairness is achieved by design on each fold (i.e., k = 10, see Table 1)
and we have zero FRL on all the instances in the dataset. Yet, for a further validation of our conjecture,
we re-train the BN structures by forcing arcs between the target and all the features. This can be
trivially done by constraining the local search meta-heuristics we adopt. The results, depicted in
Figure 6, confirm the trend observed in the previous experiments. We notice that degradation of the
performance for higher FRLs is typically less evident on datasets on which the predictive performance
of the BNs is poorer (such as those in Figs. 6(e)-6(h)).
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Figure 6: FRL vs. accuracy/Brier for datasets where the target is forced to be a parent of the features.



Finally, to evaluate the computational advantages of the MRF-based approach to the computation

of the FRL with respect to the brute-force BN method, Figure 7 shows boxplots of the ratio between
the execution times for each test instance across the two methods. The low number of private features

(i.e., | X| = 3) makes the difference in performance between the two approaches small. Nevertheless,

as expected, the datasets with three private features exhibits the largest discrepancy.
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Figure 7: Relative execution times for FRL computation in the BN (Eq. (7)) with respect to the MRF approach
(Section 4). The x-labels denote the dataset and the number of private features.

Finally, Figure 8 presents the boxplots of the same ratio while treating as private an increasing
number of public features of the Student-Mathematics dataset. These results underscore the
computational efficiency of the MRF-based method, particularly as the number of private features

grows.
+

300 -
100 +
+
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TERL-BN
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wifem

Figure 8: Relative execution times for FRL computation in the BN (Eq. (7)) with respect to the MRF approach
(Section 4) for in increasing number of features treated as private in the Student-Mathematics dataset.



7. Limitations and Outlooks

The analysis conducted in this study is purely correlational, and the directed graphical models em-
ployed here are not intended to capture causal relationships. Accordingly, the fairness deviation
measure we derived via the FRL does not carry a causal interpretation, and the different instantiations
of the private features should not be interpreted as interventions. The approach of Plecko and Barein-
boim [15] on counterfactual fairness offers a promising foundation for integrating causal reasoning
into the models discussed here.

Our work focuses on discrete features for the sake of a simple presentation. An extension to a
hybrid setup mixing discrete and continuous features could be obtained within the framework of
linear-Gaussian BNs [10], for which also extensions to the causal setup have been already discussed.
The situation is different for the target variable: extending the framework to regression tasks with a
continuous target would require a substantial reformulation of the concepts introduced in this paper.
In contrast, our focus on binary classes can be naturally extended to non-binary targets by conducting
classification and FRL evaluations through pairwise dominance tests applied to each pair of classes.

Regarding the measure considered to evaluate the robustness of the posterior inferences, the current
focus on the Manhattan distance has clear computational advantages related to the linear structure of
such measure. Coping with non-linear alternatives (such as the KL) could be much more challenging,
while an extension to variance and similar measure of variation could be more manageable, and
naturally allow for the extension to continuous targets.

Once our framework will be extended to hybrid models that incorporate both continuous and
discrete variables, the experimental evaluation should be revisited. A more refined representation
of the model variables is expected to enhance the overall predictive accuracy. Assessing whether the
discriminative power of the FRL remains stable under these conditions constitutes a necessary future
investigation. A validation under controlled bias scenarios® should be also considered.

Finally, extending the framework from individual to group fairness would be conceptually straightfor-
ward, although it would preclude the use of the MRF mapping. To maintain computational tractability
and avoid costly inference procedures, more efficient models-such as probabilistic circuits [16]—could
serve as practical alternatives to BNs.

8. Conclusions

We examined whether the correlation between robustness and predictive accuracy—commonly
observed in the field of robust probabilistic models—also holds in a fairness-aware setting. The results
of an extensive empirical evaluation are promising: predictive accuracy consistently declines for less
robust instances. This observation opens new avenues for mitigating the classical fairness—accuracy
trade-off. Specifically, instances with high fairness scores can be handled by standard models, while
a fairness-constrained, potentially less accurate model could be selectively applied to non-robust
instances. Exploring this targeted approach to fairness mitigation represents an exciting and necessary
direction for future research in machine learning.
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A. Proofs

In this appendix, we gather the proofs of the two technical results of the paper.

Proof of Proposition 1. The following straightforward result:
max| £(2)] = max{max[ (], max[~f(1)] | , (19)
allows to rewrite the maximum of the optimisation in Eq. (9) as follows:
max{i?éﬁ [P(yolx, 2) — P(yold, 2)] , Inax [P(yol&, 2) —P(yolcc,ﬁ)]} (20)

As P(yol&, 2) is a constant, we can move the maximisation with respect to x and obtain the maximum
and the minimum in Egs. (10) and (11), i.e.,

max {[P(yl|%, 2) - P(yol&, 2)] , [P(yolZ,2) - P(yolz, 2)]} . 21

The above maximum between two quantities can be clearly rewritten as:

P(yolz,2) = P(yol®,2) if P(yolx, 2) — P(yol, £) > P(yol&, £) — P(yolz, 2),
N N . (22)
P(yol&, 2) — P(yolx,2) otherwise.
And hence:
P(yolx,2) = P(yol&,2) ifP(yol,2) + P(yolz, £) > 2P(yol2, 2), 23)
P(yol&,2) — P(yolzx, 2) otherwise ’

which can be seen as an equivalent formulation of Eq. (12), where the values of the maxima appear
instead of the points where these maxima are achieved.

Proof of Proposition 2. As we cope with a Boolean target variable, i.e., |Qy| = 2, the objective function
of the optimisations in Eqgs. (10) and (11) rewrites as follows:

. _ P,z 2) P(yo,x,2) 1
P(yolw, 2) = =222 J0 = (24)
P(w,Z) P(J/O,m»z)‘i'P(yl,iE,Z) 1+ (yl’m'z)
P(yo,x,2)
As f() = 1+ )~! is a monotone decreasing function of t, we can address Eq. (11) as follows:
P ) ’ Z
T := arg max M (25)
xeQx P(yo,a:,z)
The BN factorisation in Eq. (1) allows to rewrite the objective function in Eq. (25) as follows:
P(y1,z,2)  Ilvew,x,z)P1(vipa,) Pi(vipa,) 26)

P(yo,z,2)  Tlvew,x,2PovIpay) v x.2) Po(vipay)’

where Py denotes the elements of the BN CPTs when the states (v, pay,) are those consistent with (y1, x, £)
and Py when consistent with (yo,x,2). The product in the rightmost hand side of Eq. (26) can be
restricted to ratios of CPT values including Y, i.e., the CPTs associated with Y and its children. This
corresponds to the joint PMF of the MRF and proves Eq. (16). The result in Eq. (17) follows analogously.



B. FRL-vs-Brier-Score Curves

The scatter plot in Figure 9 details the output of an experiment with the Bank marketing datasetin
terms of relation between FRL levels and Brier scores. Here, as well as in similar plots we obtained for
the other datasets, the points seem to lie on different curves. In the figure, two groups of seven points,
each belonging to a different curve, have been highlighted in black. The points in a same group have
the same value of the private feature marital status and are obtained by changing the public features.
Namely, the points with higher Brier scores are those associated with single, and the other ones with
married. We also observe that each point in a group has a corresponding point in the other group with
the same FRL value. These pairs correspond to instances with the same public states and different
private state. The reason is that, as a straightforward consequence of the definition, two instances
with the same public feature have the same FRL level.
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Figure 9: A FRL-vs-brier-score scatter plot for the the Bank marketing dataset.
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