CEUR-WS.org/Vol-4149/paperl.pdf

CEUR
E Workshop
Proceedings

published 2026-01-15

QuickXPlain Explanations for Feature Model
Configuration

Alexander FelfernigT, Damian Garber!, Viet-Man Lef and Sebastian Lubos’

Institute of Software Engineering and Al Graz University of Technology, Graz, Austria

Abstract

Explanations play an important role in the context of feature model (FM) configuration. First, they can assure the
interpretability of the calculated solutions (configurations) as a result of a feature model configuration process.
Beyond this, explanations can support engineers (developers) of feature models in the identification of issues
in the model, i.e., to figure out as to why on a semantic level the feature model does not fully represent the
existing product (service) domain knowledge. In this paper, we discuss different basic explanation scenarios in
the context of feature model development and feature model configuration. We show how these explanations can
be supported on the basis of the concepts of conflict detection and model-based diagnosis.

Keywords
QuickXPlain, Explanation, Feature Model Configuration, Conflict Detection, Model-based Diagnosis

1. Introduction

Feature models (FMs) can be used for the representation of commonality and variability properties of
highly-variant artifacts such as physical products and software [1, 2, 3, 4, 5, 6]. Formal representations
of feature models such as SAT problems [7] and constraint satisfaction problems (CSPs) [8, 9] are often
used to find a solution for a given feature model configuration task and — beyond that — for supporting
different types of analysis operations used to assure the well-formedness and semantic correctness
of feature models [3, 10]. Compared to the representation as SAT problem, CSPs allow for a more
flexible knowledge representation, for example, in terms of a direct representation of logical equivalence
properties and implications [4].

Independent of the used FM knowledge representation, it is important to provide users with ex-
planations [4, 11, 12, 13, 14]. Such explanations can serve different purposes ranging from assur-
ing interpretability for the user, increasing the trust level of a user, enhancing a user’s domain
knowledge, to persuading users to include/exclude specific features into/from an FM configuration
[12, 15, 16, 17, 18, 19, 20, 21]. In this paper, we focus on the aspect of interpretability. We discuss different
explanation scenarios in the context of feature model development and feature model configuration.
For example, in the context of feature model development and maintenance, a modeler needs to know
the set of features responsible for the violation of a specific property (e.g., void feature models or
dead features in feature models). Furthermore, users of an FM configurator are interested as to why
specific features have been included but also why other features have been excluded unexpectedly
(the counterfactual case). In the following, we discuss different explanation scenarios and show how
standard QuickXPLAIN-style conflict detection [22, 23] and diagnosis [24] algorithms can be applied to
generate explanations and corresponding repairs in the case of inconsistencies.

The major contributions of our paper are the following: (1) we formalize basic explanation and
repair tasks in FM development and configuration, (2) we show how corresponding explanations and
repairs can be determined with existing conflict detection and diagnosis algorithms, and (3) to increase

ConfWS’25: 27th International Workshop on Configuration, Oct 25-26, 2025, Bologna, Italy

"These authors contributed equally.

& alexander felfernig@tugraz.at (A. Felfernig); damian.garber@tugraz.at (D. Garber); v.m le@tugraz.at (V. Le);
sebastian.lubos@tugraz.at (S. Lubos)

@ 0000-0003-0108-3146 (A. Felfernig); 0009-0005-0993-0911 (D. Garber); 0000-0001-5778-975X (V. Le); 0000-0002-5024-3786
(S. Lubos)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

mailto:alexander.felfernig@tugraz.at
mailto:damian.garber@tugraz.at
mailto:v.m.le@tugraz.at
mailto:sebastian.lubos@tugraz.at
https://orcid.org/0000-0003-0108-3146
https://orcid.org/0009-0005-0993-0911
https://orcid.org/0000-0001-5778-975X
https://orcid.org/0000-0002-5024-3786
https://creativecommons.org/licenses/by/4.0/deed.en

understandability, we provide examples of how to generate explanations and repairs. Specifically, we
show how to create the mentioned explanations and repairs with the algorithms QUickXPrAIN [22]
and FAsTDIAG [24, 25]. With these contributions, we aim to show different ways of integrating conflict
detection and diagnosis as a basis of explanation generation in FM modeling and configuration.

The remainder of this paper is organized as follows. In Section 2, we introduce an example feature
model that serves as a working example throughout the paper. Thereafter, in Section 3, we introduce
two basic algorithms supporting the tasks of conflict detection and diagnosis. In Section 4, we show how
these algorithms can be applied to support different FM-related explanation scenarios. A discussion of
threats to validity is provided in Section 5. In Section 6, the paper is concluded with an overview of
research issues.

2. Example Feature Model

In the following, we present an example feature model from the domain of survey software configuration,
which will serve as a running example throughout this paper (see Figure 1).

survey (s)|¢o

t
payment (p) testing (1) (st)

7 ~———e
Cs ,é;cludes Cs requires (o
¥

license no multiple multi
(1) license (n) choice (m)| | media (mm)

Figure 1: An example feature model (survey software).

The features in this model are arranged hierarchically including the following relationships: (1)
mandatory relationships specify that certain features must be included in every configuration (e.g., the
payment feature is required to be included in every configuration), (2) optional relationships indicate that
certain features may be included, but their inclusion is optional (e.g., the statistics feature can optionally
be added to a configuration), (3) alternative relationships specify that, within a set of sub-features, exactly
one sub-feature must be chosen if the parent feature is included (e.g., one license type must be selected),
and (4) or relationships require that at least one feature from a set of sub-features must be chosen if the
parent feature is included (e.g., question answering (QA) can be handled with multiple-choice questions,
multimedia-based representations, or both). In addition, cross-tree constraints can be used to impose
further restrictions: (1) excludes constraints between two features prevent both from being included
in the same configuration (e.g., if no license is selected as the payment model, ABtesting cannot be
included in the same configuration), and (2) requires constraints between two features f, and f, specify
that if f, is included, f; must also be included in the final configuration (e.g., the inclusion of the
ABtesting feature necessitates the inclusion of statistics).

To enable FM configuration, feature models must be translated into a formal representation. Common
approaches for this translation include SAT problems [26, 27], answer set programs (ASPs) [28], and
constraint satisfaction problems (CSPs) [8, 29, 30]. In this paper, we adopt CSPs as the formal represen-
tation for feature models. For a detailed discussion of the rules governing the translation of feature
models into logic-based representations, we refer to [4, 8]. The constraint-based representations we
generate in this paper follow these established translation rules.

3. Conflict Detection and Model-based Diagnosis

In Table 1, we introduce a CSP-based formalization of the FM shown in Figure 1. In this formalization,
co is the root constraint (part of every feature model) that ensures that in each FM configuration at least
one feature is included, i.e., no empty feature model configurations are allowed.

Table 1
CSP derived from the feature model in Figure 1. Abbreviated variable names are used, e.g., survey (s).
’ 1D \ Description ‘
Co s = true
1 DS
Co t—s
c3 st — s
4 qg&s
cs g+ (mVmm)
6 | pe (IAN-nV-lAN)
cr —|(n A t)
cs t — st

Based on this example CSP (Table 1), we now introduce the concept of a feature model configuration
task (see Definition 1) and a corresponding feature model configuration (see Definition 2) [4].

Definition 1. An FM configuration task is defined as a constraint satisfaction problem (F), C'), where F’
is a set of Boolean variables (features) f; (with domain (f;) = {true, false}), and C = REQU K B is a set of
constraints. Here, K B = {cy ... ¢, } represents a set of domain constraints, and REQ = {¢p41...¢;}
represents a set of user requirements.

In our example, KB = {cy ...cg} (see Table 1) and REQ = {cy : t = true}, meaning that the user
has specified ABtesting (¢) to be included in the final configuration.

Definition 2. An FM configuration CONF = {f1 = a(f1), fo = a(f2),..., f = a(fx)} is a set of
variable assignments, where a(f;) is the value assigned to the variable (feature) f;. A configuration
CONF is considered consistent if (J { f; = a(f;)} € CONF)UREQUK B is consistent (i.e., a solution
exists). A configuration is complete if every variable in F" has a corresponding assignment in CONF'.
Finally, CONF is valid if it is both, consistent and complete.

Example 1. An example configuration could be CONF = {s = true,p = true,l = true,n =
false,t = true, st = true,q = true,m = true,mm = false}.

However, there are often situations where a configuration is inconsistent with the constraints in the
feature model or the feature model constraints are inconsistent resulting in a void feature model. Also,
customer requirements can induce an inconsistency with the FM constraints resulting in a situation
where no solution can be identified. To deal with such situations, the concepts of conflict sets (see
Definition 3) and diagnoses (see Definition 4) are fundamental [4]. In the following, these two concepts
are formulated with regard to a constraint set C' which is inconsistent, i.e., no solution could be found
for the constraints in C.

Definition 3. A conflict set is a set I' C C' with inconsistent(I"). A conflict set is minimal if -3 :
I c T"and IV is a conflict set.

QuickXPLAIN For a minimal conflict set to be resolved, only one constraint needs to be deleted
from the conflict set. The term minimal conflict set is often used synonymously to the term minimal
unsatisfiable subset (MUS) [31]. Minimal conflict sets can be determined on the basis of the QuickXPLAIN

algorithm [22] which determines one minimal conflict set (I') at a time. Given a set of constraints
C = {c1,..,Ck» Chs1s -, Cn} (K is assumed to be 3), if {c1, .., cx} is inconsistent, the QuICKXPLAIN
conflict set search will focus on {cy, .., ¢t } and immediately omit {cj1, .., ¢,}. In many scenarios, all
minimal conflict sets need to be determined. In such a situation, QUIckXPLAIN needs to be combined
with a corresponding hitting set directed acyclic graph based approach which helps to determine all
minimal conflict sets in a systematic fashion [32].

Definition 4. A diagnosis A C C fulfills: consistent(C' — A). A is minimal if =3A’ : A’ € A and A’
is a diagnosis.

FAastDIAG In each case, a minimal diagnosis consists of a set of constraint which - if deleted from C' -
assure that C' — A is consistent. The term minimal diagnosis of often used synonymously to the term
minimal correction subset (MCS). Furthermore, the complement of a MCS, i.e., C' — M ('S, is denoted as
maximal satisfiable subset (MSS) [31]. Minimal diagnoses (A) can be determined with the FastD1AG
algorithm [24] which is similar to QUuickXPLAIN in terms of the used divide-and-conquer based search
strategy. Given a set of constraints C' = {c1, .., C, Ck41, .., Cn } (K is assumed to be 5), if {c1, .., cx } is
consistent, the FASTD1AG diagnosis search will focus on {cx1, .., ¢,} and immediately omit {cy, .., ¢ }.

In the following, we show how QuickXPLAIN can be applied to generate explanations in FM de-
velopment, maintenance, and configuration contexts. Furthermore, we show how FAsTD1AG can be
applied to generate repairs to recover from unintended (often inconsistent) situations. Note that both
algorithms are standard algorithms in the context of conflict detection and diagnosis. For related
algorithmic/implementation details we refer to [22, 24].

4. Explanations in FM Development and Configuration

We now introduce a schema of how to apply QuickXPrAIN [22] and FAsTD1AG [24] for creating expla-
nations and to propose corresponding repair actions where needed. In this context, QUICKXPLAIN(c, [3)
is assumed to return a minimal conflict set I where « represents a set of constraints that can be used for
explanation purposes and [represents the background knowledge, i.e., a set of constraints assumed to
be correct. Furthermore, FAsTDIAG(€, [3) is assumed to return a minimal diagnosis A where € represents
a set of constraints to be used for diagnosis purposes and /3 again represents the background knowledge.
In our discussion, we distinguish between the phases of (1) feature model development (where analysis
operations and corresponding explanations play a major role) and (2) feature model configuration where
users are building their own configurations on the basis of the configuration model (knowledge base)
defined by the feature model.

Feature Model Development The major focus of feature model development is to identify the
set of features relevant for describing the variability properties of the underlying domain and to
integrate constraints that specify relevant commonality and variability properties. In the context of
FM development and maintenance, analysis operations play a major role in terms of assuring well-
formedness properties of the created models [3]. Indicating the violation of a well-formedness rule
defined by an analysis operation is of enormous help [33]. In this context, explanations can help to
further advance the state of practice by supporting more in-depth insights into the reasons of the
violation of a well-formedness rule.

While being aware of further analysis operations, we provide a selected set of operations specifically
in the need of a constraint solver (configurator) support (see Table 2). Analysis operations in the need
of such a reasoning support are also in the need of explanations that help to better understand the
(negative) outcome of an analysis operation and to trigger repair actions [4]. Each entry in Table
2 consists of the description of the analysis operation (formulated as a corresponding question), a
corresponding explanation (why not?), and a repair in the case that the analysis operation provides a
negative answer.

Table 2
Explanations for FM analysis operations — cons/incons are abbreviations of consistent/inconsistent.

’ id ‘ question (analysis operation) ‘ explanation (why not?) ‘ repair ‘
1 is satisfiable(KB)? I' C KB :incons(T") A C KB :cons(KB— A)
2 is life(f; € F, KB)? Tckb: ZLZZT}L)S(F D= cons(KBé if{Bfl = true})
s | isoptional(f e pocpp | S RPN e
4 | isirredundant(c; € KB, KB)? zrf;oig(lguK%) I' ¢ KB :incons(I', KB)
5 | is generalization(!){ By, K B)? inconl.; (%{ggBng r&) cons((KABj f(vfg U D0
6 is satisfiable(CONF, K B)? znfo%sg‘OévflgB) cons(gO%VFC?]\Z?U KB)

The analysis operations included in Table 2 are the following:

(1) issatis fiable(K B)? helps to figure out if at least one solution can be identified for the given
feature model (represented by the knowledge base KB). If no solution can be identified (see also Table
3), i.e., the feature model is void, explanations (in terms of minimal conflict sets) I' can be provided
which represent minimal subsets of constraints which are inconsistent [4, 34]. A corresponding repair
can be proposed by a diagnosis A that represents a set of constraints in K B that — if deleted from
K B - help to assure the consistency of the remaining constraints in K B. For determining I" and A,
QuickXPraIN(K B) and FAsTDIAG(K B) need to be activated. In the example of Table 3, there exists
only one minimal explanation (I'1) and four related diagnosis A, i.e., alternative repair options for
restoring consistency.

Table 3
Explanation of a void FM (constraint ¢, is assumed to be new) with corresponding repair options A;..A4.
constraint co c1 C4 ¢ (pAq)
Iy X X X X
Al X — — —
AQ — X — —
Ag — — X —
A4 — — — X

(2)islife(f; € F, KB)? helps to figure out if at least one FM configuration can be created where
the variable (feature) f; is included [3, 4]. If no such configuration is possible (see Table 4), explanations
(in terms of minimal conflict sets) I' can be provided which represent minimal sets of constraints in
K B which are inconsistent with { f; = true}. If we want f; to be true, we need to calculate a diagnosis
A which represents a minimal constraint set to be deleted from K B to assure that the remaining
constraints in K B allow the inclusion of f;. In our example FM, if the feature ABtesting(t) would
have been defined as mandatory, the feature nolicense(n) is not life. An explanation is {co, c1, c2, ¢z }.

Table 4
Explanation of dead feature n (constraint ¢, is assumed to be new) with corresponding repair options A;..Ay.
constraint Co 1 Co ¢ (pAtL)
Iy X X X X
Al X — — —
AQ — X — —
Ag — — X —
A4 — — — X

(3) is optional(f; € F, KB)? helps to analyze if a feature can really be regarded as an optional

feature, i.e., there should be configurations where the feature is excluded [3, 4]. If the feature model
represented by K B does not allow the exclusion of f; (see Table 5), explanations (in terms of minimal
conflict sets I') can be provided which represent minimal subsets of constraints inconsistent with the
exclusion of f;. A corresponding diagnosis A (which represents a resolution of all minimal conflict
sets), is a minimal set of constraints that need to be deleted from K B to assure the possibility of having
configurations with f; excluded. In our example FM, if the feature A Btesting(t) would have been
defined as mandatory, the feature statistics(st) is not optional anymore. An explanation is {co, ¢}, cs }.

Table 5
Explanation of false optional feature st (co‘ is an adaptation of ¢3) with corresponding repair options Ap..Ag.
constraint co chit s cs
Iy X X X
Al X — —
AQ — X —
Ag — — X

(4) the redundancy of a constraint ¢; can be explained by the fact that ¢; is not part of an irredundant
constraint set I' determined for K B. Making K B irredundant means to delete those elements from KB
which are not in I' [35]. In our example, we would define the statistics feature (st) as mandatory;, i.e.,
st > s, the requires constraint cg can be regarded as redundant.

(5) if a generalization between the feature models K B, (the more general one allowing more solutions
[4]) and K B, (the more specific one representing a solution-wise subset of K B,) does not exist, an
explanation can indicate those elements (constraints) responsible for a situation where K B, does not
represent a superset of K B,. A related diagnosis A indicates those elements that need to be deleted
from K B, such that the mentioned superset property is fulfilled.

(6) if a configuration CONF is inconsistent with the constraints in K B, an explanation indicates
constraints (i.e., variable value assignments) in CONF that induce an inconsistency with K B. Fur-
thermore, a diagnosis A indicates minimal sets of constraints (assignments) to be deleted from CONF
such that consistency with the constraints in K B can be restored [36].

Table 6 provides an overview of how the discussed analysis operations (see Table 2) can be supported
by the conflict detection algorithm QuickXPrain [22] and the diagnosis algorithm FAsTD1AG [24]. Note
that these algorithms could also be replaced by other alternatives if conflict set and diagnosis minimality
is assured by those algorithms. For example, if issatis fiable(K B) is not fulfilled (i.e., the feature
model does not allow the identification of a solution), '=QuickXPLAIN(K B, () returns a minimal set
of elements of K B as an explanation indicating that those elements are in conflict. Note that more
than one such explanation (conflict) could exist in K B. If this is the case, a hitting set directed acyclic
graph (HSDAG) based approach [32] can be applied (in combination with QuickXPLAIN) to identify all
related explanations (minimal conflict sets). If a repair proposal is requested, FASTDIAG can determine
a corresponding diagnosis A which expresses a minimal set of elements to be deleted from K B in
order to be able to restore consistency in K B. In a similar fashion, QuickXPraIN and FASTDIAG can be
activated in the other mentioned explanation scenarios.

Table 6
Explanations for FM analysis operations using QuickXPlain [22] and FastDiag [24].
’ id ‘ question (analysis operation) ‘ explanation (why not?) ‘ repair ‘
1 is satisfiable(KB)? QuickXPLaIN(K B, 0) FastDIAG(K B, D)
2 is life(f; € F, KB)? QuIckXPLAIN(K B, {f; = true}) | FastDiac(K B, {f; = true})
3 is optional(f; € F, KB)? QuickXPLAIN(K B, {f; = false}) | FastDIAG(K B, {f; = false})
4 | isirredundant(c; € KB, KB)? ¢; ¢ QuickXPLAaIN(K B, K B) QuickXPLAIN(K B, K B)
5 | is generalization(X By, K B,)? QuickXPLAIN(K B, K By) FastDIAG(K By, K B)
6 is satisfiable(CONF, K B)? QuickXPLAIN(CONF, K B) FastDIAG(CONF', K B)

Feature Model Configuration Feature model configuration supports the identification of a decision
regarding the inclusion or exclusion of specific features in a configuration. In the context of such (often
interactive) configuration sessions, explanations can help the user of a feature model configurator to
better understand the reason of a specific feature inclusion or exclusion but also as to why specific
features have not been included (i.e., an explanation of the counterfactual case) [37, 12, 17]. Example
questions that need to be answered (i.e., explained to users) are shown in Table 7.

Table 7
Explanations for FM configuration settings — cons/incons are abbreviations of consistent/inconsistent.
’ id \ question \ explanation \ repair ‘
; why({fi = true} € I'CREQUKB: A C CONF :
CONF,KBUREQ)? incons(I' U{f; = false}) cons(CONF — AU{f; = false})
5 why not({ f; = true} € I'CREQUKB: A C CONF :
CONF,KBU REQ)? incons(I' U { f; = true}) cons(CONF — AU {f; = true})
. A C REQ :
? : =
3 why not(REQ, K B)? I' C REQ : incons(REQ U K B) cons(REQ — AU K B)

Table 8 provides a complete listing of the QuickXPLAIN and FASTDIAG activations used in the
explanation/repair scenarios shown in Table 7.

Table 8
Explanations for FM configuration settings using QuickXPlain [22] and FastDiag [24].
’ id ‘ question ‘ explanation ‘ repair ‘
] why({ f; = true} € QuickXPLAIN(K BU REQ,{f; = FastDIaAG(KBU REQ, {f; =
CONF,KBU REQ)? false}) false})
5 why not({f; = true} € QuickXPLAIN(KBU REQ, {f; = FastDIAG(KBU REQ, {f; =
CONF,KBU REQ)? true}) true})
3 why not(REQ, K B)? QuickXPLAIN(REQ), K B) FastDIAG(REQ, KB)

(1) given a configuration CONF which includes a variable value assignment f; = true, a correspond-
ing (counterfactual) explanation identifies those elements (the minimal conflict set I') in REQ U KB
which induce an inconsistency with the negation of f; = true and are therefore responsible for the
inclusion of feature f; [12, 38]. The corresponding activation of QuickXPLAIN to determine the minimal
conflict set I' is shown in Table 8. In this setting, QuickXPLAIN identifies a minimal set of constraints
in REQ U KB that induce an inconsistency with the constraint f; = true [12]. In this scenario,
FasTDIAG can be applied to identify a diagnosis A consisting of elements from CONF which have to
be deleted/adapted in such a way that f; = true becomes part of CONF'.

(2) given a configuration including a variable value assignment f; = false, a counterfactual explana-
tion identifies those elements (the minimal conflict set I') in RE'Q U K B which induce an inconsistency
with the negation of f; = false and are therefore responsible for the exclusion of feature f;. A cor-
responding diagnosis A determined by FAsTDI1AG would indicate those elements to be adapted' in
CONF such that the inclusion of f; becomes possible.

(3) if the user requirements in RE() do not allow the determination of a solution, an explanation will
indicate a subset of requirements that induce an inconsistency with K B [22]. A diagnosis A includes a
set of requirements that need to be deleted/adapted to restore consistency. If we assume the existence
of the user requirements REQ = {c9, c19, c11}, the corresponding explanations are I'; and I'y with
the diagnoses A and A indicating a way to resolve the conflicts in I'; and I's. In this context, A; is a
singleton diagnosis, i.e., a diagnosis consisting of the minimal number of elements needed to resolve all
existing conflicts.

"Due to the Boolean nature of feature model variables, an adaptation/deletion of a feature always means either to switch from
feature inclusion to exclusion or vice-versa.

Table 9
Explanation of inconsistent user requirements {cg, c19, ¢11 } with corresponding repair options A;..Aq.

requirements | cg : t =true | cyp:n =true | c11: st = false
Iy X X —
Iy X — X
Al X — —
Ag - X X

5. Threats to Validity

In this paper, we have shown how to apply consistency-based conflict detection and diagnosis to
determine corresponding explanations and repair actions. We are aware of the fact that there are related
open issues, for example, instead of deleting constraints from an envisioned superset K B, to assure
an entailment relationship with the specialized feature model K B, we could also think about adding
additional constraints to K B;. We regard such open repairs as being beyond the scope of this paper,
however, this appears to be a challenging topic for future work. In this paper, we did not conduct
performance evaluations of the different explanation and repair settings, however, the used algorithms
are well-established and have shown to be applicable in various configuration scenarios which we took
as a reason for not including another performance evaluation of QuickXPraIN and FasTD1AG.

6. Conclusions

In this paper, we have shown how to apply conflict detection and diagnosis for the creation of consistency-
based explanations and corresponding repair actions. We have identified two major application scenarios
which are (1) the generation of explanations and repair actions in the context of supporting analysis
operations in FM development and maintenance and (2) the support of users in interactive FM con-
figuration sessions. We have shown how to apply/integrate QuickXPLAIN as standard algorithm for
the detection of minimal conflict sets and FASTDIAG as an algorithm for the identification of minimal
diagnoses. In FM development and maintenance, why not? explanations help to understand why specific
well-formedness rules defined by analysis operations, fail. In FM configuration, why not? and why?
explanations can be used to explain the inclusion or exclusion of specific features but also the reason
as to why no solution exists. Open issues for future work include user studies to better understand in
which context to provide which explanation or repair, an analysis of further explanation types to be
included in feature model design and configuration, and an analysis of the improvement potentials of
existing conflict detection and diagnosis algorithms using machine learning techniques.

Declaration on Generative Al

The authors used ChatGPT for language refinement and improving readability. All Al-generated
suggestions were carefully reviewed and edited by the authors, who take full responsibility for the
content of this publication.

References

[1] M. Acher, P. Temple, J.-M. Jézéquel, J. A. Galindo, J. Martinez, T. Ziadi, VaryLATEX: Learning
Paper Variants That Meet Constraints, in: 12th International Workshop on Variability Modelling
of Software-Intensive Systems, VAMOS 18, Association for Computing Machinery, New York, NY,
USA, 2018, pp. 83-88.d0i:10.1145/3168365.3168372.

[2] S. Apel, C. Kidstner, An overview of feature-oriented software development, Journal of Object
Technology 8 (2009) 49-84.

http://dx.doi.org/10.1145/3168365.3168372

(3]
(4]
[5]

(6]
(7]

(8]

[13]

[19]

D. Benavides, S. Segura, A. Ruiz-Cortes, Automated analysis of feature models 20 years later: A
literature review, Information Systems 35 (2010) 615-636.

A. Felfernig, A. Falkner, D. Benavides, Feature Models: AI-Driven Design, Analysis and Applica-
tions, Springer, 2024. doi:10.1007/978-3-031-61874-1.

J. Galindo, J. Horcas, A. Felfernig, D. Fernandez-Amoros, D. Benavides, Flama: A collaborative
effort to build a new framework for the automated analysis of feature models, in: Proceedings of
the 27th ACM International Systems and Software Product Line Conference - Volume B, SPLC ’23,
ACM, New York, NY, USA, 2023, pp. 16—19. doi:10.1145/3579028.3609008.

K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson, Feature-oriented Domain Analysis (FODA) -
Feasibility Study, TechnicalReport CMU — SEI-90-TR-21 (1990).

J. Gu, P. Purdom, J. Franco, B. Wah, Algorithms for the satisfiability (sat) problem: A survey, in: DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical
Society, 1996, pp. 19-152.

D. Benavides, P. Trinidad, A. Cortés, Using constraint programming to reason on feature models,
in: W. Chu, N. Juzgado, W. Wong (Eds.), Proceedings of the 17th International Conference on
Software Engineering and Knowledge Engineering (SEKE’2005), Taipei, Taiwan, Republic of China,
July 14-16, 2005, 2005, pp. 677-682.

A. Popescu, S. Polat-Erdeniz, A. Felfernig, M. Uta, M. Atas, V.-M. Le, K. Pilsl, M. Enzelsberger,
T.N. T. Tran, An overview of machine learning techniques in constraint solving, J Intell Inf Syst
58 (2022) 91-118. d0i:10.1007/510844-021-00666-5.

A. Felfernig, D. Benavides, J. Galindo, F. Reinfrank, Towards Anomaly Explanation in Feature
Models, in: ConfWS-2013: 15th International Configuration Workshop (2013), volume 1128, 2013,
pp. 117-124.

A. Felfernig, M. Schubert, S. Reiterer, Personalized diagnosis for over-constrained problems, in:
23rd International Joint Conference on Artificial Intelligence, IJCAI "13, AAAI Press, 2013, pp.
1990-1996.

A. Felfernig, D. Garber, V.-M. Le, S. Lubos, Causality-based explanations for feature model
configuration, in: 19th International Working Conference on Variability Modelling of Software-
Intensive Systems, VaMoS "25, ACM, New York, NY, USA, 2025, pp. 86—-90. doi:10.1145/3715340.
3715438.

S. Lubos, T. N. T. Tran, A. Felfernig, S. Polat Erdeniz, V.-M. Le, LLM-generated Explana-
tions for Recommender Systems, in: 32nd ACM Conference on User Modeling, Adapta-
tion and Personalization, UMAP Adjunct '24, ACM, New York, NY, USA, 2024, pp. 276-285.
d0i:10.1145/3631700.3665185.

S. Lubos, M. Gartner, A. Felfernig, R. Willfort, Leveraging LLMs to Explain the Consequences of
Recommendations, in: 33rd ACM Conference on User Modeling, Adaptation and Personalization,
ACM, 2025, pp- 318-322. doi:10.1145/3699682.3728328.

A. Felfernig, M. Wundara, T. Tran, S. Polat-Erdeniz, S. Lubos, M. E. Mansi, D. Garber, V. Le,
Recommender systems for sustainability: overview and research issues, Frontiers in Big Data 6
(2023). doi:10.3389/fdata.2023.1284511.

M. Hentze and T. Pett and T. Thiim and L. Schaefer, Hyper Explanations for Feature-Model
Defect Analysis, in: 15th International Working Conference on Variability Modelling of Software-
Intensive Systems, VaMoS’21, Association for Computing Machinery, New York, NY, USA, 2021.
d0i:10.1145/3442391.3442406.

D. Kramer, C. Sauer, T. Roth-Berghofer, Towards explanation generation using feature models in
software product lines, in: 9th Workshop on Knowledge Engineering and Software Engineering,
CEUR, 2013, pp. 13-23. URL: https://ceur-ws.org/Vol-1070/.

L. Ochoa, O. Gonzélez-Rojas, T. Thiim, Using decision rules for solving conflicts in extended
feature models, in: ACM SIGPLAN International Conference on Software Language Engineering,
Association for Computing Machinery, New York, NY, USA, 2015, pp. 149-160. doi:10.1145/
2814251.2814263.

N. Tintarev, J. Masthoff, A survey of explanations in recommender systems, ICDEW 07, IEEE

http://dx.doi.org/10.1007/978-3-031-61874-1
http://dx.doi.org/10.1145/3579028.3609008
http://dx.doi.org/10.1007/s10844-021-00666-5
http://dx.doi.org/10.1145/3715340.3715438
http://dx.doi.org/10.1145/3715340.3715438
http://dx.doi.org/10.1145/3631700.3665185
http://dx.doi.org/10.1145/3699682.3728328
http://dx.doi.org/10.3389/fdata.2023.1284511
http://dx.doi.org/10.1145/3442391.3442406
https://ceur-ws.org/Vol-1070/
http://dx.doi.org/10.1145/2814251.2814263
http://dx.doi.org/10.1145/2814251.2814263

[20]

[21]

[22]

[23]

[26]

[27]

[28]

[29]

[30]
[31]

[35]

Computer Society, USA, 2007, pp. 801-810. doi:10.1109/ICDEW. 2007 .4401070.

T. Tran, S. Polat Erdeniz, A. Felfernig, S. Lubos, M. El Mansi, V. Le, Less is more: Towards
sustainability-aware persuasive explanations in recommender systems, in: Proceedings of the 18th
ACM Conference on Recommender Systems, RecSys ’24, Association for Computing Machinery,
New York, NY, USA, 2024, p. 1108-1112. doi:10.1145/3640457.3691708.

T. Tran, A. Felfernig, V. Le, An overview of consensus models for group decision-making and
group recommender systems, User Modeling and User-Adapted Interaction 34 (2023) 489-547.
d0i:10.1007/s11257-023-09380-2z.

U. Junker, QuickXPrAIN: preferred explanations and relaxations for over-constrained problems,
in: 19th National Conference on Artifical Intelligence, AAAT'04, AAAI Press, 2004, pp. 167-172.
O. A. Tazl, C. Tafeit, F. Wotawa, A. Felfernig, DDMin versus QuickXplain - An Experimental
Comparison of two Algorithms for Minimizing Collections, in: R. Peng, C. E. Pantoja, P. Kamthan
(Eds.), 34th International Conference on Software Engineering and Knowledge Engineering, KSI
Research Inc., 2022, pp. 481-486. do0i:10.18293/SEKE2022-172.

A. Felfernig, M. Schubert, C. Zehentner, An efficient diagnosis algorithm for inconsistent constraint
sets, Al for Engineering Design, Analysis, and Manufacturing (AIEDAM) 26 (2012) 53-62.

V. Le, C. Silva, A. Felfernig, D. Benavides, J. Galindo, T. Tran, FastDiagP: an algorithm for
parallelized direct diagnosis, AAAT’23/IAAT’23/EAAT’'23, AAAI Press, 2023. doi:10.1609/aaai.
v3715.25792.

C. Gomes, H. Kautz, A. Sabharwal, B. Selman, Satisfiability Solvers, Handbook of Knowledge
Representation (2008) 89-134.

M. Mendonga, A. Wasowski, K. Czarnecki, SAT-based analysis of feature models is easy, in:
D. Muthig, J. McGregor (Eds.), Software Product Lines, 13th International Conference, SPLC 2009,
San Francisco, California, USA, August 24-28, 2009, Proceedings, volume 446 of ACM International
Conference Proceeding Series, ACM, 2009, pp. 231-240.

V. Myllarniemi, J. Tithonen, M. Raatikainen, A. Felfernig, Using Answer Set Programming for Fea-
ture Model Representation and Configuration, in: 16th International Workshop on Configuration,
CEUR, Novi Sad, Serbia, 2014, pp. 1-8.

A. Falkner, G. Friedrich, A. Haselbock, G. Schenner, H. Schreiner, Twenty-five years of successful
application of constraint technologies at siemens, Al Mag. 37 (2016) 67-80. doi:10.1609/aimag.
v37i4.2688.

T. W. F. Rossi, P. van Beek, Handbook of Constraint Programming, Elsevier, 2006.

S. Gupta, B. Genc, B. O’Sullivan, Explanation in constraint satisfaction: A survey, in: Z.-H. Zhou
(Ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, I[JCAI-
21, International Joint Conferences on Artificial Intelligence Organization, 2021, pp. 4400-4407.
doi:10.24963/1ijcai.2021/601, survey Track.

R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1987) 57-95.

M. Kowal, S. Ananieva, T. Thiim, Explaining anomalies in feature models, SIGPLAN Not. 52 (2016)
132-143. doi:10.1145/3093335.29932438.

R. Bakker, F. Dikker, F. Tempelman, P. Wogmim, Diagnosing and solving over-determined con-
straint satisfaction problems, in: Proceedings of [JCAI-93, Morgan Kaufmann, 1993, pp. 276-281.
V.Le, A. Felfernig, M. Uta, T. Tran, C. Silva, WipeOutR: automated redundancy detection for feature
models, in: 26th ACM International Systems and Software Product Line Conference - Volume A,
SPLC ’22, ACM, New York, NY, USA, 2022, pp. 164-169. doi:10.1145/3546932.3546992.

[36] J. White, D. Benavides, D. Schmidt, P. Trinidad, B. Dougherty, A. Ruiz-Cortes, Automated diagnosis

[37]

[38]

of feature model configurations, Journal of Systems and Software 83 (2010) 1094-1107.

C. Dubslaff, K. Weis, C. Baier, S. Apel, Causality in configurable software systems, in: 44th Inter-
national Conference on Software Engineering, ICSE ’22, Association for Computing Machinery,
New York, NY, USA, 2022, pp. 325-337. d0i:10.1145/3510003.3510200.

G. Friedrich, Elimination of spurious explanations, in: 16th European Conference on Artificial
Intelligence, ECAI’04, IOS Press, NLD, 2004, pp. 813-817.

http://dx.doi.org/10.1109/ICDEW.2007.4401070
http://dx.doi.org/10.1145/3640457.3691708
http://dx.doi.org/10.1007/s11257-023-09380-z
http://dx.doi.org/10.18293/SEKE2022-172
http://dx.doi.org/10.1609/aaai.v37i5.25792
http://dx.doi.org/10.1609/aaai.v37i5.25792
http://dx.doi.org/10.1609/aimag.v37i4.2688
http://dx.doi.org/10.1609/aimag.v37i4.2688
http://dx.doi.org/10.24963/ijcai.2021/601
http://dx.doi.org/10.1145/3093335.2993248
http://dx.doi.org/10.1145/3546932.3546992
http://dx.doi.org/10.1145/3510003.3510200

	1 Introduction
	2 Example Feature Model
	3 Conflict Detection and Model-based Diagnosis
	4 Explanations in FM Development and Configuration
	5 Threats to Validity
	6 Conclusions

